
Pergamon
Computers ind. Engng Vol. 30, No. 4, pp. 957-968, 1996

Copyright © 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

S0360-8352(96)00045-9 0360-8352/96 $15.00 + 0.00

M U L T I - O B J E C T I V E G E N E T I C A L G O R I T H M A N D ITS

A P P L I C A T I O N S T O F L O W S H O P S C H E D U L I N G

TADAHIKO MURATA, HISAO ISHIBUCHI and HIDEO TANAKA
Department of Industrial Engineering, Osaka Prefecture University, Gakuen-cho l-l, Sakai, Osaka 593,

Japan

Al~traet--ln this paper, we propose a multi-objective genetic algorithm and apply it to flowshop
scheduling. The characteristic features of our algorithm are its selection procedure and elite preserve
strategy. The selection procedure in our multi-objective genetic algorithm selects individuals for a
crossover operation based on a weighted sum of multiple objective functions with variable weights. The
elite preserve strategy in our algorithm uses multiple elite solutions instead of a single elite solution. That
is, a certain number of individuals are selected from a tentative set of Pareto optimal solutions and
inherited to the next generation as elite individuals. In order to show that our approach can handle
multi-objective optimization problems with concave Pareto fronts, we apply the proposed genetic
algorithm to a two-objective function optimization problem with a concave Pareto front. Last, the
performance of our multi-objective genetic algorithm is examined by applying it to the flowshop
scheduling problem with two objectives: to minimize the makespan and to minimize the total tardiness.
We also apply our algorithm to the flowshop scheduling problem with three objectives: to minimize the
makespan, to minimize the total tardiness, and to minimize the total flowtime. Copyright © 1996 Elsevier
Science Ltd

I. INTRODUCTION

Flowshop scheduling problems are one of the most well known problems in the area of scheduling.
The objective of minimizing the makespan is often employed as a criterion of flowshop scheduling
since Johnson's work [1]. Various heuristic approaches (e.g., Dannenbring [2], Nawaz et al. [3],
Osman and Potts [4] and Widmer and Hertz [5]) as well as optimization techniques (e.g., Ignall
and Schrage [6] and Lomnicki [7]) have been proposed for minimizing the makespan. While
these studies treated a single objective, many real-world problems involve multiple objectives.
Recently several researchers have tackled multi-objective flowshop scheduling problems. For
example, Ho and Chan [8] proposed a heuristic method for flowshop scheduling with bicriteria,
Gangadharan et al. [9] proposed a simulated annealing heuristic for flowshop scheduling with
bicriteria, and Morizawa et al. [10] proposed a complex random sampling method for
multi-objective problems.

Genetic algorithms have been mainly applied to single-objective optimization problems. When
we apply a single-objective genetic algorithm to a multi-objective optimization problem, multiple
objective functions should be combined into a scalar fitness function. If we assign a constant weight
to each of the multiple objective functions for combining them, the direction of search in the genetic
algorithm is constant in the multi-dimensional objective space as shown in Fig. 1. In Fig. I, f~(.)
is an objective function to be maximized and J~(.) is to be minimized. The closed circle in Fig. 1
represents the final solution by the single-objective genetic algorithm.

Some studies have been attempted for designing multi-objective genetic algorithms since
Schaffer's work [11]. Schaffer proposed the Vector Evaluated Genetic Algorithm (VEGA) for
finding Pareto optimal solutions of multi-objective optimization problems. In Schaffer's VEGA,
a population was divided into disjoint subpopulations, then each subpopulation was governed by
its own objective function. Although Schaffer [11] reported some successful results, his approach
seems to be able to find only extreme solutions on Pareto fronts as shown in Fig. 2 because its
search directions are parallel to the axes of the objective space. Schaffer suggested two approaches
to improve his approach in his paper [11]. One is to provide a heuristic selection preference for
non-dominated individuals in each generation. The other is to crossbreed among the "species" by
adding some mate selection.

