
DNA Computing and its Application

Junzo Watada

Graduate School of Information, Production and Systems, Waseda University,
2-7 Hibikino, Wakamatsu, Kitakyushu 808-0135 Japan
junzow@osb.att.ne.jp

1 Introduction

The objectives of this chapter are twofold: firstly to introduce DNA compu-
tation, and secondly to demonstrate how DNA computing can be applied to
solve large, complex combinatorial problems, such as the optimal scheduling
of a group of elevators servicing a number of floors in a multi-storey building.
Recently, molecular (or wet) computing has been widely researched not only

within the context of solving NP-complete/NP-hard problems that are the
most difficult problems in NP, but also implementation by way of digital
(silicon-based) computers [21]. We commence with a description of the basic
concepts of ‘wet computation’, then present recent results for the efficient
management of a group of elevators.

2 DNA Computing

The main idea behind DNA computing is to adopt a biological (wet) technique
as an efficient computing vehicle, where data are represented using strands of
DNA. Even though a DNA reaction is much slower than the cycle time of a
silicon-based computer, the inherently parallel processing offered by the DNA
process plays an important role. This massive parallelism of DNA processing
is of particular interest in solving NP-complete or NP-hard problems.
It is not uncommon to encounter molecular biological experiments which

involve 6 × 1016/ml of DNA molecules. This means that we can effectively
realize 60,000 TeraBytes of memory, assuming that each string of a DNA
molecule expresses one character. The total execution speed of a DNA com-
puter can outshine that of a conventional electronic computer, even though
the execution time of a single DNA molecule reaction is relatively slow. A
DNA computer is thus suited to problems such as the analysis of genome in-
formation, and the functional design of molecules (where molecules constitute
the input data).

2 Junzo Watada

DNA consists of four bases of molecule structure, named adenine (A), gua-
nine (G), cytosine (C) and thymine (T). Moreover, constraints apply to con-
nections between these bases: more specifically, A can connect only with T ,
and G only with C – this connecting rule is referred to as ‘Watson-Crick
complementarity’. This property is essential to realize the separate operation
(discussed later). In other words, it is possible to separate a partial string of
characters ‘ad’ so that a DNA sequence complementary to the DNA denoting
‘ad’ is marked, input into a test tube, hybridized to form a double strand
helix of DNA, then abstracted. Further, this property enables us to randomly
create a set of character strings according to some rule.

Since [1] described a method for solving a directed Hamiltonian path problem
with 7 cities using DNA molecules, researchers have pursued theoretical stud-
ies to realize general computation using DNA molecules [for example, [23]. [2]
has developed a computational model to realize – via experimental treatment
of DNA molecules – operations on multiple sets of character strings, following
the encoding of finite alphabet characters onto DNA molecules.

As previously mentioned, DNA molecules can be used as information storage
media. Usually, DNA sequences of around 8-20 base-pairs are used to represent
bits, and numerous methods have been developed to manipulate and evaluate
these. In order to manipulate a wet technology to perform computations, one
or more of the following techniques are used as computational operators for
copying, sorting, splitting or concatenating the information contained within
DNA molecules:

• ligation,
• hybridization,
• polymerase chain reaction (PCR),
• gel electrophoresis, and
• enzyme reaction.

In the following subsection we briefly describe the specific bio-chemical
process which serves as the basis of our DNA computing approach.

A DNA computer performs wet computation based on the high ability of
special molecule recognition executed in reactions among DNA molecules.
Molecular computation was first reported in [1], where it was found that a
DNA polymerase – which incorporates an enzyme function for copying DNA
– is very similar in function to that of a Turing machine. DNA polymerase
composes its complementary DNA molecule using a single strand helix of
a DNA molecule as a mold. On the basis of this characteristic, if a large
amount of DNA molecules are mixed in a test tube, then reactions among
them occur simultaneously. Therefore, when a DNA molecule representing
data or code reacts with other DNA molecules, this corresponds to super-
parallel processing and/or a huge amount of memory in comparison with a
conventional (electronic) computer.

DNA Computing and its Application 3

2.1 Encoding Scheme

In any DNA computational procedure, the main challenge is to encode each
object of interest into a DNA sequence. A correct design is essential in order
to ensure optimal results; an incorrect design could result in wrong sequences
following the ligation process.

Fig. 1. Droppers for spoiding and hybridizing

Ligation and Hybridization

When DNA sequences are dropped in a test tube using a micro pipettor (Fig-
ure 1), the DNA sequences recombine with each other by means of some en-
zyme reaction, this process being referred to as ‘ligation’. All DNA sequences
to be used in the experiment – together with their complements – are mixed
together in a single test tube. Normally the oligonucleotide or DNA mixture
is heated to 95o centigrade (celsius) and cooled to 20oC at 1oC per minute
for hybridization, as indicated in Figure 1. The reaction is then subjected
to a ligation. At the end of this process, a certain DNA sequence will ligate
together with another DNA sequence in order to produce a new sequence.

