Testing a System-On-a-Chip with Embedded Microprocessor

- Rochit Rajsuman
Advantest America R&D Center
. 3201 Scott Blvd
Santa Clara, CA 95054
(408) 727-2222, ext. 386

r.rajsuman@advantest.com

Abstract
In this paper, we describe the test
methodology for embedded ' cores -based

system-on-a-chip (SoC) which contains a

microprocessor core. First the microprocessor

core is tested for correctness of all the

instructions and then the computation power
of the microprocessor core is used to test the
on-chip memories and other cores. A small
Iddq test set is also used to detect physical
defects, the design features to facilitate Iddq
testing are described. '

1. Introduction
In the recent years, ASIC technology has
evolved from a chip-set philosophy to an
embedded cores based system-on-a-chip
(SoC) concept. A SoC includes various
reusable functional blocks called cores such as
microprocessors, memories, DSP, bus control
and interfaces like PCI and USB. While the
use of cores in SoC serve a broad range of
applications, the complexity of these chips is
far too complex to be tested by traditional

methods [1]. Reference [2] provides a good

overview of testing difficulties. A substantial
amount of research is underway to address
these testing difficulties ([1-5]. In the
production of SoC, a combination of test
methodologies are used such as functional

test, full-scan, BIST, Iddq etc. In a broader

sense, the individual cores are tested by one or
more of the following methods:

1. Testing a core through system-chip’s '

functional test;
2. Direct test application while accessing the
core through I/O pin multiplexing;
3. Test application to the core through local
" boundary scan or a collar register;

' ITC INTERNATIONAL TEST CONFERENCE
0-7803-5753-1/99 $10.00 ©1999 IEEE

The

4. Scan and Built-in self-test through a variety
of access and control mechanisms;
5. Proprietary solutions.

In this paper we describe a test methodology

“for SoC that contains a microprocessor core.

The test methodology can be divided into four
subsets: (i) testing of the microprocessor core
by ensuring the correctness of all of its
instructions; (ii) using microprocessor core to
test the embedded memories; (iii) using
microprocessor core to test other cores; (iv)
implementation and design for Iddq testing.
Subsequently, from section 2-to-5, this paper
is organized into four sections, each
describing one subset of the test methodology
and finally, section 6 contains concluding
remarks. '

2. Testing of Microprocessor Core

A large number of SoC contain one or more
microprocessor/micro-controllers. The testing
of embedded microprocessors is quite
complex. In general, design-for-test and built-
in self-test schemes such as full-scan, partial
scan, logic BIST, scan-based BIST are used to
test various logic blocks within a
microprocessor/micro-controller.

In this section, we describe a BIST type

- method for the testing of microprocessor core

used in SoC. This method tests the correctness
of instructions and thus, it can be considered
as a functional test method.

2.1 Test Structure for pP Core
broad structure of a
microprocessor/micro-controller is shown in
Figure 1a. As shown in figure la, instruction
fetch unit obtains the opcode of the next
instruction based upon the address in Program

Paper19.3

499

Cloc

Counter. This opcode is decoded by the
instruction decode logic, which generates
function select and control signals for the
execution unit. Based upon these control
signals, -one of the logic blocks within the
execution unit computes its function. The
operand or data for this computation is
obtained from the system memory.

Program Counter
and Instruction
P Fetch Unit
;‘ b Opcade Operand
i
Instruction L

Decode o Microprocessor's Instruction
. Logic ;| Execution Unit

k

l—’>,

@

Result

Fig. 1(a): General structure of a MiCroprocessor.

The structure shown in figure la is modified
by adding three registers as shown in figure
1b. One Test Control Register (TCR) to
provide the opcode of the microprocessor’s
instructions during the test mode, one Linear
Feedback Shift Register (LFSR) and another
Multi-Input Feedback Shift Register (MISR)
to generate random data and to compress test
response respectively. During the test mode,
the data from LFSR is used as an operand for
the instruction. provided by the TCR. The
computed result is stored in the MISR. It
should be noted that, as shown in Figure 1b,
the execution unit contains a group of
complex blocks implementing integer and
floating point arithmetic and logic operations.

2.2 Test Sequence for puP Core .

The testing sequence is as follows:

1. Activate the test mode. In this mode, the
content of TCR is used as an instruction
rather than the opcode from the
instruction fetch unit.

