
Slicing-based Reductions for Rebeca

Hamideh Sabouria,1 Marjan Sirjania,b,2

a Department of Electrical and Computer Engineering
University of Tehran

Tehran, Iran

b School of Computer Science
Institute for Studies in Theoretical Physics and Mathematics (IPM)

Tehran, Iran

Abstract

Slicing is a program analysis technique which can be used for reducing the size of the model and avoid state
explosion in model checking. In this work a static slicing technique is proposed for reducing Rebeca models
with respect to a property. For applying the slicing techniques, the Rebeca dependence graph (RDG) is
introduced. As the static slicing usually produces large slices, two other slicing-based reduction techniques,
step-wise slicing and bounded slicing, are proposed as simple novel ideas. Step-wise slicing first generates
slices overapproximating the behavior of the original model and then refines it, and bounded slicing is based
on the semantics of non-deterministic assignments in Rebeca. We also propose a static slicing algorithm for
deadlock detection (in absence of any particular property). The applicability of these techniques is checked
by applying them to several case studies which are included in this paper. Similar techniques can be applied
on the other actor-based languages.

Keywords: Slicing, Actor-based languages, Rebeca, Model Checking, Verification, Reduction

1 Introduction

Model checking [4] is a formal verification technique for verifying concurrent systems

against a number of specifications and can be used for developing more reliable

systems. The main problem of model checking is the state space explosion problem

and many techniques are developed to overcome this problem. These techniques

include: abstract interpretation [5], data abstraction [9], predicate abstraction [12],

slicing [31], partial order [23] and symmetry reductions [15].

To take advantage of model checking technique, one must first use a modeling

language to represent the behavior of the system. Rebeca [27] (Reactive Objects

Language) is an actor-based language with a formal foundation for modeling and

verifying concurrent and distributed systems, which is designed in an effort to bridge

1 Email: sabouri@ece.ut.ac.ir
2 Email: msirjani@ut.ac.ir

Electronic Notes in Theoretical Computer Science 260 (2010) 209–224

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.12.039

mailto:sabouri@ece.ut.ac.ir
mailto:msirjani@ut.ac.ir
http://www.elsevier.com/locate/entcs

the gap between formal verification approaches and real applications. In [26] compo-

nents are introduced for Rebeca language to encapsulate the tightly coupled reactive

objects. This language is supported by a set of model checking tools [17,28,29].

Static slicing [31] extracts statements from a program which have a direct or

indirect effect on a particular computation. One of the main approaches for slicing

is using reachability analysis on program dependence graph.

For slicing Rebeca models a dependency graph should be constructed first. For

this purpose we introduced a special dependency graph based on Rebeca semantics.

This graph is less complicated than existing dependency graphs, due to the asyn-

chronous nature of communication, atomic execution of message servers, absence of

shared variables and absence of procedure calls (hence there is no need for inter-

ference or summary edges discussed in [19]). In addition, although Rebeca is an

object-based language, we should not deal with complexities of dependence graphs

designed for object-oriented languages, as features like inheritance and polymor-

phism are not included in the language. In the case of component-based models

the corresponding subgraph of each component can be saved and reused when a

component appears in another model.

For computing the slice from the resulted graph, four different algorithms are

presented in this paper. The first one is the traditional reachability algorithm which

is used for static slicing. The second algorithm is based on a simple novel idea and

is used when we want to check a model against deadlock (unlike regular slicing

algorithms there is no need to specify a property here). The idea is eliminating the

statements that have no effect on any other statements.

In the third slicing algorithm, step-wise slicing, an overapproximation of the

original model is computed and then based on the verification result, the reduced

model is refined if needed. This algorithm starts by including the property variables

in the model. Variables which have a direct effect on the value of the property

variables, are also included in the model. These variables take a value using a non-

deterministic assignment, in the reduced model. The other variables are eliminated

from the model. Then, the reduced model is verified and if a spurious counter-

example is found, the model is refined by including more variables in it.