957

958 Tadahiko Murata et al.

f2 (') : TO be minimized

• Final solution

0
f l (') : To be maximized

Fig. 1. Direction of the search by GA with a combined fitness function.

The point of multi-objective optimization problems is how to find all possible tradeoffs among
multiple objective functions that are usually conflicting. Since it is difficult to choose a single
solution for a multi-objective optimization problem without iterative interaction with the decision
maker, one general approach is to show the set of Pareto optimal solutions to the decision maker.
Then the decision maker can choose any one of the Pareto optimal solutions. To find out all the
Pareto optimal solutions by genetic algorithms, the variety of individuals should be kept in each
generation. Recently Gen et al. [12] proposed a genetic algorithm for solving a bicriteria
transportation problem, Tamaki et al. [13] proposed a genetic algorithm for scheduling problems
with multi-criteria, and Horn et al. [14] proposed the Niched Pareto Genetic Algorithm by
incorporating the concept of Pareto domination in the selection procedure and applying a niching
pressure to spend the population out along Pareto fronts.

In this paper, we propose a multi-objective genetic algorithm with various search directions as
shown in Fig. 3. There are two characteristic features of our algorithm. One is its selection
procedure. In the selection procedure, our multi-objective genetic algorithm uses a weighted sum
of multiple objective functions to combine them into a scalar fitness function. The weights attached
to the multiple objective functions are not constant but randomly specified for each selection.
Therefore the direction of the search in our multi-objective genetic algorithm is not constant. The
other characteristic feature of our algorithm is its elite preserve strategy. A tentative set of Pareto
optimal solutions is preserved in the execution of our multi-objective genetic algorithm. A certain
number of individuals in this set are inherited to the next generation as elite individuals. In order
to show that our approach can handle multi-objective optimization problems with concave Pareto
fronts, we apply our proposed genetic algorithm to a two-objective function optimization problem
with concave Pareto fronts. The performance of our multi-objective genetic algorithm is examined
by applying it to the flowshop scheduling problem with two objectives: to minimize the makespan
and to minimize the total tardiness. We also apply our algorithm to the flowshop scheduling

A(') To be minimized

> o

Extreme solutions on
the Pareto front

Fig. 2. Directions of the search by Schaffer's VEGA.

0 /
f l (') : To be maximized

Multi-objective genetic algorithm 959

f2 (') To be minimized

Non-dominated
solutions

0 i
f l (') " To be maximized

Fig. 3. Directions of the search by our multi-objective genetic algorithm.

problem with three objectives: to minimize the makespan, to minimize the total tardiness, and to
minimize the total flowtime.

2. GENETIC OPERATIONS IN MULTI-OBJECTIVE GENETIC ALGORITHM

2.1. Selection procedure

One of the simplest methods to combine multiple objective functions into a scalar fitness solution
is the following weighted sum approach (we assume that all the objective functions should be
maximized):

f (x) = wl"jq(x) + ' ' " + w,'f~(x) + ' " + wn'fn(x), (1)

where x is a string (i.e., solution), f(x) is a combined fitness function, f,.(x) is the i-th objective
function, w, is a constant weight for f,(x), and n is the number of the objective functions.

If we use the weighted sum in (1) with the constant weights w~'s, the search direction in genetic
algorithms is also constant as shown in Fig. 1. Therefore we propose an idea to use variable weights
in the selection procedure. The aim of this idea is to realize various search directions in Fig. 3 to
search for Pareto optimal solutions. For example, we can specify variable weights as follows for
a two-objective optimization problem:

f(x) = w,.jq(x) + w:.j~(x), (2)

Wl = (i 1)/ (Nsel~t ion - - 1) , i = 1, 2 Nseloetion,
W2 ~ 1 - - WI ,

(3)

where N~io . is the number of selections in each generation. The weighting scheme in (2)-(3) means
that different weights are used for selecting each pair of parent strings in our multi-objective genetic
algorithm. Because N,~,ctio. pairs of parent strings are to be selected in each generation, N,~,on pairs
of different weights are specified in (3). In (3), the values of wl and w2 are evenly distributed over
the closed interval [0, 1]. In computer simulations in this paper, we used the weighting scheme in
(2)-(3) for two-objective problems.