2. Initialize TCR, LFSR and MISR via test
control signals.

3. Serially load TCR with the opcode of an

!
1
I
i
i
i
1
i
i

Program Counter
and Instruction

,
"
',
‘
TP
s
Instruction *,

|
i : Logic
|)

; L
; - Clockand
|

Test Resporse
=¥ scanou)

Fig. 1(h): Implementation of BIST-type method for functional testing of

IMiCTOPIOCeSSor Core.

Paper19.3

500

instruction.

4. Clock LFSR and MISR for a fixed
number of cycles. This step repeatedly
executes the instruction in TCR with
LFSR data. For example, when 1000
clocks are used, the instruction in TCR is
executed (1000 times - latency of the
block) with different operands, random
data provided by the LFSR.

5. Serially take out the content of MISR to
determine pass/fail.

6. Compare the content of MISR w1th a pre-

computed simulation signature to
.determine if there is- a fault. The
Automatic Test Equipment (ATE)

- performs this comparison.

7. Repeat steps #2 to #6 with dlfferent
instructions until all
exercised.

The control of this scheme is implemented
through IEEE 1149.1 boundary scan TAP
controller [6]. The test control signals and test
responses are passed through, as well as
controlled by the boundary scan TAP
controller. Figure 2 illustrates the overall
- implementation.

instructions are

It should be noted that in this scheme, the
simulation testbench is used as golden data
that contains all instructions with LFSR
sequence and MISR signatures after each run.
Thus, the fault free MISR content after each
instruction run is known apriori for simple
comparison during manufacturing test.

The above procedure determines that each
instruction is executed correctly and hence, it
provides functional coverage. To also estimate

‘the stuck-at fault coverage of an individual

block for approximately 1000 random
operands, fault simulation is performed on the
recorded run. For fault simulation, a
commercial EDA tool is used.

3. Testing of Embedded Memories
Once the testing of the microprocessor core is

completed, this core is used to test the.

embedded memory and other on-chip cores. In
this section, we describe our method to test
the embedded memory using the computation
power of microprocessor core. In this method,
an assembly language program is executed on
the microprocessor core, which generates
memory test patterns. Although, we used the

Fig. 2: Implementauon of BIST-type method for microprocessor core.

Paper19.3

501

Paper19.3
502

March algorithm, any memory test algorithm
can be used for this purpose. The test response
is also evaluated by the microprocessor core.

3.1 Test Procedure

The example assembly language procedure
using a simplified memory March-algorithm
is shown in Figure 3. This example uses word-
wide . read/write operations with 0101...01
data in increasing order and 1010...10 in
decreasing order. This test is for a 2-Mbits
RAM, organized as16Kx16. ’

/* Procedure to test embedded RAM */
/*AQ is address counter, DO contains test data
(wnte) D1 is used for read data (response);
A0, D0-D?2 are general purpose registers */
/* Initialization */
MOVE #0000H, A0 -
. /*Initializing address counter */
MOVE #0000H, DO
- *This is initialization data */
MOVE #OOOOH D2
. /*This will be used to clear memory
{ word after read */
/* Test Procedure */
Initial | MOVE DO, [A0]
_/*The value in DO is written into
;location addressed by A0 */
INCR A0
COMP A0, FFFFH
/* FFFFH is the last address */
BEQ Test Incr
BRA Initial
/ *Memory is initialized, Start test */
r Wnte/Read in increasing order "/
Test_Incr MOVE #0, A0
- MOVE #5555H, DO
/* This is test data (0101...) */
Cont_ Incr MOVE D0, [A0]
/’f This is write opreation */
MOVE [A0], D1
/* This is read operation */
MOVE DZ [AO]
/* This clears memory word */
COMP DO, D1
BEQ Next_Incr
BRA Fail |
/*'Read data is not 5555H */

!
1

Next_Incr INCR A0
COMP A0, FFFFH
/* Last address */
BEQ Test_Decr
BRA Cont_Incr

/* Write/Read in decreasing order */
Test_Decr MOVE #AAAAH, DO
Cont_Decr MOVE D0, [A0]
/* This is write operation */
MOVE [A0], D1
/* This is read operation */
MOVE D2, [A0]
/* This clears memory word */
COMP D0, D1
BEQ Next_Decr
BRA Fail
/* Read data is not AAAAH */
Next_Decr DECR AQ
COMP AQ, 0000H
/* 0000H is the last address */
BEQ Done
BRA Cont_Decr

Done Write Test_Passed
Fail ~ Write Test_Failed

Figure 3: An assembly language program for
word-wide March pattern running on the
microprocessor core.