The last algorithm, named bounded slicing, can be seen as an intermediate

approach between static slicing and step-wise slicing. Static slicing preserves the

property strongly but produces large slices including many variables. On the other

hand, step-wise slicing only includes a few variables in the reduced model at the first

step, but overapproximates the model and may require several refinement steps. In

bounded slicing, the static slicing algorithm is bounded by non-deterministic assign-

ments statements. The reason is that there is no statement in the program which

could possibly affect the value of these assignments. User can bound the slicing pro-

cess further by providing more variables to the bounded slicing algorithm. These

are variables which their actual value is not important when checking a particular

property, based on the user information. The bounded slicing algorithm replaces

actual assignments which assign value to these variables with non-deterministic as-

signments and eliminates the other variables affecting the value of these variables.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224210

Although the reduced model overapproximates the behavior of the original model,

but the possibility of finding a spurious counter-example is reduced. The reason

is that the variables are eliminated heuristically by the user (and not as an adhoc

manner). However in the case of finding a spurious counter-example the model

should be refined by adding more variables to it.

The contribution of this paper is to introduce slicing techniques for Rebeca.The

available reduction techniques for Rebeca are symmetry reduction [18] and com-

positional verification [28,29]. The advantages of adding slicing techniques to the

available reduction techniques for Rebeca are:

• Combination with other reduction techniques: Slicing can be used in com-

bination with the other reduction techniques including compositional verification

and symmetry reduction and make it possible to model check larger models.

• Automatic processing: The static slicing process is completely automatic and

does not involve the user in the reduction process, comparing to the compositional

verification approach in which the user should make a decision in selecting a num-

ber of components. Bounded slicing is applied automatically on a Rebeca model

which uses non-deterministic assignment for assigning value to some variables.

However the user can specify more variables (with non-deterministic values) for

the bounded slicing algorithm to get a smaller slice. Step-wise slicing is not fully

automatic in this work because the refinement process needs user interaction.

But it can be improved to a fully automatic process and it is one of the future

works.

• Property preservation: Static slicing is characterized by strong property

preservation. This means that satisfaction and violation of a property in the

original model can be directly concluded from the reduced model. In contrast,

compositional verification overapproximates the model and the violation of the

property in the reduced model does not necessarily implies the violation of the

property in the original model. Both of the step-wise slicing and bounded slicing

techniques overapproximate the model, however when bounded slicing is used,

the possibility of finding spurious counter-examples is reduced.

The novelties in our technique can be summarized as:

• Introducing a special dependence graph for Rebeca due to the actor-base seman-

tics of the language, which does not have the complexities of existing graphs.

This graph can be applied for component-based Rebeca models, and in this case

the subgraph of a component can be saved for further reuse.

• Presenting a slicing technique for slicing models to be verified against deadlocks

(not a specific property).

• Presenting a slicing technique named step-wise slicing, which produces smaller

slices by overapproximating the behavior of a Rebeca model.

• Presenting a slicing technique named bounded slicing, based on non-deterministic

assignment to variables in Rebeca.

Same techniques (including the dependence graph and algorithms) can be ap-

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 211

plied to similar actor-based languages. In addition, these techniques can be used in

combination with other reduction techniques.

This paper is structured as follows. The next section presents an overview of

the related works. Section 3 briefly introduced the Rebeca language and program

slicing technique. In Section 4 the Rebeca dependence graph is presented and in

Section 5 different slicing algorithms are discussed. Section 6 explains the result of

applying the slicing techniques to two case studies and the last section concludes

the work.

2 Related Work

Static slicing has been used as a reduction technique in [1,6,21,13,2,24] for model

checking purposes. In [7] an evaluation of using this technique for model reduction is

presented. The result of [7] shows that slicing concurrent object-oriented source code

provides significant reductions that are orthogonal to a number of other reduction

techniques, and that slicing should always be applied due to its automation and low

computational costs.

An approach named abstract slicing is presented in [14] which is based on ab-

stract interpretation. Abstract slicing extends static slicing with predicates and

constraints by using the program model as an abstract state graph, which is ob-

tained by applying predicate abstraction to a program. For controlling the state

space explosion problem, the abstract slicing is formulated in terms of symbolic

model checking. In this abstraction technique, it can be determined under which

conditions one statement might affect another. But for verification we may need to

find out whether some condition might hold at all or not.

