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Al~traet--ln this paper, we propose a multi-objective genetic algorithm and apply it to flowshop 
scheduling. The characteristic features of our algorithm are its selection procedure and elite preserve 
strategy. The selection procedure in our multi-objective genetic algorithm selects individuals for a 
crossover operation based on a weighted sum of multiple objective functions with variable weights. The 
elite preserve strategy in our algorithm uses multiple elite solutions instead of a single elite solution. That 
is, a certain number of individuals are selected from a tentative set of Pareto optimal solutions and 
inherited to the next generation as elite individuals. In order to show that our approach can handle 
multi-objective optimization problems with concave Pareto fronts, we apply the proposed genetic 
algorithm to a two-objective function optimization problem with a concave Pareto front. Last, the 
performance of our multi-objective genetic algorithm is examined by applying it to the flowshop 
scheduling problem with two objectives: to minimize the makespan and to minimize the total tardiness. 
We also apply our algorithm to the flowshop scheduling problem with three objectives: to minimize the 
makespan, to minimize the total tardiness, and to minimize the total flowtime. Copyright © 1996 Elsevier 
Science Ltd 

I. INTRODUCTION 

Flowshop scheduling problems are one of the most well known problems in the area of scheduling. 
The objective of minimizing the makespan is often employed as a criterion of flowshop scheduling 
since Johnson's work [1]. Various heuristic approaches (e.g., Dannenbring [2], Nawaz et al. [3], 
Osman and Potts [4] and Widmer and Hertz [5]) as well as optimization techniques (e.g., Ignall 
and Schrage [6] and Lomnicki [7]) have been proposed for minimizing the makespan. While 
these studies treated a single objective, many real-world problems involve multiple objectives. 
Recently several researchers have tackled multi-objective flowshop scheduling problems. For 
example, Ho and Chan [8] proposed a heuristic method for flowshop scheduling with bicriteria, 
Gangadharan et al. [9] proposed a simulated annealing heuristic for flowshop scheduling with 
bicriteria, and Morizawa et al. [10] proposed a complex random sampling method for 
multi-objective problems. 

Genetic algorithms have been mainly applied to single-objective optimization problems. When 
we apply a single-objective genetic algorithm to a multi-objective optimization problem, multiple 
objective functions should be combined into a scalar fitness function. If we assign a constant weight 
to each of the multiple objective functions for combining them, the direction of search in the genetic 
algorithm is constant in the multi-dimensional objective space as shown in Fig. 1. In Fig. I, f~(.) 
is an objective function to be maximized and J~(.) is to be minimized. The closed circle in Fig. 1 
represents the final solution by the single-objective genetic algorithm. 

Some studies have been attempted for designing multi-objective genetic algorithms since 
Schaffer's work [11]. Schaffer proposed the Vector Evaluated Genetic Algorithm (VEGA) for 
finding Pareto optimal solutions of multi-objective optimization problems. In Schaffer's VEGA, 
a population was divided into disjoint subpopulations, then each subpopulation was governed by 
its own objective function. Although Schaffer [11] reported some successful results, his approach 
seems to be able to find only extreme solutions on Pareto fronts as shown in Fig. 2 because its 
search directions are parallel to the axes of the objective space. Schaffer suggested two approaches 
to improve his approach in his paper [11]. One is to provide a heuristic selection preference for 
non-dominated individuals in each generation. The other is to crossbreed among the "species" by 
adding some mate selection. 
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f2 ( ' )  : TO be minimized 
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f l  ( ')  : To be maximized 

Fig. 1. Direction of the search by GA with a combined fitness function. 