The assembly language program shown in
figure 3 is converted into binary form by the
assembler of the microprocessor core. The
assembler binary code is used in a manner
similar to the test vectors from ATE for the
microprocessor core. The data supplied to the
microprocessor core come directly from the
tester. In some sense, during this testing, the
tester becomes the system memory for the
microprocessor core. As the data from tester
are the microprocessor’s instructions in binary
form, the microprocessor core executes
operations as intended by the program
instruction. The final output from the
microprocessor ‘to the tester is a pass/fail
status. It should also be noted that the test
program shown in figure 3 stops as soon as an
error occurs (writes Fail). The tester stores this
failure and, hence, the fail-bit location is

* known without any additional effort.

The method is straightforward and it greatly
simplifies ATE requirements. It provides at-
speed testing with no performance penalty,
and any memory test algorithm can be used.
The only drawback to this method is that it
requires a special API (application program
interface) to handle the binary information
generated by the assembler. This API allows
the tester to understand the assembler binary
code during test program development as well
as durmg actual testing. .

It is interesting to note that similar methods
have been suggested in the past that a
carefully crafted test program can test some
memory arrays on-chip if the instruction cache
-is first fully tested [7-9]. The method
described above is fundamentally different
from [7-9] with respect to the tester interface
as well as it does not requlre a known good 1-
cache [10].

4. Testing of Function Specific Cores
Once the microprocessor core and on-chip
memories have . been tested, the
microprocessor core is used to test other cores.
In this section we describe the testing of
embedded D/A converter (DAC).

4.1 Test Procedure
The basic concept is similar to section 3. An
assembly language program is developed,
converted into the binary -form by the
assembler and run on the microprocessor core
through tester APL.- "

However, to solve the difficulty of test data
application from microprocessor core to DAC,
we used one extra register (analog test
register, ATR). In the test mode, the contents
of ATR can be altered by index addressing,
such as by addressing through any one of the
microprocessor address register. In the test
mode, ATR provides the inputs to DAC via a
multiplexer. During normal mode ATR is cut-
off via same multiplexer. The concept is
illustrated in figure 4.

‘With the help of the ATR, test stimuli
generated by the microprocessor core could be
applied to the DAC. The procedures to

generate test stimuli for offset voltage (Vos),
full-scale range (FSR), missing codes and
major transitions, differential non-linearity

(DNL) and integral non-linearity (INL) is

described as fqllows:

Response to
microprocessor

Fig 4: Mechanism for test data application from
microprocessor core to DAC.

Offset Voltage (Vos): For DAC, offset
voltage is the analog output voltage when a
null or all-zero code is applied at the inputs.
The width of the test vector is same as the
Wldth of DAC resolution bit, while the length
is 2N, such as 16, 32, 64 etc. Further to avoid
distortion due to noise, we apply the same
vector multiple times and an average of output
is taken to compute Vos. The test vector is
obtained simply by loading all-0 to one of the
microprocessor data register. A single
microprocessor instruction is used for this
purpose, MVI 0000H, (Ai); where (Ai) is the
ith address register.

Full Scale Range (FSR): Full-scale range is
the difference between analog output voltage
when the full-scale code (all-1) value is
applied at the inputs (Vis) to analog output
voltage when a null (all-0) code is applied at
the inputs (Vos), such as FSR=Vss-Vos. The
test stimulus for VFS is all-1 value, hence, the
procedure is same as generating test vector for
Vos. Two instructions provide the necessary
test stimuli for FSR (all-0 and all-1 values).

Paper19.3
503

Mlssmg Codes and Major Transitions: For
DAC, a major transition is the transition
between codes that causes a carry to flip the
least 'significant non-zero bit and sets the next
bit. For N- bltS DAC, a counter that counts
from 0 to 2V-1 provides all possible code
values, thus, it is sufficient to test for any
missing codes and major transitions. A simple
assembly language program that provides a
counter functionality is sufficient to generate
all code values.

Differential Non-linearity: It is the
maximum deviation of an actual analog output
step between adjacent input codes from the
ideal value of 1 LSB (least significant bit). It
requires all-0, all-1 and a linear sequence of
all code inputs. Thus, the combined
procedures given in #2 and #3 provide the
necessary test stimuli.

