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Abstract

Background: Human tissues perform diverse metabolic functions. Mapping out these tissue-specific functions in
genome-scale models will advance our understanding of the metabolic basis of various physiological and pathological
processes. The global knowledgebase of metabolic functions categorized for the human genome (Human Recon 1)
coupled with abundant high-throughput data now makes possible the reconstruction of tissue-specific metabolic
models. However, the number of available tissue-specific models remains incomplete compared with the large
diversity of human tissues.

Results: We developed a method called metabolic Context-specificity Assessed by Deterministic Reaction Evaluation
(mCADRE). mCADRE is able to infer a tissue-specific network based on gene expression data and metabolic network
topology, along with evaluation of functional capabilities during model building. mCADRE produces models with
similar or better functionality and achieves dramatic computational speed up over existing methods. Using our
method, we reconstructed draft genome-scale metabolic models for 126 human tissue and cell types. Among these,
there are models for 26 tumor tissues along with their normal counterparts, and 30 different brain tissues. We
performed pathway-level analyses of this large collection of tissue-specific models and identified the eicosanoid
metabolic pathway, especially reactions catalyzing the production of leukotrienes from arachidnoic acid, as potential
drug targets that selectively affect tumor tissues.

Conclusions: This large collection of 126 genome-scale draft metabolic models provides a useful resource for studying
the metabolic basis for a variety of human diseases across many tissues. The functionality of the resulting models and
the fast computational speed of the mCADRE algorithm make it a useful tool to build and update tissue-specific
metabolic models.
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Background
Metabolic dysfunction has been implicated in a wide var-
iety of human diseases such as obesity, diabetes, inborn
errors of metabolism, neurodegenerative diseases, and
cancer. The recent reconstruction of genome-scale models
of human metabolism [1,2] provides an important bio-
chemical basis for systems analysis of metabolic related
aspects of human physiology and pathology [3]. Such sys-
tems approaches are critical, as metabolism itself is a mo-
lecular transformation process where numerous metabolic
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pathways are inextricably interlinked [4]. However, the
human body consists of many distinct tissues and cell
types, each only expressing a fraction of the metabolic
genes encoded within the genome [5]. Additional variabil-
ity arises from environmental conditions and external
stimuli. None of this variation can be fully accounted for
with only the generic human metabolic model. Consider-
ing the context—e.g., genomic, anatomical, environmental,
or temporal—under which a subset of the genome-scale
biochemical network operates is therefore essential to
understanding the molecular basis for many human
diseases.
The importance of tissue-specific context in disease is

evident from distinct metabolic profiles of cancers aris-
ing from different tissues. For example, it has been
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experimentally demonstrated that MYC oncogene-induced
liver tumors show increased glutamine uptake, while MYC-
induced lung tumors show glutamine secretion [6]. Another
study showed that while lactate dehydrogenase A is im-
portant for breast carcinoma, neuroblastoma, and B-cell
tumor cells, it is dispensable for MYC-induced lymphoma-
genesis [7]. Similar results were observed for phosphogly-
cerate dehyrogenease in breast cancer and melanoma [8,9]
versus MYC-induced lymphomagenesis [7]. Importantly,
cancer metabolism in general also operates in unique en-
vironmental and signaling contexts compared to normal
physiology and metabolic diseases such as obesity and dia-
betes [4].
The context in which a metabolic network operates can

be viewed at multiple scales, all of which can be
dependent on one another. The broadest level typically
associated with metabolic models is genomic context—i.e.,
the full enzymatic capability encoded in the genome. Since
the genome is the starting point from which to construct
any generic organismal model, we will not consider it fur-
ther here. A more critical contextual consideration for
genome-scale models in higher organisms—especially in
human tissues—is the subset of metabolic enzymes that
are being expressed (e.g., represented in the transcrip-
tome) at a given time. The transcriptional regulatory state
governs which subset of metabolic enzymes and pathways
are active, and manifests as either (i) the specific expres-
sion program for a tissue or cell type; or (ii) the tissue or
cellular response to intracellular or environmental condi-
tions. The ideal strategy for modeling such contextual
differences would be the integration of a generic, genome-
scale model (e.g., Human Recon 1 [1]) with a detailed,
context-specific transcriptional regulatory network (TRN),
including signaling events that relay cues from the cellular
microenvironment. However, as these TRNs cannot yet be
comprehensively and accurately reconstructed and mod-
eled in human cells, recent efforts have turned to employ-
ing context-specific expression data to create models that
are representative of active metabolism in specific human
tissues and cell types either across a wide range of experi-
mental conditions or under a particular condition [10-19].
For clarity, we will henceforth delineate “tissue-specific”