Polymerase Chain Reaction (PCR)

Polymerases perform several functions, including the repair and duplication
of DNA. PCR is a method for amplifying DNA in vitro. PCR is a process that
quickly amplifies the amount of specific DNA molecules in a given solution,
using primer extension by polymerase. Each cycle of the reaction doubles the
quantity of this molecule, leading to an exponential growth in the number of
sequences. It consists of the following key processes:

4 Junzo Watada

1. Initialization: a mix solution of template, primer, dNTP and enzyme is
heated to 94 − 98◦C for 1 − 9 minutes to ensure that most of the DNA
template and primers are denatured;

2. Denaturation: heat the solution to 94 − 98◦C for 20 − 30 seconds for
separation of DNA duplexes;

3. Annealing: lower the temperature enough (usually between 50−64◦C) for
20− 40 seconds for primers to anneal specifically to the ssDNA template;

4. Elongation/Extention: raise temperature to optimal elongation tempera-
ture of Taq or similar DNA polymerase (70 − 74◦C) for the polymerase
adds dNTP’s from the direction of 5′ to 3′ that are complementary to the
template;

5. Final Elongation/Extention: after the last cycle, a 5 − 15 minutes elon-
gation may be performed to ensure that any remaining ssDNA is fully
extended.

Step 2 to 4 is repeated for 20−35 times; less cycles results less product, too
many cycles increases fraction of incomplete and erroneous products. PCR is
a routine job in the laboratory that can be performed by an apparatus named
thermal cycler.

Denaturation Temperature Gradient PCR
Denaturation temperature gradient PCR (DTG-PCR) is a modified PCR

method that the denaturation temperature changes with cycle [20]. In DTG-
PCR, conventional PCR is performed where the temperature of the denat-
uration step (the step 2 of PCR procedure above mentioned) is gradually
increased in cycles.

Quantitative PCR
Quantitative PCR (Q-PCR) is a modification of the PCR used to rapidly

measure the quantity of DNA, complementary DNA (cDNA) or RNA present
in a sample. It may be used to determine a DNA sequence is presented in a
sample, and the number of its copies produced in PCR.

Affinity Separation

The objective of the affinity separation process is to verify whether each of
the data includes a certein sequence. This process permits single strands con-
taining a given subsequence v to be filtered out from a heterogeneous pool of
other sequences. After synthesizing strands complementary to v and attaching
them to magnetic beads, the heterogeneous solution is passed over the latter.
Those strands containing v anneal to the complementary sequence and are
retained; those strands not containing v pass through and are discarded.

DNA Computing and its Application 5

Normally, in this process a double stranded DNA is incubated with the
Watson-Crick complement of data that is conjugated to magnetic beads. A
bead is attached to a fragment complementary to a substring then a mag-
netic field is the used to pull out all of the DNA fragments containing such
sequence. The process is then repeated.

Fig. 2. Electrophoresis

Gel Electrophoresis

Gel electrophoresis is an important technique for sorting DNA strands by their
size [4]. Electrophoresis enables charged molecules to move in an electric field,
as illustrated in Figure 2. Basically, DNA molecules carry negative charge.
Thus, when we place them in an electrical field, they tend to migrate towards
a positive pole. Since DNA molecules have the same charge per unit length,
they all migrate with the same force in an electrophoresis process. Smaller
molecules therefore migrate faster through the gel, and can be sorted according
to size (usually agarose gel is used as the medium here). At the end of this
process the resultant DNA is photographed, as indicated in Figure 3.

3 Comparison with Conventional Computing

Now DNA computing employs completely different tactics when allocating an
independent letter code (such as ATCG, GTAC or CAAC) to each sample.
Next, DNA sequences corresponding to the number of possible combinations
are prepared. After they are hybridized in super parallel fashion, the remaining
DNA fragments are amplified to obtain an answer sequence – note that this
procedure is carried out only once [15].

6 Junzo Watada

Fig. 3. Camera

The main benefit of using DNA computation to solve complex problems
is that all possible solutions are created concurrently – in other words, it
offers massively parallel processing. By contrast, humans – as well as most
electronic computers – solve problems in a step-by-step manner (in other
words, sequentially). DNA provides other benefits, including low cost, and
energy efficiency [?].

The main steps in DNA computing are:

1. Separate (T, s): this operation separates a given set T into the set +(T, s)
of characters, including character string s and the set −(T, s) of character
strings that do not contain character string s. This operation corresponds
to abstract experimentation on DNA molecules in a test tube.

DNA Computing and its Application 7

2. Mix: this operation mixes sets T1 and T2 into the union set T1 ∪ T2. This
operation corresponds to mixing test tubes T1 and T2.

3. Detect (T): this operation returns ‘YES’ if the test tube T is not empty,
and ‘NO’ if it is empty. The operation corresponds to an experimental pro-
cedure that detects the existence of DNA molecules by the electrophoret-
ical fluorescent method.

4. Amplify (T): this operation corresponds to creating multiple sets T1 and
T2 with the same contents as the given set T . This corresponds to an ex-
perimental treatment that amplifies the amount of molecules using poly-
merase chain reaction (PCR).

Now from the perspective of DNA computing, the most important charac-
teristic of a DNA molecule is its Watson-Crick complementarity.

In Adleman’s model, a set of character strings – computed using hybridiza-
tion – is computed according to the four steps described above. Using this
computation, an NP-complete problem can be solved using an algorithm based
on production-detection PCR. DNA computers can be used to solve real-world
problems using this method.

4 Applications of DNA Computing

The theory of DNA computing is discussed in [1, 26, 28]. DNA computing has
been applied to various fields, including nanotechnology, combinatorial opti-
mization [24, 25], boolean circuit development [28], and of particular relevance
to the present section, scheduling [21, 23, 16, 18, 28, 31].