In general, we can randomly determine the value of each weight. For a multi-objective
optimization problem with n objective functions (n i> 2), we can assign a random real number to
each weight as follows when each pair of parent strings are selected for a crossover operation.

rnd~
w , - - - , i = 1 , 2 n, (4)

rndj
j = l

where rndi and rndj are non-negative random integers (or non-negative random real numbers).
From (4), we can see that n random real numbers are generated for the weights w,'s to calculate

960 Tadahiko Murata et al.

the weighted sum in (1) when each pair of parent strings are selected. This procedure is iterated
N~tioo times in each generation for selecting N~l~uon pairs of parent strings for a crossover
operation. In computer simulations for a three-objective problem, we used the weighting scheme
in (1) and (4).

The weighted sum f(x) in (1) and (2) is used for determining the selection probability of each
string in our multi-objective genetic algorithm. Because the weights w,'s are not constant but
variable, the selection probability of each string is also variable even in a single generation. This
realizes various search directions in our multi-objective genetic algorithm.

2.2. Elite preserve strategy

In multi-objective optimization problems, a solution with the best value of each objective can
be regarded as an elite individual. Therefore we have n elite individuals for an n-objective problem.
It is natural to think that such solutions are to be preserved to the next generation in genetic
algorithms.

During the execution of our multi-objective genetic algorithm, a tentative set of Pareto
optimal solutions is stored and updated at every generation. We also preserve a certain number
of individuals randomly selected from the tentative set of Pareto optimal solutions in addition
to the n elite individuals with respect to n objectives. That is, multiple Pareto optimal solutions
are used as elite individuals in our multi-objective genetic algorithm. This elite preserve
strategy has an effect on keeping the variety in each population in our multi-objective genetic
algorithm.

In computer simulation, three solutions were selected as elite individuals for a two-objective
flowshop scheduling problem: two elite individuals with respect to two objectives and a randomly
selected individual from the tentative set of Pareto optimal solution. As a variant, we can design
a multi-objective genetic algorithm by randomly selecting a certain number of elite individuals from
the tentative set of Pareto optimal solutions. In computer simulation for a three-objective flowshop
scheduling problem, three solutions which were randomly selected from the tentative set of Pareto
optimal solutions were inherited to the next generation.

2.3. Algorithm

The following genetic operations are employed to generate and handle a population (i.e., a set
of strings) in our multi-objective genetic algorithm (see Fig. 4).

I Step 0: Initialization)

i

~,Pareto optimal solutions.)

I Step 3: Cr°ss°ver 1

IStep 5: Elitist 1
I Step 4: Mutati°n 1 strategy

1" i
(Step 6: Termination test 1

I Step 7: User selection 1

Fig. 4. Outline of our multi-objective genetic algorithm.

Multi-objective genetic algodthra 961

Step 0 (Initialization): Generate an initial population containing Npop strings where N ~ is the
number of strings in each population.
Step 1 (Evaluation): Calculate the values of the objective functions for the generated strings.
Update a tentative set of Pareto optimal solutions.
Step 2 (Selection): Calculate the fitness value f (x) of each string by using the weights defined as
(3) or (4). Select a pair of strings from the current population according to the following selection
probability. The selection probability P(x) of a string x in a population tI' is specified as

P(x) = f (x) --f,m(W) . (5)

Z {/(x)--/,~.(V)}
XEW

where

fmin(~ "/) : min{f(x)lx c W}. (6)