as meaning the representative active metabolic network
for a tissue (e.g., liver, brain), and “condition-specific” as
specific network states (e.g., hypoxia, drug treatment) of
tissue-specific models. We also note that when higher
resolution data is available, tissue-specific models can be
further discretized into region or cell type specific models
(e.g., different regions of brain, different neuron subtypes).
Tissue-specific models are generally more desirable
than condition-specific for predictive modeling, be-
cause they retain the flexibility and redundancy inher-
ent in the metabolic network; specific conditions can
subsequently be simulated directly by defining model
constraints. Generating condition-specific models can
still be highly useful, especially when coupled with ex-
perimental data for testing and validation; methods
such as iMAT [10] and GIMME [17] have been used
successfully to estimate the metabolic state of tissues
under particular pathophysiological conditions. While
the need for tissue-specific metabolic models is strong,
the available number remains small. Importantly, sig-
nificant knowledge and data is required to reduce a
generic model to a tissue-specific model with enough
rigors to allow for different condition-specific capabil-
ities. Computational tools that can more rapidly gener-
ate tissue models that can represent a spectrum of
physiological conditions will be highly useful for inves-
tigating metabolic dysfunctions in various diseases.
The Model Building Algorithm (MBA), a current state-

of-the-art computational method to build tissue-specific
metabolic models, has been used to build liver, generic
cancer, and two cancer cell line metabolic models thus far
[14-16]. The resulting models have been used to predict
potential drug targets and improve metabolic flux predic-
tions [14-16]. While a core set of high-confidence reac-
tions in MBA is determined based on gene expression or
literature evidence, the ranking and inclusion of non-core
reactions is based on iterative model simulation for many
different random reaction orderings. Notably, the random
sampling in MBA—on the order of 1000 iterations in pub-
lished studies—is limited in its coverage of the large space
of possible orderings, potentially affecting the accuracy of
the tissue-specific model. While this problem is mostly
avoided by a stringent requirement in MBA for model
consistency (i.e., all reactions in the final tissue-specific
model must be capable of carrying flux), a more determin-
istic and simulation-independent ranking of non-core
reactions would serve to dramatically speed up model
construction time.
We have developed a method called metabolic Context-

specificity Assessed by Deterministic Reaction Evaluation
(mCADRE) that leverages gene expression evidence,
network structure, and metabolic function to construct
context-specific models in an automated, deterministic,
and high-throughput fashion. Similar to MBA, mCADRE
emphasizes the inclusion of a high-confidence core set of
reactions from a generic genome-scale model, based on
tissue-specific expression evidence. Non-core reactions
are explicitly ranked according to their own expression
evidence as well as weighted connectivity to other reac-
tions in the network, and then sequentially removed in
the inverse order of this ranking. The decision whether to
confirm or reject each removal is determined by the con-
sequent flux capacity of core reactions, as well as a uni-
versal test of metabolic functionality. To evaluate the
performance of our method, we reconstructed a new liver
model and compared results to liver models built by
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MBA: mCADRE was able to achieve similar coverage of
high evidence reactions, improved metabolic functionality,
and dramatic speed up. The deterministic decision making
in mCADRE, coupled with an automated pipeline of data
collection and processing, enables researchers to effi-
ciently generate accurate and robust initial models from
publicly available expression data.
As a demonstration of mCADRE’s capabilities, we le-