The point of multi-objective optimization problems is how to find all possible tradeoffs among 
multiple objective functions that are usually conflicting. Since it is difficult to choose a single 
solution for a multi-objective optimization problem without iterative interaction with the decision 
maker, one general approach is to show the set of Pareto optimal solutions to the decision maker. 
Then the decision maker can choose any one of the Pareto optimal solutions. To find out all the 
Pareto optimal solutions by genetic algorithms, the variety of individuals should be kept in each 
generation. Recently Gen et  al.  [12] proposed a genetic algorithm for solving a bicriteria 
transportation problem, Tamaki et  al. [13] proposed a genetic algorithm for scheduling problems 
with multi-criteria, and Horn et  al. [14] proposed the Niched Pareto Genetic Algorithm by 
incorporating the concept of Pareto domination in the selection procedure and applying a niching 
pressure to spend the population out along Pareto fronts. 

In this paper, we propose a multi-objective genetic algorithm with various search directions as 
shown in Fig. 3. There are two characteristic features of our algorithm. One is its selection 
procedure. In the selection procedure, our multi-objective genetic algorithm uses a weighted sum 
of multiple objective functions to combine them into a scalar fitness function. The weights attached 
to the multiple objective functions are not constant but randomly specified for each selection. 
Therefore the direction of the search in our multi-objective genetic algorithm is not constant. The 
other characteristic feature of our algorithm is its elite preserve strategy. A tentative set of Pareto 
optimal solutions is preserved in the execution of our multi-objective genetic algorithm. A certain 
number of individuals in this set are inherited to the next generation as elite individuals. In order 
to show that our approach can handle multi-objective optimization problems with concave Pareto 
fronts, we apply our proposed genetic algorithm to a two-objective function optimization problem 
with concave Pareto fronts. The performance of our multi-objective genetic algorithm is examined 
by applying it to the flowshop scheduling problem with two objectives: to minimize the makespan 
and to minimize the total tardiness. We also apply our algorithm to the flowshop scheduling 
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Fig. 2. Directions of the search by Schaffer's VEGA. 
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f2 ( ' )  To be minimized 

Non-dominated 
solutions 
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f l  ( ' )  " To be maximized 

Fig. 3. Directions of the search by our multi-objective genetic algorithm. 

problem with three objectives: to minimize the makespan, to minimize the total tardiness, and to 
minimize the total flowtime. 

2. GENETIC OPERATIONS IN MULTI-OBJECTIVE GENETIC ALGORITHM 

2.1. Selection procedure 

One of  the simplest methods to combine multiple objective functions into a scalar fitness solution 
is the following weighted sum approach (we assume that all the objective functions should be 
maximized): 

f ( x )  = wl"jq(x) + ' ' "  + w,'f~(x) + ' "  + wn'fn(x), (1) 

where x is a string (i.e., solution), f(x) is a combined fitness function, f,.(x) is the i-th objective 
function, w, is a constant weight for f,(x), and n is the number of the objective functions. 

If we use the weighted sum in (1) with the constant weights w~'s, the search direction in genetic 
algorithms is also constant as shown in Fig. 1. Therefore we propose an idea to use variable weights 
in the selection procedure. The aim of this idea is to realize various search directions in Fig. 3 to 
search for Pareto optimal solutions. For example, we can specify variable weights as follows for 
a two-objective optimization problem: 

f(x) = w,.jq(x) + w:.j~(x), (2) 

Wl = ( i  1)/ (Nsel~t ion - -  1 ) ,  i = 1,  2 . . . . .  Nseloetion, 
W2 ~ 1 - -  WI ,  

(3) 

where N~io .  is the number of selections in each generation. The weighting scheme in (2)-(3) means 
that different weights are used for selecting each pair of parent strings in our multi-objective genetic 
algorithm. Because N,~,ctio. pairs of parent strings are to be selected in each generation, N,~,on pairs 
of different weights are specified in (3). In (3), the values of wl and w2 are evenly distributed over 
the closed interval [0, 1]. In computer simulations in this paper, we used the weighting scheme in 
(2)-(3) for two-objective problems. 