This step is repeated N~,io° times to produce Npop offspring by the crossover operation in Step 3.
The values of the weights wi's in (3) or (4) are specified at each of the N~on iterations.
Step 3 (Crossover): For each selected pair, apply a crossover operation to generate an offspring
with the crossover probability Pc. Npop strings should be generated by the crossover operation
(N~]~,ion = Npop if a single offspring is generated from a pair of parent strings in the crossover
operation).
Step 4 (Mutation): For each string generated by the crossover operation, apply a mutation
operation with a prespecified mutation probability Pro-
Step 5 (Elitist strategy): Randomly remove Ne~,e strings from the Npop strings generated by the above
operations, and add the same number of strings from a tentative set of Pareto optimal solutions
to the current population.
Step 6: (Termination test): If a prespecified stopping condition is not satisfied, return to Step 1.
Step 7 (User selection): The multi-objective genetic algorithm shows the final set of Pareto optimal
solutions to the decision maker. A single solution (i.e., the final solution) is selected by the decision
maker's preference.

In this paper, we employed the two-point crossover and the shift mutation shown in Fig. 5 for
flowshop scheduling. These genetic operators were found to be good operators for a single-objective
genetic algorithm for flowshop scheduling in our previous work [15].

3. SIMULATION RESULTS FOR A NUMERICAL EXAMPLE

If multi-objective optimization problems have concave Pareto fronts, weighted sum approaches
with constant weights tend to fail to find entire Pareto fronts (i.e., fail to find all the Pareto optimal
solutions). Our approach, however, can handle multi-objective optimization problems with concave
Pareto fronts. This is shown by the following example.

CAIE 30/t--M

Parent 1 IAIBTc]DIEIF 'GIHI , •
~ , ~ , [A I B I C [D [E [F I G I H [

I
Child IAIBIEIDICIFIGII-II >

Parent 2 IEIHIAIDIBICIGIF I

Crossover

Fig. 5. Genetic operators.

Mutation

962 Tadahiko Murata et al.

We applied our multi-objective genetic algorithm to a test problem with the following two
objectives to be minimized:

Minimize fi (x) = 2x /~ , (7)

Minimizefi(x) = xffl - x2) + 5, (8)

subject to

11 ~ X l ~<4,
X2 ~ 2 . (9)

Substituting equation (7) into equation (8), we obtained the relation between fffx) and fi(x) as
follows:

A (x) - 1 - x2 {A(x)}2 + 5. (10)
4

When x2 = 2, equation (10) gives the Pareto front of this problem. This Pareto front forms the
concave shape in the objective space as shown in Fig. 6.

In our multi-objective genetic algorithm, the fitness function f(x) was specified as

f(x) = - wt'fi(x) - w2"fi(x). (11)

Because Jq(x) and fi(x) should be minimized, the negative sign " - " is attached to each weight
in (11).

In our multi-objective genetic algorithm, the number of solutions in each population (i.e.,
population size) was specified as Npop = 100, two point crossover was employed with the crossover
probability 0.9, the mutation probability was specified as Pm = 0.01, and the number of elite
individuals was specified as Ne~te = 5 (five elite solutions were randomly chosen from a tentative
set of Pareto optimal solutions). In Fig. 6, • denotes the final solutions by our multi-objective
genetic algorithm after 20 generations. From Fig. 6, we can observe that our multi-objective genetic
algorithm can find many solutions on the concave Pareto front.

We also applied a single-objective genetic algorithm where the weights w, and w2 were fixed as
follows:

w,:w2= 100:1, 50:1, 20:1, 15:1, 10:1, 5:1, 2:1,

1:1, 1:2, 1:5, 1:10, 1:15, 1:20, 1:50, 1:100.

5.0

4.5

4.0

3.5

3.0

f l (x) 2.5

2.0

1.5

0

5

0
1.5

i .

' Feasible region
in the objective space

Fig. 6. Simulation result for the concave Pareto front problem.