One of the ideas presented recently is incremental slicing [30]. It starts with a

small, minimal part of the specification and successively adds further parts until

either the property under interest holds on the slice or a real counterexample is

found. This technique is applied to CSP-OZ [10]. The step-wise slicing technique

presented in this paper uses the idea of overapproximating the behavior of the model

and then refining it. However because of the different nature of the languages the

way of applying the idea is different. In addition, in [30] the technique is applied

to a simple automaton (comparing to our work in which the technique is applied to

the dependency graph), therefore further comparison between these two techniques

is not possible.

In [11,20] a technique is proposed for slicing synchronous reactive systems by

introducing a new notion of slicing. In [11], this technique is applied to Argos

language which is based on finite state machines. In [20] the Esterel language is

considered which has a rich set of control constructs. The concentration of [20] is

on modeling these constructs by defining new dependencies. The main difference of

our work and this technique is the actor-based and asynchronous nature of Rebeca

language.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224212

Fig. 1. An example of a Rebeca model

3 Preliminaries

3.1 Rebeca

Rebeca [27] is an actor-based language for modeling concurrent and distributed

systems as a set of reactive objects which communicate via asynchronous message

passing. A Rebeca model consists of a set of reactive classes. Each reactive class

contains a set of state variables and a set of message servers in which the body

of the message servers is executed atomically. In a Rebeca model there is a set of

rebecs (reactive objects) which are concurrently executed. Rebecs are encapsulated

reactive objects, with no shared variables. Each rebec is instantiated from a reactive

class and has a single thread of execution which is triggered by reading messages

from an unbounded queue. Each message specifies a unique method to be invoked

when the message is serviced. When a message is read from the queue, its method

is invoked and the message is deleted from the queue. Each rebec has an initial

message server, and in the initial state the queue of the rebec is empty and its

statement to be executed is the first statement of the initial message server.

In [26], components encapsulate tightly coupled reactive objects which may have

synchronous communication. The behavior of each component is like a reactive

object and in the simplest case each reactive object is a component itself. In this pa-

per we abstract from the internal synchronous communication as this is not natural

behavior for actors.

Figure 1 is a very simple Rebeca example to show the syntax and semantics

of Rebeca and our slicing techniques. This example is similar to alternating bit

protocol, but we simplified it by putting a non-deterministic assignment instead of

receiving a real acknowledgement by the sender.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 213

In this example there exists a sender which sends a number of messages to a

receiver. According to the non-deterministically chosen value of variable y, the sent

message may be a new message or the previous message. After sending the last

message this scenario starts over again. On the receiver side, after receiving the last

message the value of a boolean variable named b is set to true. A possible property

for this example is G(F(b == true)) which checks whether the last message is finally

received by the receiver. The property is an LTL (Linear Temporal Logic) formula

in which G denotes globally and F denotes Finally.

3.2 Slicing

In general, slicing [31] is an analysis technique which is widely used in debugging,

testing, maintenance and program comprehension. Program slicing, is first intro-

duced as a decomposition technique that extracts statements relevant to a particular

computation, from a program. A program slice consists of the parts of a program

that potentially affect the values computed at some point of interest (referred to as

a slicing criterion). In general, it is undecidable if a slice is minimal [31] and one of

the attempts of slicing algorithms is to make the computed slice more precise.

The slicing technique has been improved to support concurrent and object ori-

ented programs in addition to sequential programs. Each of these techniquees are

described briefly in the following sections.

3.3 Slicing Sequential Programs

Slicing sequential programs can be divided into slicing programs without procedure

and slicing programs with procedures.

For slicing programs without procedures, a reachability algorithm is performed

on the program dependence graph (PDG) [16]. The PDG mainly consists of nodes

which represent the statements of a program and two types of dependence edges:

Control dependence edge that exists between two statement nodes if one node con-

trols the execution of the other node. Data dependence edge that exists between

two statement nodes if assigning value to a variable at one statement might reach

the usage of the same variable at another statement.