In general, we can randomly determine the value of each weight. For a multi-objective 
optimization problem with n objective functions (n i> 2), we can assign a random real number to 
each weight as follows when each pair of parent strings are selected for a crossover operation. 

rnd~ 
w , - - - ,  i = 1 , 2  . . . .  n, (4) 

rndj 
j = l  

where rndi and rndj are non-negative random integers (or non-negative random real numbers). 
From (4), we can see that n random real numbers are generated for the weights w,'s to calculate 
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the weighted sum in (1) when each pair of parent strings are selected. This procedure is iterated 
N~tioo times in each generation for selecting N~l~uon pairs of parent strings for a crossover 
operation. In computer simulations for a three-objective problem, we used the weighting scheme 
in (1) and (4). 

The weighted sum f(x) in (1) and (2) is used for determining the selection probability of each 
string in our multi-objective genetic algorithm. Because the weights w,'s are not constant but 
variable, the selection probability of each string is also variable even in a single generation. This 
realizes various search directions in our multi-objective genetic algorithm. 

2.2. Elite preserve strategy 

In multi-objective optimization problems, a solution with the best value of each objective can 
be regarded as an elite individual. Therefore we have n elite individuals for an n-objective problem. 
It is natural to think that such solutions are to be preserved to the next generation in genetic 
algorithms. 

During the execution of our multi-objective genetic algorithm, a tentative set of Pareto 
optimal solutions is stored and updated at every generation. We also preserve a certain number 
of individuals randomly selected from the tentative set of Pareto optimal solutions in addition 
to the n elite individuals with respect to n objectives. That is, multiple Pareto optimal solutions 
are used as elite individuals in our multi-objective genetic algorithm. This elite preserve 
strategy has an effect on keeping the variety in each population in our multi-objective genetic 
algorithm. 

In computer simulation, three solutions were selected as elite individuals for a two-objective 
flowshop scheduling problem: two elite individuals with respect to two objectives and a randomly 
selected individual from the tentative set of Pareto optimal solution. As a variant, we can design 
a multi-objective genetic algorithm by randomly selecting a certain number of elite individuals from 
the tentative set of Pareto optimal solutions. In computer simulation for a three-objective flowshop 
scheduling problem, three solutions which were randomly selected from the tentative set of Pareto 
optimal solutions were inherited to the next generation. 

2.3. Algorithm 

The following genetic operations are employed to generate and handle a population (i.e., a set 
of strings) in our multi-objective genetic algorithm (see Fig. 4). 

I Step 0: Initialization ) 

i 

~,Pareto optimal solutions.) 

I Step 3: Cr°ss°ver 1 

IStep 5: Elitist 1 
I Step 4: Mutati°n 1 strategy 

1" i 
( Step 6: Termination test 1 

I Step 7: User selection 1 

Fig. 4. Outline of our multi-objective genetic algorithm. 
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Step 0 (Initialization): Generate an initial population containing Npop strings where N ~  is the 
number of strings in each population. 
Step 1 (Evaluation): Calculate the values of the objective functions for the generated strings. 
Update a tentative set of Pareto optimal solutions. 
Step 2 (Selection): Calculate the fitness value f (x )  of each string by using the weights defined as 
(3) or (4). Select a pair of strings from the current population according to the following selection 
probability. The selection probability P(x) of a string x in a population tI' is specified as 

P(x) = f (x )  --f,m(W) . (5) 

Z {/(x)--/,~.(V)} 
XEW 

where 

fmin(~ "/) : min{f(x)lx c W}. (6) 

This step is repeated N~,io° times to produce Npop offspring by the crossover operation in Step 3. 
The values of the weights wi's in (3) or (4) are specified at each of the N~on  iterations. 
Step 3 (Crossover): For each selected pair, apply a crossover operation to generate an offspring 
with the crossover probability Pc. Npop strings should be generated by the crossover operation 
(N~]~,ion = Npop if a single offspring is generated from a pair of parent strings in the crossover 
operation). 
Step 4 (Mutation): For each string generated by the crossover operation, apply a mutation 
operation with a prespecified mutation probability Pro- 
Step 5 (Elitist strategy): Randomly remove Ne~,e strings from the Npop strings generated by the above 
operations, and add the same number of strings from a tentative set of Pareto optimal solutions 
to the current population. 
Step 6: (Termination test): If a prespecified stopping condition is not satisfied, return to Step 1. 
Step 7 (User selection): The multi-objective genetic algorithm shows the final set of Pareto optimal 
solutions to the decision maker. A single solution (i.e., the final solution) is selected by the decision 
maker's preference. 