5 Approaches to Optimization and Scheduling

We have a long history of a mathematical way to solve optimization problems.
But there is limitation in a mathimatical method where many problems are
left unsolved. Beyond such mathematical methods, ”problem solving” tries
to mimic such a human or empirical way as a rule-of-thumb method. It is
most prevailed after a von Neuman computer was invented since 1945. It is
named aritificial intelligence that brought a gold era in late 1970s and early
1980s, even if logic approaches including a production system, a predicate
logic system, a semantic network and a frame system should face combinatorial
explosion that provides challanges for us. On the other hand, in order to mimic
a human thinking way many methods were proposed such as fuzzy systems,
genetic algorithms, chaotic systems, neural networks and so on which are
named as a soft computing. If we intend to solve a real scale of problems
we have to overcome the combinatorial explosion. Espeically, NP-complete
probems cannot be solved by a present silicon-based computer.

8 Junzo Watada

Genetic algorithm

A genetic algorithm (GA) is a kind of soft computing with genetic mechanism
in organisms, searches optimal values, when it assumes number of control
patterns in repeating GA simulation. Genetic algorithm is employed to group
control of elevators [8, 13]. The setting of parameters in a group control system
of elevators is also hard to manage on manual basis. Cortes et al. proposed
genetic algorithm to select good setting of parameters [9].

Neural network

In the field of neural networks, the optimization of an evaluation function is
pursued employing back-propagation learning depending on past transactions
[27, 30]. In fuzzy logic method, The easiness of updating rules is welcome in
comparison with GAs and neural networks [14, 17].

Fuzzy logical computation and others

It is not only limited in the fields of AI, GAs, NNs and Fuzzy Logical Compu-
tation but also such soft computing methods as enhanced learning [10] evolu-
tional strategy [7] and genetic network programming [11, 12] are employed in
optimalizing group control of elevators.

New demands

Recently, a new generation type of elevator systems such as an elevator group
supervisory control system(EGSCS), [5, 6] is developed to satisfy the various
needs of users and enable the verticalization of buildings [3]. According such
new types of elevator systems place more additional constraints on the group
management. When searching a large number of alternatives, they require fast
processing and large computer overhead.

Therefore, the development of group management systems have intensively
studied for the improvement of elevator’s transportation efficiency and con-
venience. The usage condition of an elevator system is changed depending on
time and customers. Business people don’t like to wait so many minutes but
people at a hotel do not like a crowded elevator even if it is fast transported.
The elevetor system is required to fulfill such passengers’ different preferences.
On the other hand, in DNA computing, since the computing mimics DNA copy
mechanism in chemical reaction, processing is inherently (massively) parallel.

6 Elevator Management System

Multiple elevators are commonly used in high-rise buildings (‘skyscrapers’).
Effective control of such multiple elevators is essential. The overall aim in con-
trolling a group of elevators is to satisfy the time constraints of all passengers,

DNA Computing and its Application 9

at the same time providing the most efficient system. The basic problem is to
decide which elevator should stop at a particular floor where passengers are
waiting to go up(down).

Even in peak (rush) hours, it is possible to find all elevators moving in
the same direction, or alternatively all elevators arriving simultaneously at
the same floor. In order to resolve such situations, all elevators need to be
optimally assigned to passengers, regardless of the latter’s changing arrival
times at the various floors in the multi-storey building.

The group control system selects elevator movement patterns according to
random changes in traffic volumes and/or driving management, or in the case
of an accident. Such group control realizes comfortable, safe and economical
management of elevators.

Suppose that a building has N floors and m elevators. Table 1 shows the
current position of each elevator, the destinations of passengers in each eleva-
tor, together with the intended travel direction of passengers waiting on each
floor. Figure 4 illustrates this situation using a graphical expression. In Figure
4, the graph in the left side shows an up-going movement and the graph in the
right side a down-going movement, respectively. Elevators 1, 2 and M stop at
floors 2, 3 and N−1, respectively. On the other hand there are people on floor
1 who direct upword, people on floors N − 1 and N who direct downward.
For example, at time t, Elevator 1 at floor 2 has passengers who are going to
floors 3, 4 and N − 1. On the other hand, there are passengers on floors N ,
N − 1 and 1 who are going down, down and up, respectively.

Table 1. Elevator information at time-t

Floor Queuing Elevator-1 Elevator-2 · · · Elevator-M

N ↓
N - 1 ↓ (1,3,5)

...
3 (4, N -1,N)
2 (3,4,N -1)
1 ↑

In this research, as indicated, the input information to the elevator man-
agement system is as follows:

1. The present position of each elevator;
2. The destination floors of each elevator. Required floor numbers where

passengers in each elevator are going to in are input to the system; and
3. The floors from which each elevator has been called. People on each floor

can indicate their direction but they cannot input their destinating floor.

10 Junzo Watada

Fig. 4. Whole paths of M elevators

DNA Computing and its Application 11

Table 2 shows that Elevator-1 is at Floor 2 and has passengers who are
going to floors 3, 4 and N − 1. There are people who are going up on Floor
1, down on Floor N − 1 and down on Floor N .

Based on this information, the problem is to efficiently manage all eleva-
tors.