Integral Non- lmearlty It is the maximum
deviation of the code edges or analog output
from a straight line drawn between the first
and the last code. Thus, the combined
procedure given in #2 and #3 provide the
necessary test stimulus.

In summary the procedure shown in figure 5
generates necessary test stimuli for DAC:

MVI 00001-[(A1)
/* Move all-0 to location addressed
i by Al, it provides all-0 vector */
MVI FFFFH (A1)
| /* Move all-1 to location addressed
~ iby Al, it provides all-1 vector */
/* Procedure to generate all code values */
Start | MVI 0000H, D1
i/ * It sets register D1 to zero */
MVI 0100H, D2
/% Tt sets register D2 to 2° for 8-bit
‘DAC. This number varies for
different DAC, for example, for 10-
bit DAC it needs to be 0400H or 2"
Cont 1CMP D1, D2
~ 1* Compare the content of D1 to D2
*/ !
Jz Stop
MOVE Dl (A1)

}

j
i
Paper19.3]i

504

/* Move contents of D1 to the

: location addressed by Al */
INCR D1
/* This generates the next code value

*/
JMP Cont
Stop HLT

Fig. 5: An assembly language program for

. generating test stimuli for DAC.

For embedded DAC, the evaluation of test
response is also a difficult problem.
However, the DAC output being the primary
pin, mixed-signal unit of the tester is much
more efficient and simpler solution rather
than designing a method to feed DAC
response to microprocessor core and perform
various calculations to determine the DAC
parameters.

- 5. Iddq Testing

In Reference [11-12], a design methodology is
presented that provides a global control signal
to switch-off static current dissipating logic.
This design uses a special buffer and a
dedicated pin to control this global signal
during Iddq testing as well as in the normal
operation. The basic design is shown in Figure
6. -

Fig. 6: ASIC design that allows to switch-off
static current -dissipating logic durmg Iddq
testing [11].

During normal mode, due to the puil-down
transistor of special buffer (Iddtn buffer), the
control signal (Iddtn-ring) is always “1”,
keeping the pull-up/pull-down transistors ON

at the signal pins. For Iddq testing a “1” is
applied at this dedicated pin, which brings
Iddtn-ring to “0” and switches-off all pull-
up/pull-down transistors on the signal pins.
The connections to the PLL, memories and
other switchable internal logic is via an
~ inverter (not shown in figure 6) connected to
the gate of a large pMOS transistor in the
power supply path. .

5.1 Power-Supply Partitioning

To overcome the requirement of a dedicated
pin and buffer, we used JTAG Boundary Scan
based control. For this purpose a flip-flop is
used to control the logic of the global
power_down control signal. During normal
mode, the flip-flop is always set to “1”; while
in the Iddq test mode, it is set to “0”. A new
private instruction . “Power_Down” s
implemented along with other mandatory and
private JTAG Boundary Scan instructions
(extest, intest etc.). -

To perform Iddq testing, the Power_Down
instruction is loaded into the boundary scan
instruction register. This instruction is
decoded and provides logic “0” to the flip-flop
controlling the power_down control signal.

hory ean Hogister

~ With power_down control signal being 0, the

TAP controller is kept in the RunTest/Idle
state for the duration of Iddq testing (for TAP
controller state diagram, please refer to [6]).
Hence, all the circuits connected to the
power_down control signal switch-off and
remain off. After Iddq testing is completed,
the TAP controller is brought back to the
Reset state. This resets the flip-flop to “1” and
brings back power_down control signal to
“1”. Subsequently, the circuit comes back to
the normal operating mode. The detailed
design is shown in Figure 7.

We further extended this method at the SoC
level by implementing multiple
Power_Down instructions to selectively
switch-off portions of the chip. Specifically,
multiple cores and other static current
dissipating logic are switched-off and Iddq
testing is performed on one core at a time. In
a SoC with three cores and one large
embedded memory, we required 4
Power_Down instructions:

1. Power_Down_A
2. Power_Down B

JTAG clogks & cofftrols

Flip-flop
to control

power_down
T

100

Bhift_dr,
clock_dr,
Jipdate _dr,
fun-testidie

select_ir

" Fig. 7: Implementation of global power_down
control signal through TAP

Paper193
505

Paper193

506

3. Power_Down_C
4. Power_Down_Main.

The nomenclature is that the instruction
allows Iddq testing on the block/core
identified in the instruction. It should not be
confused with the word power_down, the
instruction name indicates power down of the
whole SoC except the portion identified by
the last character. For example, the
Power_Down_A instruction cuts-off the
power-supply to core-B, core-C, glue logic,
PLL, memory and static current dissipating
loglc in core-A. Thus, it allows Iddq testing
on core-A.