In this paper, we employed the two-point crossover and the shift mutation shown in Fig. 5 for 
flowshop scheduling. These genetic operators were found to be good operators for a single-objective 
genetic algorithm for flowshop scheduling in our previous work [15]. 

3. SIMULATION RESULTS FOR A NUMERICAL EXAMPLE 

If multi-objective optimization problems have concave Pareto fronts, weighted sum approaches 
with constant weights tend to fail to find entire Pareto fronts (i.e., fail to find all the Pareto optimal 
solutions). Our approach, however, can handle multi-objective optimization problems with concave 
Pareto fronts. This is shown by the following example. 

CAIE 30/t--M 

Parent 1 IAIBTc]DIEIF 'GIHI , • 
~ ,  ~ ,  [ A I B I C [ D [ E [ F I G I H [  

I 
Child IAIBIEIDICIFIGII-II > 

Parent 2 IEIHIAIDIBICIGIF  I 

Crossover 

Fig. 5. Genetic operators. 

Mutation 
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We applied our multi-objective genetic algorithm to a test problem with the following two 
objectives to be minimized: 

Minimize fi (x) = 2x /~ ,  (7) 

Minimizefi(x) = xffl - x2) + 5, (8) 

subject to 

11 ~ X l  ~<4, 
X2 ~ 2 .  (9) 

Substituting equation (7) into equation (8), we obtained the relation between fffx) and fi(x) as 
follows: 

A ( x )  - 1 - x2 {A(x )}2  + 5. (10)  
4 

When x2 = 2, equation (10) gives the Pareto front of this problem. This Pareto front forms the 
concave shape in the objective space as shown in Fig. 6. 

In our multi-objective genetic algorithm, the fitness function f(x) was specified as 

f(x) = - wt'fi(x) - w2"fi(x). (11) 

Because Jq(x) and fi(x) should be minimized, the negative sign " - "  is attached to each weight 
in (11). 

In our multi-objective genetic algorithm, the number of solutions in each population (i.e., 
population size) was specified as Npop = 100, two point crossover was employed with the crossover 
probability 0.9, the mutation probability was specified as Pm = 0.01, and the number of elite 
individuals was specified as Ne~te = 5 (five elite solutions were randomly chosen from a tentative 
set of Pareto optimal solutions). In Fig. 6, • denotes the final solutions by our multi-objective 
genetic algorithm after 20 generations. From Fig. 6, we can observe that our multi-objective genetic 
algorithm can find many solutions on the concave Pareto front. 

We also applied a single-objective genetic algorithm where the weights w, and w2 were fixed as 
follows: 

w,:w2= 100:1, 50:1, 20:1, 15:1, 10:1, 5:1, 2:1, 

1:1, 1:2, 1:5, 1:10, 1:15, 1:20, 1:50, 1:100. 
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Fig. 6. Simulation result for the concave Pareto front problem. 
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The single-objective genetic algorithm with these 15 different weight values found only two Pareto 
solutions: (J~,J~) = (2, 4) and (Jq,fi) = (4, 1). From these simulation results, we can see that the 
single-objective genetic algorithm with constant weights cannot find the concave Pareto front even 
if various weight values were employed. 

4. SIMULATION RESULTS FOR FLOWSHOP SCHEDULING 

In this section, we demonstrate the effectiveness of our multi-objective genetic algorithm by 
computer simulations on a flowshop scheduling problem with two objectives: to minimize the 
makespan and to minimize the total tardiness. We also apply our algorithm to the flowshop 
scheduling problem with three objectives: to minimize the makespan, to minimize the total 
tardiness, and to minimize the total flowtime. 