I I I I I

2.0 2.5 3.0 3.5 4.0

f (x)

Pareto front

Multi-objective genetic algorithm 963

The single-objective genetic algorithm with these 15 different weight values found only two Pareto
solutions: (J~,J~) = (2, 4) and (Jq,fi) = (4, 1). From these simulation results, we can see that the
single-objective genetic algorithm with constant weights cannot find the concave Pareto front even
if various weight values were employed.

4. SIMULATION RESULTS FOR FLOWSHOP SCHEDULING

In this section, we demonstrate the effectiveness of our multi-objective genetic algorithm by
computer simulations on a flowshop scheduling problem with two objectives: to minimize the
makespan and to minimize the total tardiness. We also apply our algorithm to the flowshop
scheduling problem with three objectives: to minimize the makespan, to minimize the total
tardiness, and to minimize the total flowtime.

Flowshop scheduling problems are one of the most well-known problems in the area of
scheduling. General assumptions of the flowshop scheduling problems can be written as follows
(see Dudek et al. [16]). Jobs are to be processed on multiple stages sequentially. There is one
machine on each stage. Machines are available continuously. A job is processed on one machine
at a time without preemption, and a machine processes no more than one job at a time. In this
paper, we assume that n jobs are processed in the same order on m machines. This means that
our flowshop scheduling is the n-job sequencing problem. In this paper, the sequence of the n jobs
is denoted by a string x = (x~ x, , x,) where Xk is the k-th job to be processed on the m
machines.

4.1. Two-objective flowshop scheduling problem

In computer simulations, we employed two objectives as scheduling criteria; to minimize the
makespan (i.e., the completion time of the last job) and to minimize the total tardiness (i.e., the
sum of the tardiness for the duedate of each job). We specified the due date of each job by the
following procedure:

Step 1: Randomly generate a permutation of the n jobs.
Step 2: Calculate the completion time C~ of each job, j = 1, 2 n.
Step 3: Add a random integer rndj in the closed interval [- 100, 100] to each Cj. That is, the
duedate dj of the j- th job is dj = Cj + rndj.

It is known that there is no correlation between the two objectives: the makespan and the total
tardiness. In our multi-objective genetic algorithm, the fitness function f(x) can be written as

f(x) = - WM~e~n'Makespan (x) - WTardin~s' Tardiness(x), (12)

2500

2000

1500

'~0 1000

[--
500

o
1500

' = -

().o
0 ° 0 0<:~).

qi

a .

~ ' O . o o "

• : Makespan

• : Tardiness

o : Proposed

o

1550 1600 1650 1700 1750

Makespan
Fig. 7. Comparison of our multi-objective genetic algorithm with two trials of the single-objective genetic

algorithm.

964 Tadahiko Murata et al.

where Makespan(x) is the makespan when the n jobs are processed in the order of x, Tardiness(x)
is the total tardiness, and WM,~e,p~, and WTa~iaess a r e non-negative variable weights for Makespan(x)
and Tardiness(x), respectively. In computer simulations, WMak~n and WTa,~in~ were specified in the
same manner as (3). Because Makespan(x) and Tardiness(x) should be minimized, the negative sign
" - " is attached to each weight in (12).

As a test problem, we generated a flowshop scheduling problem with 20 jobs and 10 machines
by randomly specifying the processing time of each job at each machine as an integer in the closed
interval [1, 99]. In computer simulation, we used the following parameter specifications.

Population size: Npop = 10,
Crossover probability: Pc = 1.0,
Mutation probability: Pr, = 1.0/string.

