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Abstract—Network middleboxes are difficult to manage and
troubleshoot, due to their proprietary monolithic design. Moving
towards Network Functions Virtualization (NFV), virtualized
middlebox appliances can be more flexibly instantiated and
dynamically chained, making troubleshooting even more difficult.
To guarantee carrier-grade availability and minimize outages,
operators need ways to automatically verify that the deployed
network and middlebox configurations obey higher level network
policies. In this paper, we first define and identify the key
challenges for checking the correct forwarding behavior of
Service Function Chains (SFC). We then design and develop a
network diagnosis framework that aids network administrators
in verifying the correctness of SFC policy enforcement. Our
prototype - SFC-Checker can verify stateful service chains
efficiently, by analyzing the switches’ forwarding rules and the
middleboxes’ stateful forwarding behavior. Built on top of the
network function models we proposed, we develop a diagnosis
algorithm that is able to check the stateful forwarding behavior
of a chain of network service functions.

I. INTRODUCTION
Network Functions Virtualization (NFV) is a significant

transformation of Telco infrastructure to reduce both CAPEX
and OPEX while maintaining high carrier-grade service levels.
The move to virtualized Network Functions (NFs) on standard
servers raises the possibility of reduced performance and
increased number of errors and outages. Hence troubleshoot-
ing and diagnosing problems early on before deployment is
a critical issue. One killer requirement of NFV is service
function chaining (SFC), where traffic is steered through a
sequence of NFs dynamically. Even with today’s physical NFs,
constructing a service chain involves multiple components:
defining policy, programming the SDN controller, installing
switch flow tables, and configuring the NFs. Mistakes in any
of these components may cause packets being forwarded to
the wrong NFs, or in the wrong order, or dropped. With
the emergence of NFV, the scale and dynamics of chaining
virtual NFs (VNFs) is likely to increase significantly – these
errors will only become more prevalent. Hence, verifying and
troubleshooting SFC has become increasingly crucial to the
success of NFV adoption. Our long term goal is to build a
comprehensive NFV diagnosis and troubleshooting framework
into which network, NF and SFC troubleshooting tools can
be plugged into, for both static and dynamic, proactive and
reactive fault diagnosis and help operational efficiency while
maintaining the required SLAs.

Towards the above high level goal, in this paper, we develop
a SFC troubleshooting and diagnosis tool. More specifically,
we examine whether flows are forwarded correctly according
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to the high level service chaining policies. We call it checking
or diagnosing the forwarding behavior of an SFC. It includes
three aspects, as demonstrated via three illustrative examples
in Figure 1. First, it should check the sequence of NFs any
flow should traverse. In Figure 1(a), the policy requires all the
HTTP traffic from Campus A to Storage servers should be
handled by a NAT, followed by a firewall, and finally an IDS.
To check the correct implementation of this policy, we not only
need to check the forwarding rules on the switches, but also to
check how the NFs forward packets. Second, the service chain
may be altered dynamically in run time according to the states
of the traversed NF. In Figure 1(b), the flow initially goes
through an IDS and a Load balancer (LB). If the IDS detects
an attack signature in the flow, it alters the service chain to
include a firewall for policy enforcement, e.g., dropping the
malicious traffic. We call it dynamic service chains, and we
aim at checking its correct implementation in both switches
and NFs. Besides checking a network path, we also check NF
configurations. The third example in Figure 1(c) illustrates the
difficulties of performing such static analysis in the presence of
NFs. The policy specifies that a Web request from Contractor
to the Payroll server should be blocked by the FW. Checking
this policy in a path without NFs is comparatively easy: check
the rules on the FW and see if it blocks the right range of
source IP addresses. However, it is hard when a NAT hides
the original source IP addresses before the FW. Note that we
only handle the forwarding behavior of an SFC. NFs’ other
non-forwarding related behaviors, such as counting, traffic
optimization, are out of the scope of this paper. We plan to
address these extensions in future work.

One straightforward way to catch errors in the SFC for-
warding is to monitor the flows at run time and then compare978-1-5090-0933-6/16/$31.00 c© 2016 IEEE



the observed path with the policy. However, by the time the
error is detected, traffic has already been affected. In this
work, we argue for a static analysis framework to capture the
problems before deployment. This is often known as “network
verification” in the SDN context [1], [2]. Different from
formal code verification, network verification tools essentially
examine rules on all the switches in the network.