In slicing programs with procedures, a two phase reachability algorithm is per-

formed on the system dependence graph (SDG) [25]. The system dependence graph

is a collection of procedure dependence graphs, one for each procedure. A procedure

dependence graph contains nodes representing the procedure statements and con-

trol and data dependence edges. In addition, it contains an entry node representing

entry to the procedure and a set of formal-in and formal-out nodes for modeling

parameter passing. In each call site there is a call node and a set of actual-in and

actual-out nodes. A call edge connects a procedure call site node to the entry node

of the related procedure. Parameter-in edges and parameter-out edges connect the

formal-in and formal-out nodes to the actual-in and actual-out nodes, respectively.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224214

Fig. 2. An example of an imprecise slice in concurrent programs

3.4 Slicing Concurrent Programs

Slicing concurrent programs was first introduced in [3]. In [3] the notion of slicing

is extended for concurrent programs and a graph-theoretical approach to slicing

concurrent programs is presented. Slicing of concurrent programs had improved

further in [22,19].

The SDG which is used for slicing sequential programs, is adopted to be used for

slicing concurrent programs by adding a new dependence edge named interference

dependence. In concurrent programs with shared variables, an interference depen-

dence edge is added when a value is assigned to a variable in one thread and is

used in another thread. The interference dependence edges are not transitive which

may result an imprecise slice [19]. This problem can be solved by only considering

realizable paths. However, even when only realizable paths are considered, the slice

will not be as precise as possible. An example of this fact is shown in Figure 2 in

which the a=5 statement of Thread 1 is included in a slice computed with respect

to the c=a statement of this thread. But actually the a=5 statement cannot affect

the computation of the last statement.

4 Slicing Rebeca Models

4.1 Slicing Definition

When slicing is used in model checking for model reduction purposes, the definition

of a slice slightly differs from the original definition which is used in software testing,

debugging and maintenance. The reason is that in model checking the slicing is

applied with respect to a property instead of a particular computation in a certain

location of the program. Therefore the slice should be computed with respect to all

of the points in which the involved variables in the property are taking a value.

4.2 Rebeca Dependence Graph

For slicing a Rebeca model, first the model should be transformed into an inter-

mediate graph representation. After this step the slice can be computed through a

graph reachability algorithm. The existing dependence graphs are not suitable for

this purpose because they do not fulfill the requirements of the Rebeca language.

In these graphs the emphasis is mainly on modeling procedures and procedure

calls according to their context and in a further step concurrency feature is consid-

ered. In contrast, a Rebeca model does not include any procedure or procedure call

and instead consists of an asynchronous communication through message passing.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 215

Fig. 3. RDG of the sender/receiver example

Therefore a special dependence graph for Rebeca named Rebeca dependence graph

(RDG) is introduced. Here we discuss how RDG models Rebeca features:

(i) Reactive classes: an entry node is considered for each reactive class. The

member dependence edges connect the reactive class entry node to each of its

state variables and message servers.

(ii) Message servers: each message server is modeled by an entry node, a set

of nodes representing its statements, and data dependence edges and control

dependence edges modeling the existing dependencies within the body of the

message server.

(iii) Message passing: putting a message in a queue is represented through an

activation node. In addition an activation edge is used for connecting the

activation node to the entry node of the related message server. The parame-

ters of the messages is modeled using formal-in and actual-in nodes as well as

parameter-in edges.

(iv) Concurrency: as there is no shared variable between concurrent executing re-

becs, there is no need for adding any special construct like interference depen-

dence edge for this feature.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224216

Fig. 4. Obtaining more precise slice with intra-rebec data dependence edge

(v) State variables: each rebec has its own set of state variables when executing con-

currently with the other rebecs. But it should be considered that the message

servers of the rebec are sharing these variables. Therefore some kind of depen-

dency should exist between a message server using a variable and the other

message server which is assigning value to that variable. This dependency is

not a data dependency because it is not transitive and is not an interference

dependency because concurrency does not exist within a rebec itself. We repre-

sent these kinds of dependencies with intra-rebec data dependency. According

to atomic execution of the body of the message servers, this dependency exists

between the last statement of a message server which is assigning value to a

variable and the first use of that variable in another message server (if the

value of that variable is not changed in the body of the second message server

before the first use). In this way more precise slice can be obtained. Figure 4

shows how this idea solves the problem which is described in Figure 2 earlier.