Non-dominated solutions obtained by the proposed algorithm are shown by © in Fig. 7 where
the horizontal and vertical axes are the makespan and the total tardiness, respectively. In Fig. 7,
non-dominated solutions obtained by the two trials of a single-objective genetic algorithm are
shown by • (obtained by the genetic algorithm for minimizing the makespan) and • (obtained
by the genetic algorithm for minimizing the total tardiness). In the single-objective genetic
algorithm, the fitness function was equivalent to the value of its objective function with the negative
sign " - " A tentative set of Pareto optimal solutions was stored and updated in the
single-objective genetic algorithm in the same manner as in the multi-objective genetic algorithm.
In order to compare the proposed algorithm with the two trials of the single-objective genetic
algorithm under the same computation load, we specified the number of evaluations of the fitness
function as 100,000 in our multi-objective genetic algorithm and as 50,000 in each trial of the
single-objective genetic algorithm. Therefore 100,000 solutions were evaluated in each approach.

From Fig. 7, we can see that the set of the non-dominated solutions obtained by our
multi-objective genetic algorithm (©) is superior to the set of the non-dominated solutions obtained
by the single-objective genetic algorithm (I and •) . This is because many solutions denoted by
• and • are dominated by solutions denoted by ©. This demonstrates the high performance of
our multi-objective genetic algorithm.

The effectiveness of the elite preserve strategy is demonstrated in Fig. 8. In Fig. 8, "no elite",
"2 elite" amd "3 elite" mean that no elite individual, two elite individuals and three elite individuals

O

O

1800

1600

1400

1200

1000

800

600

400

200

~ A

ii
III • A

l •

II

~ 0 •
o m •

°q6 o~ ~ • "

u I !

w ~ 0 1

• • no elite

• • 2 elite

o • 3 elite

A

0
1500 1550 1600 1650 1700 1750

M a k e s p a n

Fig. 8. Effect of the number of elite individuals.

1800 1850

Multi-objective genetic algorithm 965

I e . Trial 1 • • • • Trial 2. i.-Trial 3.. x ..Trial 4. • x .. Trial 51

40O0

3500

u~ 3000

2500

2OO0
°

1500 x ~ •

1.2. I00O '"ql " ' ~ .

o
1500 1550 16o0 1650 1700 1750 1800 185o 19o0 1950

Makes'pan

(a) The multi-objective genetic algorithm

2000

4OO0

3500

3000

.~ 2500

' ~ 2000

15oo
o

100o

500

o
1500

& . . •

I ' ~ , A

x
&.

x : z x I . -~ - A • -~ ~ . x : ~ , A . . ~ ~..~,~

1550 1600 1650 1700 1750 1800 1850 1900 1950

M a k e s p a n

(b) Schaffer's VEGA

2000

4000

3500

3000

.~ 2500

2000

"~ 1500

1000

500

0
1500

xg
• ' e l

'e C.w . , ,_

1550 1600 1650 1700 1750 1800 1850 1900 1950

M a k e s p a n

(c) The single-objective genetic algorithm

2000

Fig. 9. Comparison of our multi-objective genetic algorithm with Schaffer's V E G A and the single-objective
genetic algorithm.

were preserved to the next population in the multi-objective genetic algorithm, respectively. In the
"2 elite" algorithm, only the elite individuals with respect to the two objective functions were
preserved. On the other hand, an individual randomly selected from a tentative set of Pareto
optimal solutions was preserved in addition to such two elite individuals in the "3 elite" algorithm.

966 Tadahiko Mura ta et al.

Table 1. Average CPU time used by each algorithm for finding the Pareto-optimal
solutions in Fig. 9

Algorithm Proposed algorithm Schaffer's VEGA SOGA

CPU time (s) 3.08 3.00 2.48

From Fig. 8, we can see that the "3 elite" method found better solutions than the "2 elite" and
"no elite" methods. This means that our elite preserve strategy had an effect on the performance
of the multi-objective genetic algorithm.