Our goal follows the same spirit to perform “verification” on
SFC forwarding behaviors. However, we found that existing
methods cannot be directly applied to check SFC correctness
for a few reasons. First, a policy is complex and stateful.
For example, a policy can specify that unauthorized users
are prevented from accessing sensitive servers. To do this,
an operator could use a stateful firewall to ensure that only
traffic initiated from within the network is permitted and in
doing so protect users from malicious traffic. NFs maintain
each flow’s states and perform different actions based on
these states. Second, existing forwarding abstractions (e.g.,
Openflow) cannot be directly applied because all packets of
a flow are handled the same using a match-action rule. Thus,
we need a new forwarding abstraction to consider the disparate
state for individual flows. Finally, to check an SFC, we must
check all NFs and switches that the flows traverses: essentially,
verifying the entire network. While verifying stateless network
devices is computationally challenging [1], [2], adding stateful
devices further complicates the problem.

To address these challenges, we make the following contri-
butions. First, we leverage existing middlebox abstract models
and generalize them to a forwarding model for NF data
planes. Each NF is described using a flow table and a state
machine. We extend existing Openflow based match-action
rules in two ways: (1) the match condition includes not only
packet headers but also NFs’ internal states, and (2) the action
consists of not only modifying packets but also triggering
NF state transitions. Further, the match and action can be
defined against either an individual packet or on the entire
flow. The temporal relationship between states are described
using a Finite State Machine (FSM). Note that modeling every
detail of a complex NF is clearly intractable without applying
sophisticated code analysis techniques. Instead, we focus only
on the forwarding behavior of the NF. Different from recent
extensions to make Openflow stateful [3], [4], [5], our model
is specific to NFs and the SFC checking problem. Second, we
develop an efficient algorithm for the static analysis of stateful
networks. Existing approaches build forwarding graphs from
the rules and verify using these graphs [1], [6]. However, this
approach is insufficient because the forwarding graphs only
capture the forwarding behavior of the network, but not the
state transitions of the NFs. We propose a Stateful Forwarding
Graph (SFG) that encodes both the state transitions and for-
warding behavior. We develop an algorithm that automatically
generates SFGs from NF tables and FSMs. Additionally, we
designed several graph traversal algorithms on the SFG that
answers state-dependent reachability questions.

In this work, we design and implement SFC-Checker, a
framework that performs correctness checking of forwarding
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Fig. 2. Model primitives and example.

behavior for service function chains. Similar to existing ver-
ification work [1], [6], [7], we focus on checking stateful
reachability invariants: e.g., “Given a specific packet trace,
what sequence of NFs will the flow traverse”, or “After what
sequence of packets, will A be allowed to communicate with
B?”. We developed a prototype of SFC-Checker and used it to
analyze SFC diagnosis speed and scalability. The preliminary
evaluation results show that we can verify an NF with 27
states in 1s and a network of 1800 NFs per path in 12ms.
The time to construct the stateful forwarding graph is around
100ms - 300ms. For the NFs in the evaluation, we developed
the forwarding models manually. A future effort will focus on
automatic model generation.

II. NF FORWARDING ABSTRACTION
NFs can transform the packets in a complex manner. For

example, a NAT will modify the source IP and source port. A
WAN optimizer may terminate the TCP connection from the
client and start a new one with the server. Many commercial
NFs have a combination of complex features, e.g., a Bluecoat
firewall [8] can also act as a web proxy, an IDS, and a
router. Creating a model that captures every detail of an NF
is challenging. However, leveraging prior work, it is possible
to create a model for the forwarding behavior of an NF.
A. Existing modeling methods

Due to their proprietary nature, diverse functionality, and
high complexity, it is extremely challenging to model the
behavior of a middlebox. Nearly all existing work generates an
abstract model to describe an NF’s high level behavior. Table I
summarizes the most recent work. They are constructed either
based on expert domain knowledge or manual investigation
of the source code. We summarize them according to the
representation of their match fields, stateful representation, and
whether the actions are defined against on the packet or on
the state. Existing network verification tools [2] and network
controller [12] employ simplified middlebox models that do
not capture state or packet sequence. Although different in
the modeling granularity and format, we found that all of the
models can be converted to the form we describe below, which
is suitable for efficient diagnosis purposes.
B. NF Forwarding Model

It is the simple switch forwarding abstraction, i.e., Open-
flow, that makes the data plane verification feasible [1] as it



TABLE I
TAXONOMY OF MIDDLEBOX MODELS.