veraged data from the Human Gene Expression Barcode
Project [20] to automatically reconstruct draft genome-
scale metabolic models for 126 human tissues and cell
lines, collectively called the Tissue-Specific Encyclopedia of
Metabolism (TSEM). All 126 metabolic models (Additional
file 1), mCADRE codes and input data (Additional file 2)
are available at [21] and are also available in the supple-
mental materials. We identified many amino acid meta-
bolic pathways as enriched in 30 brain tissue models in
TSEM, which agrees with the known role of amino acids
in neurotransmitter metabolism. By comparing tumor and
normal metabolic networks in TSEM, we also identified
pathways with known roles in tumor metabolism. In par-
ticular, we identified part of the eicosanoid metabolic path-
way as a potential selective target against tumor tissues.
Further analysis of metabolic networks in TSEM, especially
through integration with regulatory networks and various
omics data, may offer novel insights of the metabolic
aspects of various diseases.

Results and discussion
Method overview and advantageous features of mCADRE
mCADRE builds a tissue-specific model from a generic
human metabolic model [1] based primarily on gene ex-
pression data and metabolic network topology (Figure 1).
Like MBA, we define a core set of reactions that should
be present and active (i.e., able to carry flux) in the tissue
model (we have implemented an adapted version of the
checkModelConsistency module described in Jerby et al.
to identify blocked reactions). The set of core reactions
are determined from gene expression, and non-core
reactions are evaluated and ranked according to a com-
bination of expression and connectivity evidence (detail
description in Methods). To help ensure the basic func-
tionality of the tissue-specific models, mCADRE includes a
metabolic function test in the model building process. Spe-
cifically, the checkModelFunction module tests the ability
of the current model to produce key metabolites from glu-
cose, based on criteria previously used to universally evalu-
ate such models [18] (see Methods and Additional file 3:
Table S1 for further detail). This list can be customized
based on literature evidence or metabolomics data (when
available) to include tissue-specific metabolites or known
capabilities of the tissue or cell type. We sequentially prune
non-core reactions from the generic model in the deter-
mined order, provided that removal does not affect fluxes
through the core reaction set or production of key metabo-
lites from glucose. The former requirement is waived when
removing non-core reactions whose associated genes are
not expressed in any tissue samples. For each reaction
removed from the generic model, all resulting inactivated
reactions are also removed.

Allowing for a flexible core reaction set increases tissue-
specificity of metabolic pathways
In addition to the core set of reactions (whose associated
genes are expressed in many tissue samples), mCADRE
defines a negative set of reactions whose genes are not
expressed in any tissue samples. In this case, when expres-
sion evidence strongly suggests that a reaction should not
be included, we relax the constraint described above to
also allow for removal of any consequently inactivated
core reactions. The non-expressed reaction is removed,
along with all reactions that can no longer carry flux, only
if the ratio of resulting inactivated core reactions to inacti-
vated non-core reactions is smaller than a specified ratio.
This parameter governs the sensitivity versus specificity of
the final tissue model: a lower ratio cutoff leads to inclu-
sion of more reactions with strong positive evidence, while
a higher cutoff leads to removal of more reactions with
strong negative evidence. It is important to note the differ-
ence between non-expressed reactions (expression evi-
dence strongly suggest the absence of such reactions) and
non-gene associated reactions (expression evidence not
applicable). Non-gene associated reactions include spon-
taneous reactions and reactions catalyzed by enzymes not
annotated to genes yet. Non-gene associated reactions are
not included in the negative set, and no core reactions are
allowed to be removed when mCADRE tries to remove
these reactions.
The utility of allowing for a flexible core can be seen

with the bile acid biosynthesis pathway in the liver. Al-
though many cell types express several enzymes in the bile
acid pathway, the complete pathway is present only in the
liver [22]. The tissue-specificity of this pathway is also sup-
ported by microarray data: among 126 tissues, we found
that almost all bile acid synthesis reactions have strong
evidence of activity in the liver, but not in other tissues
(Figure 2). However, a few reactions in this pathway have
strong evidence in non-liver tissues (e.g., cerebral cortex).
If a "hard" core were to be enforced—i.e., requiring all
reactions with expression evidence above a threshold to
carry flux and remain in the tissue model—most reactions
in the bile acid synthesis pathway would be included in
these tissues, even though most reactions in the pathway
lack expression evidence. When we allowed for a flexible
core, only liver and liver cancer models included almost
complete bile acid synthesis pathways (85% of pathway
reactions present), while most other tissues did not have
reactions from this pathway. In contrast, when using a