6.1 Restrictions on Elevator Movements

The problem is to determine the optimal scheduling of all M elevators – in
other words to provide the shortest overall wait time – given the wait queue
and the initial position of each elevator at any time t. Let us denote the
following variables:

|d(m) − o(m)| is the total number of floor elevator moves
Ct is the time costs for elevator traveling between adjacent floors
Cs is the time costs for elevator stops

The elevator moves between floors, denoted m, must be consecutive, i.e.,

d(mi) = o(mi+1) ∨ 1 ≤ i < N (1)

where

o(m) : original floor
d(m) : destination floor

The traveling time T between floors can be represented as

T (|d(m) − o(m)|) =
{

[|d(m) − o(m)|]Ct + Cs, m=destinated;
0, otherwise. (2)

The output of the graph G given by the sum of the costs thus represents
the total time of traveling of the elevator E, i.e.,

G(E) =
N∑

m=1

T (|d(m) − o(m)|) (3)

For a building with M elevators, the graph of a single elevator movements
shown in Table 2 can be duplicated M times in representing the whole paths
of elevator traveling. The total traveling time of M elevators can thus be
calculated by summing up the traveling time of each single elevator as

G(E1, E2, . . . , EM−1, EM) =
M∑

k=1

G(Ek) (4)

The optimal travel route, denoted O, is thus given by the minimum total
traveling time of all elevators with all initial conditions and requirements
satisfied, i.e.,

O = min{G(E1E1, E2, . . . , EM−1, EM)} (5)

12 Junzo Watada

6.2 Elevator Scheduling

Now since we have m elevators, we can duplicate m graphs and connect be-
tween all vertices in the one graph. Figure 4 shows the case where m = 2.

The left-side graph in the Figure 4 illustrates all paths which are going
upward and the right-side graph shows all paths are going downward. Elevator
A at floor 1 can move to all floors from 2 to n. But when Elevator A is
at floor j, it can mover to all floors from j + 1 to n but cannot mover to
the downward such as to floor 1 to i. The right-side graph shows the same
situation concerning the downward movement of the same Elevator-i. The
connections between both the graphs show the changing of the direction from
downward to upward or from upward to downward. These changes of the
direction happen on all floors. The connections among elevators on the same
floor show that passengers can move from one elevator to another elevator.
But these movements are not considered in the computations because such
the movements are pursued depending on the preference of passengers.

It is therefore sufficient that one of the m. elevators may reach the calling
floor on the line of graph A, B, · · ·, m. Let us construct a graph for each case
where elevator-A or elevator-B, · · ·, and elevator-m reach a floor where the
button has been pushed.

Considering all combinations, let us calculate the shortest path of each graph
A, B, · · ·, m. Suppose that f(1, 2, · · · ,m) denotes the largest value of graphs
A, B, · · ·, m. By calculating all combinations fx(A,B, · · · ,m), we can ob-
tain the optimal allocation of elevators by selecting the minimum value of
fx(A,B, · · · ,m), where x denotes the number of combinations. For example,
when the number of elevators is 2 and the number of calling floors is 3, the
number of combinations is 23.

It is possible to represent elevator-B by a graph, just as we did in the case
of elevator-A. Figure 5 illustrates the graph of all paths of the two elevators
A and B.

Table 2. Elevator management information

Floor Calling Elevator-A Elevator-B

6 (2,3)
5 ↓
4 ↑
3 ↓
2
1 (3,5)

Now, elevator-A is currently at floor-1 and its destination floors are 3 and
5. The destination floors of elevator-B at floor-6 are 2 and 3. There are also

DNA Computing and its Application 13

upward calls. Figure 5. shows the floors with an elevator mark where one or
both elevators should stop.

Fig. 5. Whole paths of two elevators

In this case, if the destination floor has been decided for elevator A or B,
then the other one is automatically assigned to the destination floor. As a
result, it is necessary to calculate the optimal paths for two kinds of graphs
for elevators A and B. The larger value for both elevators A and B is denoted
by fx(A,B).

The problem here is to select the smallest value – min(f(A,B), (x =
1, 2, · · · , 8)). The obtained schedule which gives the smallest value is the opti-

14 Junzo Watada

mal solution for elevators A and B. There are 16 kinds of graph which can be
obtained from 8 combinations. The next Section shows how to calculate the
shortest path schedule for both elevators.

7 Bio-soft Computing Based on DNA Length

In DNA computation, each base sequence is assigned to a floor, as shown in
Table 3.

Table 3. Correspondence between floors and base sequences

1 2 3 4 5 6
AAAA CCCC TTTT ATAT GAGA GGGG

1’ 2’ 3’ 4’ 5’ 6’
CACA TCTC TGTG GCGC CAGT GATC

Let us denote the connection between two base sequences corresponding
to each floor as the movement between two floors.

Let us assign an appropriate length of DNA sequence to the edge weight:

rllψk = f(k) + TE

ψ1 = f(1) + TE string of two random characters(ZZ)
...

ψ5 = f(5) + TE string of ten random characters

(Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y) (6)

rlf(A,B) = max(4 + 4 + 4 + 4 + 4, 4 + 2 + 4 + 4 + 4 + 2 + 4 + 4 + 4 + 4)
= max{20, 36} = 36 (7)

These values show the time spent moving between two floors, which are
combined in the base sequence.

In this problem all movements between floors comprise 30 roots. Let us
produce DNA sequences corresponding to these roots in Table 3.

Let us produce DNA fragments corresponding to a floor in Table 1 and
DNA fragments corresponding to a root in Table 2. Next, place these DNA
fragments and combining polymerase in the same test tube and store the test
tube at an appropriate temperature; all combinations will be automatically
created.