MM [9] VIP [7] SymNet [10] BUZZ [11] HSA [2] Pyretic [12] SFC-Checker

How to obtain
Source code x x x X x x x
Expert knowledge X X X x X X X

Match fields L2/L3 Header X X X X X X X
L4-7 payload X X X X x x X

State representation State X x X X x x X
Packet sequence x X x x x x X

Action On packets X x X X X X X
On states X X X X x x X

hides control plane complexity and represents a unified inter-
face. Inspired by the Openflow match-action abstraction, we
propose a new NF forwarding abstraction. This NF abstraction
is focused on just the forwarding behavior of the NF, and
while similar to prior models has three important differences:
(1) our model is particularly suited to our stateful diagnosis
framework, (2) we model state transition events at arbitrary
granularity - from the packet level all the way to events
such as connection establishment, which we exploit to contain
state space explosion and (3) our model is promising for
modeling more complex middleboxes with arbitrary internal
packet processing functions. Finally, existing NF models can
be easily converted to our model.

Our NF abstraction comprises of two parts: a match-action
table and a state machine. The state machine is a natural
representation of stateful processes. The nodes in the state
machine are the states each NF maintains related to the
forwarding behavior, and the edges capture the conditions that
trigger state transitions. The table contains match-action rules:
matching on both the packet header and the internal states,
performing the action on packets, and changing the internal
states.

We chose this model for two reasons. First, we found that
all existing models in Table I can be converted to the form of
Finate State Machine (FSMs). It means that this representation
is general enough to capture a variety of middleboxes. Second,
we found that existing efficient verification methods are based
on graph traversal algorithms. The FSM+Table model of
middleboxes can be easily incorporated in existing graph data
structures. Such a representation is important for developing
scalable and efficient diagnosis algorithms on top of it.

The proposed abstraction can be constructed either from
analyzing the source code [11] or converted from existing high
level middlebox models [9], [13]. In this paper, we do not
focus on the automatic creation of the abstract model. Instead,
given such an NF forwarding model, we focus on the SFC
checking/diagnosis algorithms.

Abstraction primitives: For illustration, we convert one
existing Middlebox Model [9] to the form of our forwarding
abstraction with three major changes: 1) separating the state
machine and the match-action model; 2) defining the rules
against both packets and flows, a.k.a., packet sequence; 3)
considering a larger set of actions.

Figure 2(a) shows the set of primitives we currently support.
But other primitives can be easily incorporated. The Units
of a rule can be a field, a packet or a flow, as we may
have different rules for packets in the same flow. The State

operation includes get(f) to retrieve the NF’s internal state
for flow f, and set(f, val) to initiate/modify the NF’s internal
state for flow f to value val. The Precondition and Action
can be defined based on packets and flows. Moreover, since
NFs may parse application headers from packet payloads, we
further define a protoAnalyzer primitive, which assumes that
the NF follows layer 5-7 protocol specifications and generates
the protocol specific events, e.g., HTTP request, FTP request.

Examples: Using the primitives, we create models for six
NFs: NAT, load balancer, stateful firewall, IDS, VPN gateway,
and PDN gateway. These NFs have been heavily studied, and
their forwarding behavior can be modeled using this approach.
They cover 5 out of the 8 common middlebox types according
to a recent survey middlebox usage [14]. For the sake of
brevity, we illustrate using one example in Figure 2(b) of a
stateful firewall, which maintains three connection states. We
use the TCP protoAnalyzer primitive to abstract the stateful
behavior. The TCP protoAnalyzer outputs TCP related events
such as “Connection Open” or “Session Established”. The
rules specify that an external packet will only be forwarded if
it is a SYN/ACK of a connection initiated by internal hosts,
or from an established connection.