(vi) main: as the important point in slicing Rebeca models is which state variables

and message servers should be included in the slice, the main part of the model

which just instantiates rebecs from the reactive classes, is not included in RDG.

For each component in the model, the related subgraph can be extracted from

the RDG for further reuse. This can be done by selecting the reactive classes entry

nodes related to the component and finding all of the nodes reachable from them.

When finding reachable nodes, all of the edges are followed, except activation and

parameter-in edges going to other reactive classes.

Figure 3 shows the RDG of the sender/receiver example which were discussed

earlier. The dashed rectangle indicates a component including only the sender.

A dependency graph can be constructed for other actor-based languages in the

same way:

• Message servers of the actors are similar to the message servers in Rebeca and

can be modeled in a similar way.

• Activation edges can be used for modeling message passing between the actors.

• As there are no shared variables between the actors, there is also no need for

interference dependence edges.

• The idea of intra-rebec data dependency can be used for modeling the variables

of the actors.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 217

Fig. 5. Static slicing algorithm

5 Slicing Techniques

In this section we describe slicing-based techniques which can be used for model

reduction. As mentioned in the previous section, the intra-rebec data dependency

edges are not transitive and precise slices can be computed by considering realizable

paths. The purpose of the algorithms, presented in this section, is showing the

main ideas of the slicing techniques, therefore for simplicity, we do not discuss the

computation of realizable paths in these algorithms, in this paper.

5.1 Slicing Algorithm for RDG

After generating the RDG from the Rebeca model, the slice can be computed simply

by a graph reachability algorithm. This algorithm should mark all of the nodes

affecting the value of variables involved in the property. Figure 5 shows the slicing

algorithm assuming that the value of involved variables is computed in nodes c1,..,cn

and the final slice is stored in S.

5.2 Deadlocks

As we discussed earlier, a Rebeca model is sliced with respect to a property, but we

may want to consider deadlock instead of any specific property. Here we present a

simple idea for reducing Rebeca models using slicing-based techniques when check-

ing the deadlock. For this purpose we search the RDG of the Rebeca model for the

statement nodes which do not have an outgoing edge. In this way we are finding

the statements which do not affect the other parts of the model. After finding these

nodes we eliminate them with all of their incoming edges. This elimination may

generate new nodes without any outgoing edge. Therefore the search operation

should be repeated recursively until all the nodes have at least one outgoing edge.

Figure 6 shows the algorithm of computing a slice for deadlock verification.

For example if we apply this technique to the sender/receiver example, a reduced

RDG will be resulted. In Figure 3 the shadowed nodes are eliminated after applying

this algorithm to the RDG.

5.3 Step-wise Slicing

Step-wise slicing technique generates a reduced model which overapproximates the

original behavior of the model. Therefore we should use the counter-example guided

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224218

Fig. 6. Slicing algorithm for deadlocks

refinement technique [8].

The step-wise slicing process consists of a number of rounds and in each round

the model is reduced, verified and refined (when a spurious counter-example is

found). The process is terminated when the property is satisfied or by finding a

feasible counter-example.

In this technique a set, named selected variables is considered and contains

variables which should be included in the reduced model. In the first round this set

only contains the variables involved in the property. The algorithm of computing a

slice in each round is shown in Figure 7. In this algorithm statements that do not

assign value to any variable (e.g. if statement) and assignments which assign value

to a variable included in the selected variables set, are treated normally (i.e. similar

to static slicing). But assignments which assign value to the other variables, are

replaced by a non-deterministic assignment. In this case the data dependence, intra

rebec dependence and parameter-in edges are not followed further by the algorithm.

After generating the slice, in the refinement step (if needed), user should choose

at least one variable from the set of variables which were assigned by a non-

deterministic assignment in that round. In the worst case all of the variables affect-

ing the property will be included in the slice during the refinement steps. In this

case, the result of this algorithm is equivalent to the result of static slicing.

5.4 Bounded Slicing

The main purpose of proposing this technique is the gap exists between the tradi-

tional static slicing method and step-wise slicing. The weakness of static slicing is

that it usually generates a large slice and its advantage is that it preserves the prop-

erty strongly. One the other hand step-wise slicing generates small slices (at least at

the first stages of the algorithm) but it overapproximates the model. Additionally,

it may take several rounds for getting a result, especially in large models.