DNA Computing and its Application 15

Table 4. Representation of roots by DNA sequence (edge DNA oligonucleotides)

1 → 2 AAZZCC 6’ → 5’ GAZZGT
TTEEGG CTEECA

1 → 3 AAWWWWTT 6’ → 4’ GAWWWWCG
TTFFFFAA CTFFFFGC

1 → 4 AAV V V V V V AT 6’ → 3’ GAV V V V V V TG
TTHHHHHHTA CTHHHHHHAG

1 → 5 AAXXXXXXXXGA 6’ → 2’ GAXXXXXXXXTC
TTIIIIIIIICT CTIIIIIIIIAG

1 → 6 AAY Y Y Y Y Y Y Y Y Y GG 6’ → 1’ GAY Y Y Y Y Y Y Y Y Y CA
TTJJJJJJJJJJCC CTJJJJJJJJJJGT

2 → 2’ CCTC 5’ → 5 CAZZGA
GGAG GTEECT

2 → 3 CCZZTT 5’ → 4’ CAZZCG
GGEEAA GTEEGC

2 → 4 CCWWWWAT 5’ → 3’ CAWWWWTG
GGFFFFTA GTFFFFAC

2 → 5 CCV V V V V V GA 5’ → 2’ CAV V V V V V TC
GGHHHHHHCT GTHHHHHHAG

2 → 6 CCXXXXXXXXGG 5’ → 1’ CAXXXXXXXXCA
GGIIIIIIIICC GTIIIIIIIIGT

3 → 3’ TTTG 4’ → 4 GCAT
AAAC CGTA

3 → 4 TTZZAT 4’ → 3’ GCZZTG
AAEETA CGEEAC

3 → 5 TTWWWWGA 4’ → 2’ GCWWWWTC
AAFFFFCT CGFFFFAG

3 → 6 TTV V V V V V GG 4’ → 1’ GCV V V V V V CA
AAHHHHHHCC CGHHHHHHGT

4 → 4’ ATCG 3’ → 3 TGTT
TAGC ACAA

4 → 5 ATZZGA 3’ → 2’ TGZZTC
TAEECT ACEEAG

4 → 6 ATWWWWGG 3’ → 1’ TGWWWWCA
TAFFFFCC ACFFFFGT

5 → 5’ GACA 2’ → 2 TGCC
CTGT CTGG

5 → 6 ATZZGG 2’ → 1’ TGZZCA
TAEECC CTEEGT

6 → 6’ GGGA 1’ → 1 CAAA
CCCT GTTT

16 Junzo Watada

Various DNA sequences are automatically created by combining fragments
shown as each floor in Table 2 and filaments shown as each movement root
in Table 2. These DNA sequences correspond to combinations of feasible so-
lutions. In order to solve the schedule, DNA sequences which have ‘AA’ (the
former two characters upward at the first floor) at the start, and ‘GA’ (the
latter two characters upward at the fifth floor) at the end are detected, out of
the many DNA sequences, using various polymerase.

As we know the floors where elevators should stop, only DNA sequences
with AA ∗ TTTT ∗ GA are selected – in other words those where the DNA
sequences start with ‘AA’, pass through ‘TTTT ’, and terminate at ‘GA’.
Then, the shortest DNA sequence shows the optimal solution which starts at
the 1st floor, stops at the 3rd floor, and reaches the 6th floor. This procedure
can be abstracted by the weight of a DNA sequence, since long DNA sequences
are heavy and short DNA sequences are light. At the end we check the DNA
sequence and convert it to a floor number. The shortest roots for graphs 5
through 12 contain the following DNA sequences, and the length of these DNA
sequences can be calculated.

The shortest sequence is the schedule where elevator-A stops at the 4th floor,
and elevator-B stops at the 3rd and 5th floors. Therefore, the optimal schedule
for elevators-A and B is obtained for the present state of elevators and calling
floors. If this computation is pursued to obtain the optimal schedule whenever
buttons are pushed at a calling floor, the schedule with the shortest wait time
will always be obtained.

8 Bio-soft Computing with Fixed-length DNA

For the elevator dispatching problem, an N -story building equipped with M
identical elevator cars given by up hall calls, down hall calls, and car calls.
The optimal route is given by min{G(1, 2, · · · , N)}.

The key factor to cost sequence design is the Tm of a DNA strand. The
concept is to design the DNA sequences that have heavier weights with higher
Tm then those lighter weights. DNA amplification and detection techniques
often depend on oligonucleotide Tm. The Tm of a DNA duplex is defined as
the temperature where one-half of the nucleotides are paired and one-half are
unpaired [32]. The Tm indicates the transition from double helical to random
coil formation and is related to the DNA GC base content [?]. Usually expressed
as a percentage, it is the proportion of GC-base pairs in the DNA molecule
or genome sequence being investigated. GC-pairs in the DNA are connected
with three hydrogen bonds instead of two in the AT-pairs, which makes the
GC-pair stronger and more resistant to denaturation by high temperatures. In
our encoding scheme, the DNA sequences that represent floor nodes are fixed
length, and costs are distinguished by Tm of the given DNA strands. This

DNA Computing and its Application 17

design makes an oligonucleotide with lighter weight, which represent more
economical path tend to have a lower Tm.

All the possible solutions are randomly generated by DNA hybridization
and ligation with the oligonucleotides representing floors, edges, and costs. To
satisfy the condition of an elevator dispatching problem, the route must begin
and end at a specified node, and the route must pass by each consecutive floor
until reaches the final destination.

The PCR can be applied to test the former requirement, which it is a
technique for amplifying DNA that rapidly synthesize many copies of a specific
DNA segment by providing specific complementary sequences (primers) and
enzymes (DNA polymerases, for example, Pfu and Taq). The DNA strands
corresponding to original floor and complement of final destination floor are
used as two primers in two successive PCRs to reproduce the routes.