III. STATEFUL REACHABILITY ANALYSIS ALGORITHM
Our static analysis of the forwarding behavior occurs in

three stages: we first take a snapshot of the network state,
i.e., the topology, flow tables and the NF model; Second,
using this state, we create a Stateful Forwarding Graph (SFG),
which represents how packets are forwarded and how NF
states are changed accordingly; and finally, we develop graph
traversal algorithms on the SFG to answer various queries to
aid operators in their SFC diagnosis tasks.
A. Stateful Forwarding Graph

If all devices are stateless, we can create a stateless for-
warding graph that represents the topology and the routing
paths similar to [1]. With stateful NFs, we create an SFG by
composing the forwarding graph with the NFs’ state machines.
The composition process is a special case of lexicographic
graph composition; the vertices of one NF’s state machine
is merged only with the vertex corresponding to the NF in
the stateless forwarding graph. An SFG captures how packets
are forwarded between devices, how states are changed within
devices, and how the state changes affect the forwarding path.

In an SFG, each node is denoted as < H,D, S > repre-
senting any packet in the packet header space H arriving at a
network device (switch or NF) D, when the network device
is in a particular state S. An edge pointing from one node
< H1, D1, S1 > to another < H2, D2, S2 > means when a
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packet in H1 arrives at D1 with state S1, it will be modified to
H2 and forwarded to a device D2 at state S2. In Figure 3 (c)
packets H1 traverse through SW0, FW , and SW3. Essentially,
there are two types of SFG edges:

Forwarding edge: A forwarding edge from < H1, D1, S1 >
to < H2, D2, S2 > means that D1 modifies packet H1 to H2

and forwards the modified packet to D2. We visualize these
edges as solid edges in our examples (Figure 3(c)). All edges
in a stateless forwarding graph are forwarding edges.

State transition edge: In a stateful NF, a state transition
can be triggered by the previous packets of a flow. Thus,
packets of the same flow may be treated differently, depending
on its internal states. We represent it using a state transition
edge, meaning an NF’s state is modified because of the current
packet traversal through the state. Each state transition edge
is associated with a transition condition, e.g., next packet, or
HTTP reply, which identifies the event when the transition
will happen. It is shown as a dotted edge e1 in Figure 3(c).
A state transition edge is always between the same device.
Similarly, another state transition edge e2 is added, reflecting
FW changing back to New/Waiting.

In many NFs, flows in the forward and reverse directions
share the same internal state. Thus a state transition in one di-
rection should be appropriately reflected in the other direction.
To do this, we create state transition edges between the NFs’
state in both directions. For example in Figure 4, the outgoing
flow (H1) goes from SW0 to SW3 through the stateful firewall
FW while the incoming flow (H7) takes the reverse path.
FW will only forward packets H2 if it has seen the outgoing
packets before. We create an edge from < H1, FW,N/W >
to < H7, FW,E >. It is labeled with e1 because the state
transition is triggered by the same event: the TCP handshake
initiated by H1.

B. SFG construction
One naive way to construct an SFG is to enumerate the path

and states each packet traverses. Clearly, this approach is not
scalable, as the packet header space can be huge and thus the
size of the SFG is not tractable. To overcome this challenge,
we leverage the insight that many flows traverse the same
set of NFs and switches, which can be grouped together as

an equivalent class. A flow is a set of packets sharing some
common header fields, e.g. 5 tuples. Second, many flows will
encounter the same action when they are in the same state (e.g.
connection established), which can also be grouped together.
Based on these two intuitions, we group flows into equivalent
classes. Similar to [1], [2], an equivalent class is defined as a
set of flows sharing the same action on all the network devices
at any states. The flows in the same equivalent class traverse
the same SFC and have the same actions. Flows sharing the
same action at a particular device will be represented by just
one node in an SFG.

We propose an SFG construction algorithm below. It starts
with a large aggregated flow space, e.g., < XXX,SW0 >
in Figure 3 (a). For simplicity, we use stateless devices here,
so the states are all “-”. Then, we can get the forwarding
actions for the aggregated flow space from the rules. The flow
table in Figure 3 suggests the three next hops. We create the
next hop nodes according to the matching conditions. When
the next hop nodes are created, we split the parent node <
XXX,SW0 > to three nodes < Hx, SW0 >, x = 1, 2, 3.
Then we take another node and repeat the same process. When
a child node is split, the effect should be propagated back to
all its direct parents. This process continues until all rules are
parsed. At the end, it generates a stateless forwarding graph.