In the bounded slicing technique we used the idea of non-deterministic assign-

ments in Rebeca. However this technique can be applied to any other language

supporting non-determinism. A non-deterministic assignment statement is not data

dependent to any other statement so there is no data dependence edge, intra-rebec

dependence edge or parameter-in edge that could be followed by the slicing algo-

rithm. Thus, the algorithm is bounded by these assignments.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 219

Fig. 7. Step-wise slicing algorithm

When a model contains non-deterministic assignments itself, the static slicing

algorithm is bounded implicitly by these assignments. This can be considered an

automatic version of this technique.

Additional non-deterministic statements can be added using user information.

In this case the user provides the bounded slicing algorithm with a set of variables:

user selected variables. These are variables which their value is not important when

verifying the model against a specific property, based on user knowledge about

the model. The algorithm in Figure 8 shows the bounded slicing algorithm. In

this algorithm the assignments which assign value to variables included in the user

selected set, are replaced by a non-deterministic assignment statement and data

dependence, intra-rebec dependence and parameter-in edges are not followed further

by the algorithm. In this way the slicing algorithm is bounded in certain points

which are chosen by the user.

This technique overapproximates the model. However the possibility of facing

spurious counter-examples using this approach is less than step-wise slicing because

we tried to eliminate variables which have no effect on the property. In the case of

finding a spurious counter-example the user can remove a number of variables from

the user selected set and apply the algorithm again. The result of this algorithm is

equivalent to the result of static slicing algorithm if the user selected variables set

is empty.

6 Experimental Results

The proposed techniques were applied to a number of case studies. This section

presents the results of reducing these case studies. The model checking is performed

using Modere [17] on a computer with a 1.80 GHz CPU and 2038 MB of RAM.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224220

Fig. 8. Bounded slicing algorithm

The set of case studies includes:

• Commit problem (CP): There are n entities that are supposed to commit on

performing an action. In the case that any of them disagrees, the action will be

aborted.

• Dining philosophers problem (DP): A classic synchronization problem.

• Leader election problem (LE): A node should be selected as a leader in a ring

of n nodes. It is supposed that each node knows the nodes next to it only. The

leader is selected through the messages sent among the nodes.

• Sender receiver problem (SR): A sender and receiver communicate over a

potential faulty communication line.

• CPU : The CPU is from http://www.es.ele.tue.nl/education/

Computation/mmips-lab/ which contains the mmMIPS processor as well

as several other variants of it.

• Pipeline (PL): A pipeline with four stage in which each stage performs a certain

computation and passes the result to the next stage.

• Alarm clock (AC): A clock continually updates time and notifies clients regis-

tered for alarms.

• Sleeping barber (SB): A classic synchronization problem.

• Bounded retransmission protocol (BRP): A data link protocol used by

Philips. The service it delivers is to transfer large files in a reliable manner, from

a sender to a receiver.

Table 1 shows the result (number of states and time) of the model checking

against the deadlock (shown by ”DL” in the table) and properties (shown by ”prop”

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 221

Table 1
Reduction gained for the case studies

Model Complete Model Static Slicing Step-wise Slicing Bounded Slicing

of states/time(s) # of states/time(s) # of states/time(s) # of states/time(s)

CP (DL)

CP (prop)

195745/12

195745/12

147327/9

147327/9

Not-applicable

147327/9

Not-applicable

147327/9

DP (DL)

DP (prop)

2864/3

122645/29

2864/3

122645/29

Not-applicable

122645/29

Not-applicable

122645/29

LE (DL)

LE (prop)

4627/1

9253/2

4627/1

9253/2

Not-applicable

9253/2

Not-applicable

9253/2

SR (DL)

SR (prop)

100026/2

250056/13

100026/2

48/1

Not-applicable

48/1

Not-applicable

48/1

CPU (DL)

CPU (prop1)

CPU (prop2)

state-explosion

state-explosion

state-explosion

state-explosion

113404/17

state-explosion

Not-applicable

110319/16

1809778/742

Not-applicable

110319/16

1809778/742

PL (DL)

PL (prop1)

PL (prop2)