Figure 1 mCADRE method overview. (A) After binarizing context-specific input data, we quantify how often a gene is expressed across
samples of the same tissue; this is the ubiquity score U(g) for each gene g. (B) From ubiquity scores, we calculate the expression-based evidence
Ex for each gene-associated reaction. Reactions with sufficiently high Ex are defined as the core reaction set and are included in the tissue-specific
model. To deterministically rank non-core reactions with low to moderate expression-based evidence, we introduce a network topology metric to
calculate connectivity-based evidence Ec.
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hard core, most models included a majority of bile acid
reactions (60%~80% of pathway reactions), conflicting
with known tissue specificity. For cerebral cortex, for ex-
ample, 70% or 5% of the bile acid synthesis pathway is
computed as present when using a hard or flexible core,
respectively, supporting the importance of including the
flexible core in the mCADRE approach. This result is
achieved when the inactivated core to non-core reaction
Figure 2 Expression-based evidence for the bile acid synthesis pathw
based evidence of all bile acid reactions in the tissue. Normal liver and live
ratio is set at 0.33, and sensitivity analysis shows that the
resulting models are robust to the precise selection of the
cutoff ratio (Additional file 3: Table S2).
There are 541 and 844 confidently positive (expressed

in more than 50% of tissue samples) and negative (not
expressed in any tissue sample) metabolic reactions in
the cerebral cortex, respectively. In reconstructing the
final model, tradeoffs must be made between these sets.
ay across 126 tissues. Red squares indicate the average expression-
r cancer tissues, known to synthesize bile acids, are highlighted in blue.
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For example, 49 confidently negative reactions are essen-
tial for basic functionality of the model (glycolysis, TCA
cycle, pentose phosphate pathway). To remove all the
other 795 (94%) confidently negative reactions, 185 (34%)
confidently positive reactions would be removed. On the
other hand, to include all 541 confidently positive reac-
tions, 231 (27%) confidently negative reactions have to be
included. At ratio 0.33, as shown in the Additional file 3:
Table S2, 28 (5%) confidently positive reactions were
removed, while 672 (80%) confidently negative reactions
were removed.
There are 172 remaining reactions whose associated

metabolic genes are not expressed in any cerebral cortex
microarray samples but still retained in the model to
complete necessary functionalities. For 130 of the 172
reactions, protein-level staining evidence is available in
the Human Protein Atlas (HPA) [23]. Among these 130
reactions, according to gene-reaction mapping, 21, 69,
36, and 4 reactions have negative, weak, moderate, and
strong protein staining evidence, respectively. Therefore,
more than 80% of confidently negative reactions based
on transcriptomic data that were retained for functional-
ity considerations by mCADRE do in fact have some
proteome-level evidence. This can either be caused by
limitations of the microarray gene expression measure-
ments, or potential effects of post-transcriptional regula-
tion of the corresponding metabolic genes.
Compared with enforcing a strict inclusion of all the

core reactions with the ability to carry metabolic flux, 28
core reactions are removed if when we allow a flexible
core reaction set in building the cerebral cortex model.
These reactions are removed because many non-
expressed reactions need to be included in the model for
these 28 reactions to carry flux. Among the 28 reactions,
there are 5 UDP-glucuronosyltransferase reactions
encoded by UTG1A8 and UTG1A10. UDP-glucurono-
syltransferase reactions occur mainly in the liver and
intestines, and neither UTG1A8 nor UTG1A10 are
expressed in the brain in general or the cerebral cortex
in particular [24,25]. Three reactions in bile acid synthe-
sis, all associated with SCP2 (sterol carrier protein 2) are
also removed. Sterol carrier protein 2 shows negative
staining in cerebral cortex neuronal and glial cells
according to HPA. However, according to the input
microarray data from the Gene Expression Barcode, all
UDP-glucuronosyltransferase reactions and reactions
associated with sterol carrier protein 2 have high expres-
sion-based evidence (0.65 and 1, respectively). In these
two examples, mCADRE correctly removed reactions for
which many other reactions with little expression evi-
dence are needed to carry flux. In summary, mCADRE
is designed with the goal of balancing strongly positive
and negative expression evidence. Inconsistent reactions
based on gene expression data (negative reactions retained
in the model and core reactions removed from the model)
for each of the 126 tissue-specific models are included in
Additional file 4 to facilitate further manual curation.