Next, we take the NFs’ forwarding rules and state machines,
and expand every stateful NF node in the original graph
to many nodes. Each node uniquely represents the NF at a
particular state. Using the gray-colored nodes of Figure 3 (a)
and (b), we expand nodes with FW to four nodes, representing
FW in both forward and reverse direction. The nodes cannot
be shared on the forward and reverse directions because FW
has different actions. State transition edges are also added
according to FW ’s state machine and the forwarding rules. In
the stateful firewall example, because timeout (e2) can occur
on both forward and reverse directions, there are four e2 edges
shown in Figure 4.

C. Verification on SFG
The static analysis leverages the observation that for each

flow the NF will be in one and only one state at any given
time. Essentially, only one node in an NF’s state will be active.
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By activating different nodes (corresponding to different states
of an NF) during the static analysis process, we are able to
check different forwarding scenarios across NFs and states. To
do this, we augment the SFG, such that each stateful NF node
(e.g., < H1, FW,N/W >) has a bit to indicate if it is active
at the current snapshot of the validation. SFC checking occurs
in multiple steps.

Initialization: To initialize the SFG, we create a snapshot of
the SFG where-in all NFs are in their initial states. Figure 5
shows an example: at snapshot n, the left branches in both
directions are active while the right branches are inactive.

Traversal: Next, given the snapshot of the network, we run
a graph traversal algorithm to identify the paths that satisfy
the queries, e.g., to answer the Query 1 in §III-E, we search
the SFG for all paths from A to B.

Reachability analysis: The existence of such a path deter-
mines that A can talk to B but not the conditions for this
to occur. To determine the conditions, we need to explore
the path and identify the set of state transitions that are
required to move the network from snapshot 0 to an alternate
snapshot N such that all nodes in the path discovered
between A and B are activated.

To do this, we search for all stateful nodes in the paths. For
each such node, we check to see if there is an incoming dotted
state transition edge connecting this node to another stateful
node - if so, then we try to find the conditions that must be
met to activate this parent node – upon activation both the
parent and the original node become active. We note that the
process of activating the parent is recursive, as the parent itself
may need activation. For example, in Figure 5 checking “H7”
the left DAG requires activating the black node. To do this
the static analysis algorithm follows the state transition edge
to the parent node, < H1, FW,N/W > and determines that
“e1” is required for activation – upon applying “e1”, the two
black nodes are activated.

Verification(source, destination){
EventList = []
foreach SFG in SFG List
If SFG:root == source
verify(SFG, destination)

}

Verify(SFG, dst){
EventList = []
Paths = BreadthFirstSearch(SFG.root, dst)
foreach path in Paths
foreach node in path
If node:isNotActive
EventList.add(SFG.Activate(SFG, node))

return EventList }Activate(SFG, node){
EventList = []
foreach ancestor in node:getParents
If ancestor:ContainsStateEventTransitionTo(node)

EventList.add(ancestor.getStateTransitionTo(node))
EventList.add(Verify(SFG, ancestor))

return EventList
}

Fig. 6. Pseudocode for SFC traversal: Query 1.

To activate nodes, the checker applies the appropriate event
to the SFG and in-doing so creates a new snapshot of the
network. When activating a state node for FW , the checker
must ensure that other state nodes for FW are deactivated.
This process of applying an event to the current snapshot and
of activating and deactivating nodes creates a new snapshot.
For example, Figure 5, we apply event “e1” to snapshot N ,
which turns off the gray nodes and activates the orange nodes.

Example: We use Figure 4 as an example to walk through
the algorithm. Assuming packets from A to B are in the
header space H7, we first use a breadth first search to find
the two paths that H7 traverses. Next, we find out the path
that leads A to B, which contains nodes < H1, SW3,− >
,< H1, FW,E >,< H1, SW0,− >. In order for this path
to be active, we find that there is an incoming dotted edge
e1 for node < H1, FW,E >. We add e1 to the EventList,
meaning that in order for this path to be active, e1 should
occur. After we traverse all the paths and all the nodes with
incoming dotted edge, we return the EventList link list.