We also applied Schaffer's VEGA [11] and another version of the single-objective genetic
algorithm to the same flowshop scheduling problem. In the single-objective genetic algorithm, we
used the weights WMakespan ~- 5 and WTardiness -~- 2 to calculate the fitness value. A tentative set of
Pareto optimal solutions was stored and updated in the single-objective genetic algorithm in the

4000 25000

3600 24500

3200 24000

2800 ~ ~ 23500

= 2400 t l : ~23000
.2000 .: =225oo
'~ 1600 ~.~ "~22000
[~ 1200 % " : " ~ ~21500

800 " t"~ 21000
400 IL2 . 20500

0 20000
1500 1600 1700 1800 1900 2000

Makespan

, a :k . ~.
,~ ~ i , .

1500 1600 1700 1800 1900 2000
Makespan

25000
24500
24000
23500

23000
22500
22000
21500
21000

20500
20000

0

~°

- f . t% , -.
• , ~ / _." ~ , ;

. ~ _ . | °

800 1600 2400 3200 4000
Total tardiness

(a) The mul t i -objec t ive genetic a lgori thm

4000
3600
3200

2800
:~ 2400

2000
"~ 1600

1200 [-
800
400

0
1500 1600 1700 1800 1900 2000

Makespan

~,5000
!4500

• q

MOO0 '-

!3500

~3000 ~0
~.2500

~.2000
~.1500
~AO00 L

~.0500
~.0000

1500 1600 1700 1800 1900 2000
Makespan

25000
24500
24000

23500

23000
22500
22000
21500
21000
20500
20000

'i %, ,!

0 800 1600 2400 3200 4000
Total tardiness

(b) Schaffer 's VEGA

4000

3600

3200

2800
o

:~ 2400
2000
1600
12oo

8 O O

400
0
1500 1600 1700 1800 1900 2000

Makespan

25000

24500

24000

23500

23000
22500

22000
21500

21000

20500
20000

25000

24500

24000

~23500

'~ 23000
~22500

~22000
[~21500

d' 21000 "q ~
20500
2000C

1500 1600 1700 1800 1900 2000
Makespan

0 800 1600 2400 3200 4000
Total tardiness

(C) The s ingle-objec t ive genetic a lgori thm

Fig. 10. Compar i son of our multi-objective genetic algori thm with Schaffer's V E G A and the
single-objective genetic algorithm.

Multi-objective genetic algorithm 967

same manner as in the multi-objective genetic algorithm. As a stopping condition, we used the total
number of evaluations of strings (i.e., solutions). When 100,000 solutions were evaluated in each
algorithm, the algorithm was terminated. The simulation results by the proposed genetic algorithm,
Schaffer's VEGA and the single-objective genetic algorithm are shown in Figs 9(a), (b) and (c),
respectively. We applied each algorithm five times to the same flowshop scheduling problem. Each
algorithm began to search Pareto-optimal solutions from the same initial generation. From Fig. 9,
we can see that better solutions were obtained by the multi-objective genetic algorithm because
many solutions obtained by Schaffer's VEGA in Fig. 9(b) are dominated by multi-objective genetic
algorithm solutions in Fig. 9(a). The single-objective genetic algorithm could find some better
solutions than our multi-objective genetic algorithm, but the single-objective algorithm tended to
fail to find large Pareto fronts. The average CPU time used by each algorithm for finding the
solutions in Fig. 9 is shown in Table 1. We can see from Table 1 that a similar computation time
was spent by each algorithm in computer simulations.

4.2. Three-objective flowshop scheduling problem

We also applied our multi-objective genetic algorithm to a flowshop scheduling problem with
three objectives: to minimize the makespan, to minimize the total tardiness and to minimize the
total flowtime (i.e., the sum of completion time over all jobs). We used the same parameters as
used for the two-objective flowshop scheduling problem. Because it is difficult to show solutions
in the three-dimensional objective space, we show the solutions by projecting them on to
two-dimensional objective spaces. Figure 10 shows the simulation results obtained by our
multi-objective genetic algorithm, Schaffer's VEGA and the single-objective genetic algorithm. In
the single-objective genetic algorithm, we used the constant weights WMak~pa~ = 5, WTar~me~ = 2 and
Wno~i~ = 1 to calculate the fitness value. From Fig. 10, we can observe that our multi-objective
genetic algorithm could find a better set of solutions.