Flowshop scheduling problems are one of the most well-known problems in the area of 
scheduling. General assumptions of the flowshop scheduling problems can be written as follows 
(see Dudek et al. [16]). Jobs are to be processed on multiple stages sequentially. There is one 
machine on each stage. Machines are available continuously. A job is processed on one machine 
at a time without preemption, and a machine processes no more than one job at a time. In this 
paper, we assume that n jobs are processed in the same order on m machines. This means that 
our flowshop scheduling is the n-job sequencing problem. In this paper, the sequence of the n jobs 
is denoted by a string x = (x~ . . . . .  x, . . . .  , x,) where Xk is the k-th job to be processed on the m 
machines. 

4.1. Two-objective flowshop scheduling problem 

In computer simulations, we employed two objectives as scheduling criteria; to minimize the 
makespan (i.e., the completion time of the last job) and to minimize the total tardiness (i.e., the 
sum of the tardiness for the duedate of each job). We specified the due date of each job by the 
following procedure: 

Step 1: Randomly generate a permutation of the n jobs. 
Step 2: Calculate the completion time C~ of each job, j = 1, 2 . . . . .  n. 
Step 3: Add a random integer rndj in the closed interval [ - 100, 100] to each Cj. That is, the 
duedate dj of the j- th job is dj = Cj + rndj. 

It is known that there is no correlation between the two objectives: the makespan and the total 
tardiness. In our multi-objective genetic algorithm, the fitness function f(x) can be written as 

f(x) = - WM~e~n'Makespan (x) - WTardin~s' Tardiness(x), (12) 

2500 
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' . . . . .  = -  
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o 
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Fig. 7. Comparison of our multi-objective genetic algorithm with two trials of the single-objective genetic 

algorithm. 
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where Makespan(x) is the makespan when the n jobs are processed in the order of x, Tardiness(x) 
is the total tardiness, and WM,~e,p~, and WTa~iaess a r e  non-negative variable weights for Makespan(x) 
and Tardiness(x), respectively. In computer simulations, WMak~n and WTa,~in~ were specified in the 
same manner as (3). Because Makespan(x) and Tardiness(x) should be minimized, the negative sign 
" - "  is attached to each weight in (12). 

As a test problem, we generated a flowshop scheduling problem with 20 jobs and 10 machines 
by randomly specifying the processing time of each job at each machine as an integer in the closed 
interval [1, 99]. In computer simulation, we used the following parameter specifications. 

Population size: Npop = 10, 
Crossover probability: Pc = 1.0, 
Mutation probability: Pr, = 1.0/string. 

Non-dominated solutions obtained by the proposed algorithm are shown by © in Fig. 7 where 
the horizontal and vertical axes are the makespan and the total tardiness, respectively. In Fig. 7, 
non-dominated solutions obtained by the two trials of a single-objective genetic algorithm are 
shown by • (obtained by the genetic algorithm for minimizing the makespan) and • (obtained 
by the genetic algorithm for minimizing the total tardiness). In the single-objective genetic 
algorithm, the fitness function was equivalent to the value of its objective function with the negative 
sign " - "  A tentative set of Pareto optimal solutions was stored and updated in the 
single-objective genetic algorithm in the same manner as in the multi-objective genetic algorithm. 
In order to compare the proposed algorithm with the two trials of the single-objective genetic 
algorithm under the same computation load, we specified the number of evaluations of the fitness 
function as 100,000 in our multi-objective genetic algorithm and as 50,000 in each trial of the 
single-objective genetic algorithm. Therefore 100,000 solutions were evaluated in each approach. 

From Fig. 7, we can see that the set of the non-dominated solutions obtained by our 
multi-objective genetic algorithm (©) is superior to the set of the non-dominated solutions obtained 
by the single-objective genetic algorithm ( I  and • ) .  This is because many solutions denoted by 
• and • are dominated by solutions denoted by ©. This demonstrates the high performance of 
our multi-objective genetic algorithm. 