mCADRE significantly reduces computation time to
generate context-specific models
The novel reaction ranking scheme based on three
criteria (gene expression, network connectivity, and
literature-supportted reaction confidence level encoded
in Human Recon 1) enables mCADRE to perform a sin-
gle optimized iteration to infer a tissue-specific model
from the generic human metabolic map. In contrast,
MBA determines whether to retain non-core reactions
through a large number of random iterations (typically
~1000) to account for the effects of the order in which
reactions are removed [14]. The order of reaction re-
moval remains influential in mCADRE—e.g., redundant
reactions can be removed interchangeably with equal
effects on core reactions, but whichever reaction is
pruned first mandates the retention of the latter. How-
ever, mCADRE leverages gene expression, topology, and
literature evidence to directly determine ordering in a
quick deterministic fashion, avoiding random iterations.
Each iteration in MBA involves Flux Variability Analysis
(FVA [26]; maximization and minimization of all reac-
tions to calculate flux capacity), which amounts to on
the order of 10,000 separate optimizations. This compu-
tational complexity limits not only the throughput of
reconstructing metabolic models, but potentially their
reproducibility: as the full solution space of ordered re-
action removals is extremely large, the 1000 permuta-
tions sampled by MBA necessarily represent only a tiny
fraction of all possibilities. The stringent requirement in
MBA that final tissue-specific models be consistent (i.e.,
contain no gaps) enforces the inclusion of many lower-
evidence reactions, and leads to mostly similar models
from run to run. Still, even with a heuristic speed-up
[14] or the efficient fastFVA algorithm [27], one iteration
of MBA takes ~10 hours on a single 2.34 GHz CPU with
4G RAM using the open source glpk solver. The whole
MBA reconstruction process, with ~1000 iterations,
would therefore take on the order of ~10,000 CPU-
hours. mCADRE dramatically improves the computa-
tional speed via deterministic evidence-based evaluation
of reactions, requiring only ~10 CPU-hours under the
same configuration. With the IBM CPLEX solver (free
for academic institutions), the model reconstruction
time was further reduced to 4 hours.
Manual curation of metabolic models often continues

over several iterations of simulation-based hypothesis
generation, experimental validation, and model refine-
ment to improve quality and predictive accuracy. Such
iterative curation is also important in computational
model reconstruction, especially when new and better
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(i.e., more comprehensive, more sensitive, higher reso-
lution) data becomes available. New technologies such as
RNA-seq provide unprecedented characterization of the
transcriptome [28] with a much lower detection limit than
microarray. As RNA-seq data become available for a var-
iety of tissues and cell types [29], it is important that cor-
responding models are updated to better reflect the
metabolic capacity corresponding tissues: metabolic genes
expressed at low levels may be regarded as not expressed
by microarray and excluded from metabolic models. Be-
cause mCADRE reduces the computational time of model
reconstruction almost 1000 fold, it is much more conveni-
ent to build or update a large collection of tissue-specific
models when new data are released.
Coverage-based and functional validation of a mCADRE-
constructed liver model
As initial validation of the mCADRE method, we used
the algorithm to reconstruct a liver model (liverCADRE,
Additional file 5) and compared it to the liver model in
the original MBA publication [14] (henceforth referred
to as liverMBA), as it is the best characterized MBA-
generated tissue model to date. We built the liver-
CADRE model based on 23 normal liver microarray
samples (Additional file 3: Table S3). Notably, both
mCADRE and MBA result in consistent final tissue
models, so all liver model reactions examined are able to
carry flux (Table 1). While liverCADRE includes 1763
reactions to the 1826 in liverMBA, the two models share
1473 reactions, a significant overlap (under hypergeo-
metric distribution, the probability of observing 1473 or
more overlapping reactions is 1.54×10-12; N = 2469, the
total number of flux-carrying reactions in Recon 1); these
overlapping reactions constitute over 80% of all reactions
in each model, and thus substantial convergence be-
tween the approaches, establishing confidence for the
quality of models generated with mCADRE. To more
directly evaluate the performance of mCADRE and
MBA for generating new tissue-specific models, we also
used MBA to build a model from our liver expression
training data (Additional file 3: Table S4); liverCADRE
exhibited similar or better coverage and increased func-
tionality in comparisons with the new MBA model built
with the same training data.
Table 1 Summary of the mCADRE liver model and the
original MBA model