To test the latter requirement, agarose gel electrophoresis is applied.
Agarose gel electrophoresis is a method to separate DNA strands by size,
and to determine the size of the separated strands by comparison to strands
of known length. All PCR products are sieved by agarose gel electrophoresis,
and the unreasonable lengths are excluded. To verify the DNA strands pass
by every consecutive floor, the product from the above step is affinity-purified
with a biotin-avidin magnetic beads system.

To solve the elevator routing problem with our molecular algorithm, note
that all possible end paths of elevator i are jointed with the start path of
elevator i+1 so that the total output of the graph G(1, 2, · · · , N) representing
the travel route of all elevators can be calculated.

DTG-PCR is a specified PCR protocol that modifies the denaturation
temperature profile. If the denaturation temperature is decreased to a cer-
tain level in PCR, the DNA strands with denaturation temperatures lower
than that temperature will be denatured and amplified. As the denatura-
tion temperature is increased cycle by cycle in PCR, other DNA strands with
higher denaturation temperature will also be amplified. However, the econom-
ical paths that have lighter weights will be amplified more and will occupy
the major part of the solution and hence can be easily detected [20]. Based
on the electrophoretic mobility of DNA strands in different Tm, the TGGE
is applied to detect the the most economical route among other possibilities
resulting from DTG-PCR.

The proposed bio-soft computing algorithm for solving the elevator dis-
patching problem is summarized following:

Step 0 Design the fixed-length DNA sequences with thermodynamic control
in weight;

Step 1 Generate a random pool of solution by hybridization and ligation;
Step 2 Retrieve the strand that satisfy the condition of elevator dispatching

problem by PCR and gel electrophoresis;
Step 3 Verify the strands that pass by every consecutive floor by affinity pu-

rification;

18 Junzo Watada

Step 4 Joint the strands of elevators by ligation;
Step 5 Sieve the economical path by DTG-PCR;
Step 6 Detect the most economical path by TGGE;
Step 7 Readout the most optimal route by DNA sequencing.

8.1 Empirical Study

A six-story building equipped with two identical elevator cars, A and B, is
considered in the empirical study. As illustrated in Table 2, elevator A is
currently at the 1st floor upward answers the car calls on 3rd and 5th floor.
Elevator-B is at the 6th floor downward answers the car calls on 2nd and
3rd floor. In addition, hall calls are requested on 3rd, 4th, and 5th floor for
down, up, and down, respectively. The objective is to find the optimal route
for all elevators that fulfill all initial conditions and requirements defined. The
optimal route will be given by min{G(A,B)}.

As listed in Table 5, each floor node is randomly associated with a 20-mer
sequence of ssDNA, denoted Fi, which has a similar melting temperature due
to node sequences should contribute equally to the thermal stability of paths.
Weight sequences are designed to have different Tm depending on its weight.
The lighter in weight, the lower the Tm is. In other words, more economical
path has lower Tm. The edge between consecutive floors is generated by
partial beginning node, cost sequence, and partial ending node. For each floor
movement (edge) i→ j in the graph, an oligonucleotide Fi→j is created that is
the 3′ 10-mer complement of Fi followed by the cost sequence of path length,
and then the 5′ 10-mer complement of Fj . The edge from floor 1 to floor 2, for
example, the 3′ 10-mer complement of F1: ‘CATGACAACG’ followed by the cost
sequence of Ct: ‘ATCTTGGATTTATTACCAAG’, then the 5′ 10-mer complement of
F2: ‘TGGCTACATG’, as illustrated in Fig. 6.

In this study, nearest-neighbor (N-N) model is applied to calculate the
Tm, which it is the most accurate method for predicting the Tm of oligonu-
cleotide DNA through interactions between neighboring bases. The enthalpy
(�H) and entropy (�S) of adjacent bases is considered in the formula [29].
The Tm in this study was calculated with the initial concentration of 1nM
oligonucleotide and 50mM salt.

Fig. 6. Example of the encoding scheme. An oligonucleotide V1→2 is created that
is the 3′ 10-mer of V1 followed by the weight sequence of path length, and then the
5′ 10-mer of V2.

DNA Computing and its Application 19

Table 5. DNA sequences associated with each floor node and cost for the six-floor
elevator routing problem.

DNA Sequence (5′ → 3′) Tm (◦C) GC Content (%)

Floor Nodes

F1 TCCTCGTTAGGTACTGTTGC 46.02 50
F2 ACCGATGTACCTCTCAATGC 46.40 50
F3 TGGTCAGCTAATGACGTGAG 46.42 50
F4 GCGGTTCTAAATTCCGTCAC 46.51 50
F5 ATTGGACCCAGATGCAAAGG 46.92 50
F6 GTTAGACCTCGCGTTGCTAT 46.97 50
F ′

1 GCGTAATCGTATCCGTGAGA 46.58 50
F ′

2 TAGCCTTACGTACCGGCTTA 46.84 50
F ′

3 CCGTAACGTATAGCGATGGA 46.22 50
F ′

4 GACGGTATTGCGTAATTCGG 46.48 50
F ′

5 ATCGGAATCGATCCGTATGC 46.88 50
F ′

6 AGCTGGGATAAGGCATACCA 46.76 50

Costs

Ct ATCTTGGATTTATTACCAAG 36.98 30
Cs GAGCCGACCAGCGACACCCA 55.84 70

The proposed fixed-length DNA based algorithm for solving the elevator
dispatching problem began from generating of a random pool of possible routes
by the hybridization of DNA strands that represent the floors and edges. All
possible paths of the elevator dispatching problem was generated simultane-
ously under the massive parallelism of DNA molecules. For each Fi and for
edge i→ j were mixed in a single ligation reaction. Per [20], the added amount
of an edge was varied according to weight, where as the weight increased, the
amount was decreased. The oligonucleotide mixture was heated to 95◦C and
cooled to 20◦C at 2◦C/min for hybridization. The reaction mixture was then
subjected to a ligation.