Algorithm scalability: Let’s assume a network with n paths
and the average path length of l. There are m number of NFs
on each path, each of which has k states. Then the size of the
SFG is n(l + km).

D. Optimizing algorithm efficiency.
Event ordering: As discussed earlier, during reachability

analysis, the process of activating a node requires exploring
and potentially recursively activating other nodes. The order
of traversal determines the number of nodes we need to
recursively activate – this in turn impacts the runtime of our
algorithm. We use domain specific knowledge, to determine
which parent node has a smaller set of potential dependencies.
For example, a parent node requiring a ‘SYN’ packet event
has a smaller than dependency than a parent node requiring
a ‘HTTP Request’ – as the latter requires three packets (e.g.
‘SYN’, ‘SYN-ACK’, ‘ACK+Request’).

Symbolic representation: An NF may modify the packet
header fields to a range value where the exact value will only
be selected in the run time. For example, a NAT will assign
a port to a flow in the run time, so in the static analysis,
we will only know the port range. In this case, we use a
symbolic variable to represent the modified port. The variable
is associated with a value range. The reachability analysis
process checks against each possible value. This approach
helps reduce the number of nodes in SFG.



E. Multiple queries
We have developed algorithms to support four different

queries. Similar questions have been examined in the stateless
network context [2]. We address similar queries with stateful
extension. Due to the limited space, we only show the Pseu-
docode of the first query.
• Query 1: Under what scenarios, can all A’s packets reach
B? The algorithm for this query is shown in Figure 6. It uses
a breadth first search at each SFG snapshot and modify the
graph using the Activate function for each event.
• Query 2: Given a packet/event sequence, can A talk to B?
It injects the packets and events (e.g. timeouts) one by one,
uses a depth first search to find the path, and activate the states
if current packet triggers the transition.
• Query 3: What are the service chains that a packet
sequence will traverse? It injects packet sequence, runs a depth
first search at each snapshot and records all the paths. It reports
multiple service chains if the chain is altered in the middle of
the flow.
• Query 4: Will there be any flows and packet sequences
that cause NF X’s state m and NF Y’s state n coexist? The
reachability analysis runs a breadth first search to find all the
paths traversing any of these two states and identify if there
is any overlap.

IV. PROTOTYPE AND EVALUATION
We developed a prototype of SFC-Checker in approximately

2279 lines of Java. Our prototype takes as input routing rules
from Mininet [15] to create a network topology. We evaluated
the time complexity of SFC-Checker on both a linear topology
and on a k-level single-rooted tree topology with total 2k

switches. To evaluate its scalability, we implement a generic
NF that we can change the number of states. We also evaluate
it on a testbed with four types of real NFs.

Metrics: To understand the scalability of SFC-Checker, we
evaluated it on two metrics – SFG construction time and
SFC checking time (SFG traversal time). We analyzed two
dimensions: 1) the number of states per NF and 2) number of
stateful NFs per service chain.

SFG construction time: Figure 7 shows the time to construct
the SFG with different topology size on a linear topology
(top) and with more complex NFs (bottom). Overall, the
construction time is small: for a network of 200 nodes (each
node has 1 state) the time is 100 ms. The resultant SFG
contains 11,938 nodes and consumes approximately 45MB
memory. When the number of states increases to 30, in a
10 node topology, the SFG construction time is 310ms. Both
experiments have small variance.

SFC checking time: Figure 8 plots the average checking
time over 100 different runs as the topology size increases
for the four queries in § III. The reachability analysis time
depends on the actual service chain length. Query 4 is not
shown as each node has only one state in this experiment.
Query 1 is most expensive as it searches all the possible
paths and states. The time is from 2ms to 12 ms. Figure 9
shows that the checking time for Query 1 and 4 are clearly
correlated with the number of states in each NF but not for

TABLE II
RESULTS OF DIFFERENT SFC IMPLEMENTATION.