The effectiveness of the elite preserve strategy is demonstrated in Fig. 8. In Fig. 8, "no elite", 
"2 elite" amd "3 elite" mean that no elite individual, two elite individuals and three elite individuals 
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Fig. 9. Comparison of  our multi-objective genetic algorithm with Schaffer's V E G A  and the single-objective 
genetic algorithm. 

were preserved to the next population in the multi-objective genetic algorithm, respectively. In the 
"2 elite" algorithm, only the elite individuals with respect to the two objective functions were 
preserved. On the other hand, an individual randomly selected from a tentative set of  Pareto 
optimal solutions was preserved in addition to such two elite individuals in the "3 elite" algorithm. 
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Table 1. Average CPU time used by each algorithm for finding the Pareto-optimal 
solutions in Fig. 9 

Algorithm Proposed algorithm Schaffer's VEGA SOGA 

CPU time (s) 3.08 3.00 2.48 

From Fig. 8, we can see that the "3 elite" method found better solutions than the "2 elite" and 
"no elite" methods. This means that our elite preserve strategy had an effect on the performance 
of the multi-objective genetic algorithm. 

We also applied Schaffer's VEGA [11] and another version of the single-objective genetic 
algorithm to the same flowshop scheduling problem. In the single-objective genetic algorithm, we 
used the weights WMakespan ~- 5 and WTardiness -~- 2 to calculate the fitness value. A tentative set of 
Pareto optimal solutions was stored and updated in the single-objective genetic algorithm in the 
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same manner as in the multi-objective genetic algorithm. As a stopping condition, we used the total 
number of evaluations of strings (i.e., solutions). When 100,000 solutions were evaluated in each 
algorithm, the algorithm was terminated. The simulation results by the proposed genetic algorithm, 
Schaffer's VEGA and the single-objective genetic algorithm are shown in Figs 9(a), (b) and (c), 
respectively. We applied each algorithm five times to the same flowshop scheduling problem. Each 
algorithm began to search Pareto-optimal solutions from the same initial generation. From Fig. 9, 
we can see that better solutions were obtained by the multi-objective genetic algorithm because 
many solutions obtained by Schaffer's VEGA in Fig. 9(b) are dominated by multi-objective genetic 
algorithm solutions in Fig. 9(a). The single-objective genetic algorithm could find some better 
solutions than our multi-objective genetic algorithm, but the single-objective algorithm tended to 
fail to find large Pareto fronts. The average CPU time used by each algorithm for finding the 
solutions in Fig. 9 is shown in Table 1. We can see from Table 1 that a similar computation time 
was spent by each algorithm in computer simulations. 

4.2. Three-objective flowshop scheduling problem 

We also applied our multi-objective genetic algorithm to a flowshop scheduling problem with 
three objectives: to minimize the makespan, to minimize the total tardiness and to minimize the 
total flowtime (i.e., the sum of completion time over all jobs). We used the same parameters as 
used for the two-objective flowshop scheduling problem. Because it is difficult to show solutions 
in the three-dimensional objective space, we show the solutions by projecting them on to 
two-dimensional objective spaces. Figure 10 shows the simulation results obtained by our 
multi-objective genetic algorithm, Schaffer's VEGA and the single-objective genetic algorithm. In 
the single-objective genetic algorithm, we used the constant weights WMak~pa~ = 5, WTar~me~ = 2 and 
Wno~i~ = 1 to calculate the fitness value. From Fig. 10, we can observe that our multi-objective 
genetic algorithm could find a better set of solutions. 

5. CONCLUSION 

In this paper, we proposed a framework of genetic algorithms for multi-objective optimization 
problems. Our approach has two characteristic features. One is that the weights used for combining 
multiple objectives into a scalar fitness function are randomly specified for each selection. That is, 
the weights are not constant but variable in our multi-objective genetic algorithm. The other 
characteristic feature is that multiple elite individuals selected from a tentative set of Pareto optimal 
solutions are inherited to the next generation. By computer simulations, we showed that our 
multi-objective genetic algorithm could find concave Pareto optimal solutions, and we 
demonstrated that our multi-objective genetic algorithm could find better solutions than the VEGA 
(Vector Evaluated Genetic Algorithm) by Schaffer [11] and the single-objective genetic algorithm. 
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