liverCADRE liverMBA

Total reactions 1763 1826

Gene-associated reactions 1194 1167

Total genes 1267 1333

Total metabolites 1402 1360
mCADRE-constructed liver model improves coverage of
highly expressed genes and proteins
While the two models share most reactions, we chose to
further explore the gene-associated reactions unique to
each model. There are 194 and 169 gene-associated reac-
tions unique to liverCADRE and liverMBA, respectively.
For each set of reactions, we first examined the coverage
of highly expressed metabolic genes in an independent
data set (test data set, Additional file 3: Table S5), not used
in building either liver model and based on a different
microarray platform than any of the training data used
by mCADRE. We assume that reactions with strong
expression-based validation (whose associated meta-
bolic genes are most ubiquitously expressed across new
tissue-specific samples) are more likely to be present in
the liver. The set of gene-associated reactions unique to
the mCADRE model have higher expression-based val-
idation score than gene-associated reactions unique to
liverMBA (Wilcoxon rank sum test p-value: 6.02 × 10-9;
Figure 3A). liverCADRE includes more reactions with
strong expression-based validation than the MBA
model (46% vs. 18%) and fewer reactions with poor to
no gene expression-based validation than liverMBA
(47% vs. 76%; Figure 3A).
As mRNA and protein levels are only moderately cor-

related in mammalian cells [30], we also compared
coverage of the two liver models at the protein expres-
sion level. We collected protein staining data from the
Human Protein Atlas (HPA) [23] for 560 metabolic
genes in Recon 1 (Additional file 3: Table S6). Protein
staining strength is divided into four levels by HPA:
strong, moderate, weak, and negative. We mapped the
HPA data to reactions according to gene-reaction asso-
ciations, and assigned each reaction a score, based on
the staining strength of its associated metabolic gene. As
shown in Figure 3B, 29% of gene-associated reactions
unique to liverCADRE have strong protein staining sup-
port, and 20% have negative staining support. In com-
parison, only 4% of reactions unique to liverMBA have
strong protein staining support, while 40% have negative
protein staining support. Moreover, gene-associated
reactions unique to liverCADRE collectively have signifi-
cantly higher scores than liverMBA (Wilcoxon rank sum
test p-value: 1.25 × 10-5).

mCADRE-based liver model is functionally comparable to
the existing liver model
The liver plays a major role in metabolism and carries
out important metabolic functions such as gluconeogen-
esis, triglyceride synthesis, amino acid degradation, and
ammonia and ethanol detoxification. We investigated
the ability of the two liver models to carry out these hep-
atic metabolic functions; the details of each metabolic
function simulation are described in Methods. We found



Figure 3 Coverage-based comparison of mCADRE and MBA
liver models. (A) Expression-based validation was calculated from
an independent microarray data set for reactions unique to liverMBA
or liverCADRE. (B) Protein staining data from Human Protein Atlas
was mapped to reactions in each model.