SFC Implementation Avg. rules SFG construction SFC checking
ODL SFC L2 [17] 3102 7.3ms 14.9ms
ODL SFC NSH [18] 2716 5.5ms 14.8ms
ContexNet [19] 10241 7.9ms 15.1ms

the other two queries. In Query 1, the checking time increases
from 8 ms to 1 s while we increase per-NF states from 2
to 27. When the per-NF states grow to 52, it takes 20s to
answer Query 1 and 0.2s for Query 4. In most cases, the
number of states per NF per flow is below 20 [16], which
means sub-second checking time. Together with the 10ms
SFG construction time, we demonstrate the scalability of SFC-
Checker on a realistic setting. We also experiment with 4-NF
service chain on a tree topology with 11K-node SFG and the
checking time is less than 200ms. This speed benefit comes
from 1) combining flows and states to equivalent classes;
2) the SFG construction algorithm iteratively splitting nodes
top-down, instead of combining huge number of nodes from
bottom-up; 3) the checking algorithm processing the events
ordered by the domain knowledge.

Testbed evaluation: We evaluated SFC-Checker on Con-
textNet [19], a commercial SFC system used in mobile net-
works trials and in many industry forums [20]. It emulates
the Gi-LAN topology with 4 switches and 15 NFs including
Parental controls, video optimization, HTTP header enrich-
ment, big data analytics, and firewall. It uses Openflow and
OpenDayLight controller. We generate the models for these 15
NFs by parsing their configurations, and extract the Openflow
rules as input to SFC-Checker. The SFC-Checker is able to
check the reachability in 15ms. The SFG is built in 8 ms with
a size of 112 nodes.

Supporting different SFC implementation: We have tested
SFC-Checker with various industry-grade SFC implementa-
tions to show its applicability in practice. The results are
shown in Table II. Different implementation results in different
number of rules in the switches and thus has slight impact on
the SFG construction time but not on the SFC checking time.

V. RELATED WORK
Middlebox modeling Our NF abstraction are inspired by a

long line of research on understanding and modeling NFs [9],
[21], [7], [16], [22], [23], [24], [25], [26]. In particular, [22],
[16] also models the internal states of NFs but they are
designed for migration purposes. Our work focuses on the NF
forwarding abstraction for the purpose of forwarding analysis.

Stateful SDN Recently there are proposals to make SDN in-
terface programmable and stateful. [4] proposes to add simple
states to Openflow and [5] proposes a stateful programmable
data plane. SFA [27] proposes a hardware implementation of
the stateful forwarding abstraction and it was fully evaluated
in SDPA [3]. While these work focus on programmability and
realization of such a stateful interface, SFC-Checker explicitly
models the transition between states, differentiates actions on
packets versus flows, and illustrates using real NFs.

Middlebox troubleshooting Our work is closely related to
BUZZ [11], which builds the FSM from NFs’ source code and
then generates testing packets based on the FSM. Our work is
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orthogonal as we focus on network-wide reachability analysis
instead of each individual NF. While the FSM constructed
from BUZZ can also be used in SFC-Checker, it can also
take the high-level NF models and verify the correctness of
configurations. The most recent work [7] proposes a model-
ing language and uses a SAT solver to check the isolation
properties. The scalability of this approach is limited by the
SAT solver. It does not explicitly support those stateful queries
that SFC-Checker verifies. Other network verification [2],
[1], [6], [28] focus solely on layer 2 and layer 3 network
devices – ignoring stateful devices, e.g., NFs. The recent
improvements of SymNet [29] uses symbolic execution on
the stateful middleboxes, but it requires writing the NFs using
their SEFL language.

VI. CONCLUSION
In this paper, we have proposed SFC-Checker, a network

diagnosis framework that checks correctness of forwarding
behaviors of service function chaining in the network. We
first propose a simple abstract model that captures the high
level states an NF maintains. The action of an NF depends
on the packet header and its internal states. Using the model,
we propose an algorithm that checks the network forwarding
behaviors under different dynamic scenarios: different packet
sequences and its resulting NF states. SFC-Checker employs
an algorithm to efficiently combine equivalent flow space and
state space. While the initial results show promises, we plan to
validate applicability of our abstract model to more real NFs
and use them to further evaluate SFC-Checker. While the static
configuration is useful to check configuration errors, we also
plan to extend this work to real-time verification by pulling
states from the NFs reactively.
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