A 4bit register is-used to provide necessary
logic values for power: down control signals
to selectively perform Iddq testing on any
one core or glue logic. ‘When any of the
Power_Down_A, *~ Power_Down_B or
Power_Down_C instructions is loaded in the
Boundary Scan instruction register, -after
decoding, it keeps one power_down signal to
a “1";while all other power_down signals are
set to “0”. The power-down control signals
that are “0”, cut-off the power supply of the
respectwe blocks.

The decodmg of the Power_Down_Main
instruction is slightly different. It sets all
power_down signals to 0, and therefore
sw1tches off all individual cores, PLL,
memory and other static current dissipating

1

logic in glue logic. Thus, it allows Iddq
testing on glue logic.

Besides the above design feature, the choice
of package is also considerably useful in Iddq
testing. A segmented Vdd plane allows a
natural partitioning of the power-supply at
chip-level. Such package with 4-segment
Vdd plane is shown in figure 8. Although,
the each segment has same voltage, but
logically we can consider that there are 4
power-supplies: Vdd1=Vdd2=Vdd3=Vdd4.

During testing, each segment is connected to
a different tester ~power-supply or
independent source. Iddq testing is
performed on one segment at a time.
Although, all 4-segments are powered-on for
chip operation, but the leakage in circuitry
connected to each segment is isolated from
each other and limited to independent source.
Thus, the leakage as observed at any one
segment is significantly less than the
cumulative leakage of the whole chip if the
whole SoC is powered by one source. This
partitioning method allows a very good
resolution in Iddq testing as well as it avoids
interference due to background leakage
without any DFT effort, area overhead or any
ather type of penalty.

In addition to the above. design, a number of
other design-rules are necessary to avoid
unwanted high Idd states in the SoC IC.

Package

| % plane

segment

Gnd plane

Fig. 8: SoC package with segmented Vdd plane
that allows natural partitioning and Iddq testing
on one segment at a time. Signal and Gnd
connections are not shown in figure.

These rules are summarized as follows [13]:.

1.

_high-z

All circuits need - to be properly

initialized. Full circuit initialization is:a
fundamental requirement for = Iddq

testing. Besides using set/reset of flip-

flops or a dedicated signal, full-scan or
partial scan can be used very effectively
to initialize the circuit. It means' that all
flip-flops (régisters) must be placed in a
known state, such as flip-flops within a

core when core is tested or glue logic -
~ when glue

logic is tested. This
initialization can be done by set/reset
signal or through scan operation.

All static current dissipating logic within
a core or glue logic must be switched-off
using power-down control signals. This
includes all memory sense-amps, any
dynamic logic, asynchronous logic, pull-
up/pull-down resistors, special I/O
buffers and any analog circuitry.

All circuits including individual cores
and glue logic. must be stable at the

- strobe point. There should be no pending

events during Iddq testing either within a
core, from one core to another core, or at
the chip-level.

All inputs and bi-direct pins of all
individual cores as well as pins at the
chip level must be at a deterministic 0 or
1.

At the core level, if an input, output or
bi-direct pin is pulled-up, it should be at
a logic 1, connected to Vdd through an
on pMOS; if it is pulled down then it
should be at a logic 0, connected to Gnd
through an on nMOS. All pull-up and
pull-down transistors at the chip I/Os
must be switched-off.

All primitive nets within a core or glue
logic with single driver must be checked
for the following: (a) all nets are either at
a logic 0 or at logic 1; (b) if a net is at x,
either the driver should not be tri-
stateable or it should not be driven by a
tri-stateable gate whose enable pin is
active; (c) any net should not be at a
state. These conditions are
necessary to ensure that there is no

10.

internal bus conflict or floating nodes
during Iddq testing.

When primitive nets are driven by
multiple drivers, these must be checked
for: (a) net should not be driven both 1
and 0 at any given time; (b) net should
not be driven to 0/x, x/x, 0/0/x, 1/x, in all
these - conditions there is a potential
conflict on the net; (c) net should not be
driven to x/z, z/z/x, z/x/x, in these
situation net is either potentially floating
or has a conflict. _
All nets within a core and glue logic
should be checked that there is no weak
value feeding to a gate during Iddq
measurement. Similarly, there should not
be a degraded logic value on a node
feeding to a gate during Iddq
measurement.