24772/1

27022/2

24772/1

24772/1

335/1

346/1

Not-applicable

335/1

346/1

Not-applicable

335/1

346/1

AC (DL)

AC (prop1)

AC (prop2)

AC (prop3)

state-explosion

state-explosion

state-explosion

state-explosion

state-explosion

74/01

169588/4

6437/1

Not-applicable

74/1

169588/4

1928/1

Not-applicable

74/1

169588/4

1928/1

SB (DL)

SB (prop1)

SB (prop2)

SB (prop3)

15762/1

31316/6

15762/1

31629/6

12978/1

14420/2

6322/1

29722/4

Not-applicable

14420/2

6322/1

29722/4

Not-applicable

14420/2

6322/1

29722/4

BRP (DL)

BRP (prop1)

BRP (prop2)

BRP (prop3)

state-explosion

state-explosion

state-explosion

state-explosion

state-explosion

state-explosion

state-explosion

state-explosion

Not-applicable

212599/6

3771783/390

7762276/800

Not-applicable

212599/6

3771783/390

7762276/800

in the table) for each case study. Bolded numbers indicate reductions in the state

space. The static slicing technique reduces the number of states for most of the

models. The commit problem and sleeping barber case studies show the applicability

of the presented technique for slicing models against deadlocks and the CPU and

Bounded retransmission protocol case studies show the advantage of step-wise slicing

and bounded slicing over the static slicing technique: In smaller case studies the

result of these techniques would be the same, but in larger examples in which the

static slicing cannot avoid the state space explosion problem, step-wise slicing and

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224222

bounded slicing techniques can help significantly.

7 Conclusion

In this paper we use slicing-based techniques for reducing the Rebeca models. A

dependence graph named Rebeca dependence graph (RDG) is introduced for mod-

eling the asynchronous nature of Rebeca. Three slicing-based techniques are used

to compute the slices and each of them had a different reachability algorithm for

computing the slice. In addition, a technique is proposed which reduces models that

should be checked against deadlock.

Considering that the static slicing technique is automatic and the number of

stages required in the step-wise slicing technique, it is recommended to apply these

techniques in the following order: static slicing, bounded slicing, step-wise slicing.

In future work, we planned to find the main characteristics of the models which

are best reduced by applying each of these techniques. Also, further investiga-

tion is ongoing to find more specializing techniques for Rebeca. Integrating these

techniques with Rebeca verifier tool set is one of the other future works.

References

[1] Bozga, M., J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm and L. Mounier, If: An intermediate
representation and validation environment for timed asynchronous systems, World Congress on Formal
Methods (1999).

[2] Bruckner, I. and H. Wehrheim, Slicing an integrated formal method for verification, In ICFEM 2005:
Seventh International Conference on Formal Engineering Methods, volume 3785 of LNCS (2005),
pp. 360–374.

[3] Cheng, J., Slicing concurrent programs–a graph-theoretical approach, Proceedings of the First
International Workshop on Automated and Algorithmic Debugging 749 (1993), pp. 223–240.

[4] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” The MIT Press, 2000.

[5] Cousot, P. and R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints, In Proceedings of POPL77 (1977), pp. 238–252.

[6] Dwyer, M. B., J. Hatcliff, M. Hoosier, V. Ranganath, Robby and T. Wallentine, Evaluating the
effectiveness of slicing for model reduction of concurrent object-oriented programs, TACAS (2006).

[7] Dwyer, M. B., J. Hatcliff, M. Hoosier, V. Ranganath, Robby and T. Wallentine, Evaluating the
effectiveness of slicing for model reduction of concurrent object-oriented programs, TACAS (H.
Hermanns, J. Palsberg,Eds.), 3920, Springer (2006).

[8] E. M. Clarke, S. J. Y. L., O. Grumberg and H. Veith, Counterexample-guided abstraction refinement
for symbolic model checking, JACM (2003), pp. 752–794.

[9] E.M. Clarke, O. G. and D. Long, Model checking and abstraction, In 19th ACM POPL (1992).

[10] Fischer, C., CSP-OZ: A combination of Object-Z and CSP, In H. Bowman and J. Derrick, editors,
Formal Methods for Open Object-Based Distributed Systems(FMOODS 97) 2 (1997), pp. 423–438.