5. CONCLUSION

In this paper, we proposed a framework of genetic algorithms for multi-objective optimization
problems. Our approach has two characteristic features. One is that the weights used for combining
multiple objectives into a scalar fitness function are randomly specified for each selection. That is,
the weights are not constant but variable in our multi-objective genetic algorithm. The other
characteristic feature is that multiple elite individuals selected from a tentative set of Pareto optimal
solutions are inherited to the next generation. By computer simulations, we showed that our
multi-objective genetic algorithm could find concave Pareto optimal solutions, and we
demonstrated that our multi-objective genetic algorithm could find better solutions than the VEGA
(Vector Evaluated Genetic Algorithm) by Schaffer [11] and the single-objective genetic algorithm.

Acknowledgement--This work was partially supported by Grant-in-Aid for International Scientific Research
(No. 06045047) from the Ministry of Education, Science and Culture in Japan.

REFERENCES

1. S. M. Johnson. Optimal two- and three-stage production schedules with setup times included. Naval Res. Logistics Q.
l(1), 61-68 (1954).

2. D. G. Dannenbring. An evaluation of flowshop sequencing heuristics. Mgmt Sci. 23, 1174-1182 (1977).
3. M. Nawaz Jr, E. E. Enscore and I. Ham. A heuristic algorithm for m-machine, n-job flowshop sequencing problem.

OMEGA 11, 91-98 (1983).
4. I. H. Osman and C. N. Potts. Simulated annealing for permutation flow-shop scheduling. OMEGA 17(6), 551-557

(1989).
5. M. Widmer and A. Hertz. A new heuristic method for the flowshop sequencing problem. Europ. J. Opnl Res. 4t(2),

186-193 (1990).
6. E. Ignall and L. E. Schrage. Application of branch- and bound technique to some flow shop problems. Ops Res. 13(3),

400-412 (1965).
7. Z. Lomnicki. A branch- and -bound algorithm for the exact solution of the three-machine scheduling program. Opnl

Res. Q. 16(1), 89-107 (1965).
8. J.C. Ho and Y.-L. Chang. A new heuristic for the n-job, m-machine flowshop problem. Europ. J. Opnl Res. 52, 194-202

(1991).

968 Tadahiko Murata et al.

9. R. Gangadharan and C. Rajendran. A simulated annealing heuristic for scheduling in a flowshop with bicriteria.
Proc. 16th Int. Conf. on Computers Ind. Engng 345--348, 7-9 Mar. (1994).

10. K. Morizawa, T. Ono, H. Nagasawa and N. Nishiyama. An interactive approach for searching a preferred schedule.
J. Japan Ind. Mgmt Assoc. 44(4), 277-283 (1993, in Japanese).

11. J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. Proc. 1st ICGA, pp. 93-100
(1985).

12. M. Gen, K. Ida, E. Kono and Y. Li. Solving bicriteria solid transportation problem by genetic algorithm. Proc. 16th
Int. Conf. on Computers Ind. Engng, 572-575, 7-9 Mar. (1994).

13. H. Tamaki, M. Moil, M. Araki, Y. Mishima and H. Ogai. Multi-criteria optimization by genetic algorithms: a case
of scheduling in hot rolling process. Proc. APORS'94, 374-381, 26--29 July (1994).

14. J. Horn, N. Nafpliotis and D. E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization.
Proc. 1st CIEC, pp. 82-87 (1994).

15. T. Murata, H. Ishibuchi and H. Tanaka. Genetic algorithms for flowshop scheduling problems. Computers ind. Engng
(to appear).

16. R. A. Dudek, S. S. Panwalkar and M. L. Smith. The lessons of flowshop scheduling research. Ops Res. 40(1), 7-13
(1992).