The conventional gel electrophoresis excluded the unreasonable length of
DNA strands from candidate pool. Then, the DNA strands that were not
passing by every floor nodes between origin and destination was excluded by
affinity separation. The complement of F1 was conjugated to magnetic beads
so that only those ssDNA molecules which contained the sequence F1 annealed
to the bound were retained. This process was repeated until each floor node
was verified.

In DTG-PCR, the denaturation temperature started at low temperature in
70◦C in the beginning cycles of PCR, which is lower than the Tm of template
strands. Then, the denaturation temperature was gradually increased until
reached 95◦C and maintain at the same temperature for the remaining cycle.
After this process, one main band was observed in the gel which contained
two different DNA strands of the possible routes as shown in Table 6. These

20 Junzo Watada

strands, however, were of the same length which cannot be separated by the
conventional gel electrophoresis.

Nevertheless, from the algorithm design, the weights have their distinct
behaviors in Tm and thus the more economical path would have a lower
Tm. Thus, TGGE can be used to filter the DNA strands that have lowest
Tm among other strands of the same length. Based on the correlation of
the melting characteristic of a DNA strand to its electromigration, the DNA
strand of the most economical route would travel fastest in gel; hence, it
can be distinguished from other possible routes. The Tm and its GC content
among those possible routes are shown in Fig. 7, which the DNA strands
corresponded to the route for elevator A: ‘1 → 2 → 3 → 4 → 5’ that answers
the hall call at 4th floor and 5th floor for up and down, respectively, and
elevator B: ‘6 → 5 → 4 → 3 → 2’ that answers the hall call at 3rd floor for
down shown the optimal solution.

Table 6. Result from DTG-PCR. Two different DNA strands represent the possi-
ble routes of the same length which cannot be separated by conventional gel elec-
trophoresis.

DNA Sequence (5′ → 3′) Oligo Length (Bases)

TCCTCGTTAGGTACTGTTGCATCTTGGATTTATTACCAAG

ACCGATGTACCTCTCAATGCGAGCCGACCAGCGACACCCA

TGGTCAGCTAATGACGTGAGGAGCCGACCAGCGACACCCA

GCGGTTCTAAATTCCGTCACGAGCCGACCAGCGACACCCA

ATTGGACCCAGATGCAAAGGAGCTGGGATAAGGCATACCA 360
GAGCCGACCAGCGACACCCAATCGGAATCGATCCGTATGC

ATCTTGGATTTATTACCAAGGACGGTATTGCGTAATTCGG

GAGCCGACCAGCGACACCCACCGTAACGTATAGCGATGGA

GAGCCGACCAGCGACACCCATAGCCTTACGTACCGGCTTA

TCCTCGTTAGGTACTGTTGCATCTTGGATTTATTACCAAG

ACCGATGTACCTCTCAATGCGAGCCGACCAGCGACACCCA

TGGTCAGCTAATGACGTGAGGAGCCGACCAGCGACACCCA

GCGGTTCTAAATTCCGTCACGAGCCGACCAGCGACACCCA

ATTGGACCCAGATGCAAAGGAGCTGGGATAAGGCATACCA 360
ATCTTGGATTTATTACCAAGATCGGAATCGATCCGTATGC

ATCTTGGATTTATTACCAAGGACGGTATTGCGTAATTCGG

GAGCCGACCAGCGACACCCACCGTAACGTATAGCGATGGA

GAGCCGACCAGCGACACCCATAGCCTTACGTACCGGCTTA

9 Conclusion

”It is not the world that attracts attention now and that a usual physical
law sways in the minute (nano) world but the world of a quantum-mechanics-

DNA Computing and its Application 21

Fig. 7. The distinct behavior in melting temperature among the possible optimal
solutions. ©: car call; �: up hall call; �: down hall call.

law.” This is described in famous ‘uncertainty principle’ which Heisenberg in
Germany discovered in 1927.

Although at present computers are built on the model of a deterministic
Turing machine, a new idea of a quantum Turing machine is not built into a
model yet. The computer based on this idea is called a ‘quantum computer’,
and the idea is required to go further beyond the present computer. Although
this type of computer has yet to be produced in the real world, a present
computer (von Neumann type computer) using the semiconductor should face
the wall of combinatorial problems.

There are also many problems including the following:

• ‘Preparation’ and ‘extraction’ take too much time, and
• errors occur in copying DNA.

Although there are problems which must be solved to realize a DNA com-
puter, it is expected as modern technology which will replace with the present
von Neumann-type computer.

References

1. Adleman LM (1994) Molecular computation of solutions to combinatorial Prob-
lems, Science, 266: 1021-1024.

2. Adleman LM (1998) Computing with DNA, Scientific American, 279(2): 54-61.
3. Amano, M. Yamasaki and H. Ikejima (1995) The Latest Elevator Group Control

System, In G.C.Barney (ed) Elevator Technology 6 Proc. Of ELEVCON’95,
March 13-16, 1995, Hong Kong: 88-95.

4. Amos M, Paun G, Rozenberg G, Salomaa A(2002) Topics in the Theory of DNA
Computing, J. Theoretical Computer Science, 287(1): 3-38.