Special circuit structures should be
avoided as much as possible. When such
structures are unavoidable, power_down
control signal should be used to switch-
off these structures during Iddq testing.
The examples of such structures are gate
and drain/source of a transistor be driven
by the same transistor group; feedback
and control loops within one transistor
group; substrate connection of nMOS
being not at Gnd, substrate connection of
pMOS being not at Vdd.

A standard cell library which contains
components with low power switches
and use of separate power supply for
digital logic, /O pad ring and analog
circuit is also helpful. In this situation,
Iddq testing on digital logic can be done

~ easily.

It is important to mention that when
individual components (all cores, PLL,

memory

sense-amps, pull-up/pull-down,

dynamic logic etc.) are designed with a
power-down control signal, a consistent
naming convention significantly helps in the
design. With a consistent naming convention
no additional design effort is needed for the
implementation of global control signals.
During placement and routing, the router sees
the same names throughout the chip from the

- TAP to the cores and connects them

Paper19.3

507

appropriately to automatically form the
power_down control signals.

6. Conclusions
In this paper, we described the test
methodology for a system-on-a-chip that
contains a microprocessor core. In this
methodology, the microprocessor core is
tested through a BIST-type arrangement for

~ correctness of all the instructions. The

opcode - of the instruction-under-test is
scanned into the TCR register, and the
instruction is - repeatedly executed for
operands obtained by an LFSR; the result is
compressed by an MISR and scanned-out for

comparison. Once the microprocessor testing

is completed, this core is used to test the on-
chip 'memory and the other cores. For this
purpose, an assembly language program is

written, converted into binary form by the .

assembler and applied to the microprocessor
core through a tester APL In addition to this
functmnal testing, a sSmall Iddq test set is
used to detect physical defects. The design
features to facilitate. Iddq testing are
descriPed.

References
L D&T Roundtable, “Testing embedded
coyes , IEEE Design and Test of
Computers, pp. 81-89, April-June 1997.
2.]J. Hutcheson, “Executive advisory: the
market for systems-on-a-chip”, and “The
* market for systems-on-a-chip testing”,
VLSI Research Inc. -
IEEE P1500 CTAG web page.
Y. | Zorian, “Test requirements for
embedded core based systems and IEEE
P1500”, IEEE Int. Test Conf., pp. 191-
199, 1997.
5. VSI Alliance, Manufacturmg related test
development WG specifications, 1998.
6. IEEE Standard 1149.1, “IEEE standard
test gaccess port and boundary scan
- architecture”, IEEE Press, 1990.
7. D. K Bhavsar and J. H. Edmondson,
Testabnhty stratégy of the alpha AXP
21164 microprocessor”, IEEE Int. Test
Conf pp- 50-59, 1994.

- W

'8. J. Dreibelbis, J. Barth, H. Kalter and R.

Kho, | “Processor based built in self test

Paper19.3

508

9.

10.

for embedded DRAM", IEEE]. Solid
State Circuits, vol. 33(11), pp, 1731-
1740, Nov. 1998. '

J. Saxena, P. Ploicke, K. Cyr, A
Benavides and H. Malpass, “Test
stragegy for TI's TMS320AV7100
device”, IEEE Int. Workshop on Testing
Embedded Cores based Systems, pp.
3.2.1-3.2.6, 1998.

R. Rajsuman, “A new test method for
testing embedded memories - in core
based system-on-a-chip ICs”, IEEE Int.

 Workshop on Testing Embedded Cores

11.

12.

13,

based Systems, pp. 3.4.1-3.4.6, 1998,

F. Zarrinfar and < R. Rajsuman,
“Automated Iddq testing from CAD to
manufacturing”, IEEE Int. Workshop on
Iddq Testing, pp. 50-55, 1995.

M. Colwell, R. Rajsuman, Z. Sarkari and
R. Abrishami, US patent No. 5,644,251,
July 1, 1997; and US patent No.
5,670,890, Sep. 23, 1997.

R. Rajsuman, “Design-for-Iddq-Testing
for embedded cores based system-on-a-
chip”, IEEE Int. Workshop on Ilddq
Testing, 1998.