[11] Ganapathy, V. and S. Ramesh, Slicing synchronous reactive programs, Electronic Notes in Theoretical
Computer (2002).

[12] Graf, S. and H. Saidi, Construction of abstract state graphs with pvs, In Proceedings of CAV97 (1997).

[13] Hatcliff, J., M. B. Dwyer and H. Zheng, Slicing software for model construction, Higher-Order and
Symbolic Computation (2000), pp. 315–353.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224 223

[14] Hong, H., I. Lee and O. Sokolsky, Abstract slicing: A new approach to program slicing based on abstract
interpretation and model checking, SCAM, IEEE Computer Society (2005).

[15] Ip, C. and D. Dill, Better verification through symmetry, In International Conferenceon Computer
Hardware Description Languages (1993).

[16] J. Ferrante, K. J. O. and J. D. Warren, The program dependence graph and its use in optimization,
ACM Trans.Prog. Lang. Syst (1987), pp. 319–349.

[17] Jaghoori, M., A. Movaghar and M. Sirjani, Modere: The model-checking engine of Rebeca, ACM
Symposium on Applied Computing - Software Verification Track (2006), pp. 1810–1815.

[18] Jaghoori, M. M., M. Sirjani, M. R. Mousavi and A. Movaghar, Efficient symmetry reduction for an
actor-based model, ICDCIT LNCS 3816 (2005), pp. 494–507.

[19] Krinke, J., Context sensitive slicing of concurrent programs, ACM SIGSOFT Software Engineering
Notes (2003).

[20] Kulkarni, A. R. and S. Ramesh, Static slicing of reactive programs, Source Code Analysis and
Manipulation, SCAM (2003).

[21] Millett, L. and T. Teitelbaum, Issues in slicing promela and its applications to model checking, protocol
understanding, and simulation, Software Tools for Technology Transfer (2000), pp. 343–349.

[22] Nanda, M. and S. Ramesh, Slicing concurrent programs, Software Engineering Notes (2000), pp. 180–
190.

[23] Peled, D., All from one, one for all: On model checking using representatives, In Proceedings 5th
Workshop on Computer Aided Verification, number 697 (1993).

[24] Qi, X. and B. Xu, An approach to slicing concurrent ada programs based on program reachability graphs,
IJCSNS International Journal of Computer Science and Network Security (2006).

[25] S. Horwitz, T. R. and D. Binkley, Interprocedural slicing using dependence graphs, ACM Transactions
on Programming Languages and Systems (1990), pp. 26–61.

[26] Sirjani, M., F. de Boer and A. Movaghar, Modular verification of a component-based actor language,
Journal of Universal Computer Science 11 (2005), pp. 1695–1717.

[27] Sirjani, M., A. Movaghar, A. Shali and F. de Boer, Modeling and verification of reactive systems using
Rebeca, Fundamenta Informaticae 63 (2004), pp. 385–410.

[28] Sirjani, M., A. Movaghar, A. Shali and F. S. de Boer, Model checking, automated abstraction, and
compositional verification of Rebeca models, J.UCS 11(6) (2005), pp. 1054–1082.

[29] Sirjani, M., A. Shali, M. Jaghoori, H. Iravanchi and A. Movaghar, A front-end tool for automated
abstraction and modular verification of actor-based models, In Proceedings of ACSD 63 (2004), pp. 145–
148. IEEE Computer Society.

[30] Wehrheim, H., Incremental slicing, ICFEM 2006 (2006), pp. 514–528.

[31] Weiser, M., Program slicing, In Proceedings of the 5th international conference on Software engineering
(1981), pp. 439–449.

H. Sabouri, M. Sirjani / Electronic Notes in Theoretical Computer Science 260 (2010) 209–224224

	Introduction
	Related Work
	Preliminaries
	Rebeca
	Slicing
	Slicing Sequential Programs
	Slicing Concurrent Programs

	Slicing Rebeca Models
	Slicing Definition
	Rebeca Dependence Graph

	Slicing Techniques
	Slicing Algorithm for RDG
	Deadlocks
	Step-wise Slicing
	Bounded Slicing

	Experimental Results
	Conclusion
	References