5. Barney GC, dos Santos S (1985) Elevator Traffic Analysis, Design and Control
(2nd ed), IEEE Computer Society, USA.

6. Barney GC (2003) Elevator Traffic Handbook: Theory and Practice-US-, Spon
Press, USA.

7. Beielstein T, Ewald T-P,Markon S (2003) Optimal elevator group control by
evolution strategies, In Cantu-Paz E, Foster JA (ed) Genetic and Evolution
Computation-Gecco 2003, Proc. Of Genetic and Evolutionary Computation,
Conf. July 12-16, 2003, Chicago, Springer-Verlag, Berlin,1963-1974.

22 Junzo Watada

8. Bi X, Zhu C, Ye Q (2004) A GA-based approach to the multi-objective opti-
mization problem in elevator group control system, Elevator World, June: 58-63.

9. Cortes P, Larraneta L, Onieva L (2004) Genetic algorithm for controllers in
elevator groups: analysis and simulation during lunchpeak traffic, Applied Soft
Computing, 4: 159-174.

10. Crites R, Barto A (1998) Elevator group control using multiple reinforcement
learning agents, Machine Learning, 33: 235-262.

11. Eguchi T, Hirasawas K, Hu J, Markon S (2004) Elevator group supervisory
control system using genetic network programming, In: Eberhart RC, Shi Y
(ed) Proc. of IEEE Congress on Evolutionary Computation 2004, CEC2004,
19-23 June 2004, IEEE, USA: 1661-1667.

12. Eguchi T, Hirasawa K, Hu J, Markon S (2006) Elevator group supervisory con-
trol system using genetic network programming with functional localization,
J. Advanced Computational Intelligence and Intelligent Informatics, 10(3): 385-
394.

13. Fujino A, Tobita T, Segawa K, Yoneda K,Togawa A (1997) An elevator group
control system with floor-attribute control method and systems optimization
using genetic algorithms,” IEEE Trans. Industrial Electronics, 44(4): 546-552.

14. Gudwin R, Gomide F and Netto M (1998) ”A fuzzy elevator group controller
with linear context adaptation,” In: Proc. Of Fuzzy-IEEE98, WCCI’98-IEEE
World Conf. Computational Intelligence, Anchorage, Alaska 1998: 481-486.

15. Ito Y, Fukusaki E (2004) DNA as a ’Nanomaterial’, J Molecular Catalysis B:
Enzymatic 28(4-6): 155-166.

16. Jeng D J-F, Watada J, Kim I (2007) Solving a real time scheduling problem
based on DNA computing, Soft Computing J. (in press).

17. Kim C, Seong K, Lee-Kwang H, Kim JO (1998) Design and implementation of
a fuzzy elevator group control system,” IEEE Trans. System, Man and Cyber-
netics - PART-A, 28(3): 277-287.

18. Kim I, Jeng D J-F, Watada J (2006) Redesigning subgroups in a personnel
network based on DNA computing Int J. Innovative Computing, Information
and Control, 2(4): 885-896.

19. Lee JY, Zhang B-T, Park TH (2003) Effectiveness of denaturation temperature
gradient-polymerase chain reaction for biased DNA algorithms, Pre-Proc. 9th
Internaional Meeting on DNA Based Computers, Madison: 208.

20. Lee JY, Shin S-Y, Park TH, Zhang B-T (2004) Solving traveling salesman prob-
lems with DNA molecules encoding numerical values, Biosystems 78(1): 39-47.

21. Lipton RJ (1995) DNA solution of hard computational problems, Science, 268:
542-545

22. Marmur J, Doty P (1962) Determination of the base composition of deoxyri-
bonucleic acid from its thermal denaturation temperature, J. Molecular Biology,
5: 109-118.

23. van Noort D (2004) Towards a re-programmable DNA computer, DNA9, LNCS
2943, Springer-Verlag, Berlin Heidelberg: 190-196.

24. Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal
clique problem, Science, 278: 446-449.

25. Owenson GG, Amos M, Hodgson DA, Gibbsons A (2001) DNA-based logic, Soft
Computing, 5(2): 102-105.

26. Paun GH, Rozenberg G, Salomaa A (1999) DNA Computing: New Computing
Paradigms, Yokomori T (Translated Ed) Springer (in Japanese).

DNA Computing and its Application 23

27. Powell BA, Sirag DJ, Witehall BL (2001) Artificial neural networks in elevator
dispatching, In: Lift Report 27(2): 14-19.

28. Rohani BAB, Watada J, Pedrycz W (2006) A DNA computing approach to
data clustering based on mutual distance rrder, In: Watada J (ed) Proc. 9th
Czech-Japan Seminar August 18-22, 2006, Kitakyusyu & Nagasaki: 139-145

29. SantaLucia JJr (1998) A unified view of plymer, dumbbell, and olygonucleotide
DNA nearest-neighbor thermodynamics, Proc. National Academy of Sciences of
U.S.A., 95: 1460-1465.

30. Wan H, Liu C, Liu H (2002) NN. Elevator Group-Control Method, In: Elevator
World 2002(2): 148-154.

31. Watada J, Kojima S, Ueda S, Ono O (2006) DNA computing approrch to opti-
mal decision problem, Int. J. Innovative Computing, Information and Control,
2(1): 273-282.

32. Wetmur JG (1991) DNA probes: applications of the principles of nucleic acid
hybridization, Critical Reviews in Biochemistry and Molecular BIology, 26(3):
227-259.

33. Winfree E, Lin F, Wenzler LA, Seeman NC (1998) Design and self-assembly of
two-dimensional DNA crystals, Nature, 394(6693): 539-549.