Table 2 Results of hepatic metabolic function simulations

Functional tests liverCADRE liverMBA

gluconeogenesis 13/21 19/21

Triglycerol synthesis 1/1 0/1

Amino acid degradation 19/20 20/20

Ammonia detoxification 1/1 1/1

Ethanol detoxification 1/1 1/1

Nucleotide synthesis 8/8 4/8
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that the two models are functionally comparable
(Table 2), which is expected given that they share a large
percentage of reactions. Both models can detoxify am-
monia and ethanol; both can simulate gluconeogenesis
from physiologically important substrates such as pyru-
vate, lactate, alanine and glutamine; and both models
can degrade most amino acids and produce urea as
byproduct. While liverMBA can degrade more amino
acids and generate glucose from a broader range of glu-
cogenic substrates, only liverCADRE is able to
synthesize triglyceride from glucose and fatty acids. Tri-
glyceride synthesis is a major hepatic function under-
lying blood glucose and lipid homeostasis — the ability
to simulate this function in silico enables the investiga-
tion of liver metabolic network states in normal and
pathological conditions such as obesity and fatty liver
disease. While liverMBA includes over 700 reactions
manually curated to be active in the liver [14], no such
curation was done to build liverCADRE. liverCADRE
also outperforms the new MBA liver model built with
the same training data in liver metabolic function tests
(Additional file 3: Table S4). Detailed results of the liver
function simulations can be found in Additional file 3:
Table S7-S9.
The liver is also able to regenerate after injury, which

involves the synthesis of biomass precursors such as
nucleotides, amino acids, and lipids. A biomass reaction
was added to both models (after construction) that
accounts for the growth requirement of amino acids,
nucleotides, lipids, and other metabolites (Additional file 3:
Table S10 and Methods), and we tested the ability of the
two models to grow in silico in RPMI 1640 tissue culture
medium conditions (Additional file 3: Table S11). The
liverCADRE model was able to simulate growth without
further manual curation, while liverMBA lacked this
capability. Further analysis identified that liverMBA could
not grow because it contained no reactions in the inosine
monophosphate (IMP) pathway, and therefore could not
produce purines. As de novo purine synthesis primarily
occurs in the liver [22], this lack of this capability
represents a metabolic gap in liverMBA. Moreover, many
membrane phospholipids such as phosphatidic acid, phos-
phatidylethanolamine, phosphatidylcholine and phospha-
tidylserine are derived from triglyceride. As liverMBA
cannot produce this metabolite, the production of these
glycerophospholipids is consequently blocked. This
demonstrated the importance of the metabolic function
test in mCADRE, as it ensures the basic functionality of
the resulting model and may save substantial post hoc
manual curation.

mCADRE for high-throughput model generation
After verifying that our new liver model could show
similar or better coverage and functionality when com-
pared to state-of-the-art models and algorithms, we next
took advantage of the automated and computationally
efficient nature of mCADRE to generate a large collec-
tion of tissue and cell type specific metabolic models.
The Gene Expression Barcode project previously col-
lected, annotated and binarized microarray data for 126
human tissues and cell lines on the Affymetrix
U133Plus2 platform [20]. We used these binarized
microarray data sets as input evidence in mCADRE to
extract individual models from the generic Recon 1,
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thereby establishing a Tissue-Specific Encyclopedia of
Metabolism (TSEM). This effort provides the most com-
prehensive mapping to date of human tissue-specific
metabolic networks, and for many of the 126 tissues or
cell types, this represents the first time a genome-scale
metabolic model has been built.

Tissue-specific Encyclopedia of Metabolism enables global
analysis of human tissues
The Tissue-Specific Encyclopedia of Metabolism (TSEM)
includes 26 tumor tissues and cell lines, and 18 of these
tumor tissues also have corresponding normal tissue
models. It also contains metabolic models of 30 different
brain tissues, many of which are affected in various
neurological diseases. A full list of the 126 tissues and
the corresponding microarray data can be found at [20]
and [31]. All new metabolic models already include sev-
eral important features for in silico simulation of cellular
behavior: they have functional central metabolic path-
ways (glycolysis, TCA cycle, pentose phosphate path-
way), can synthesize non-essential amino acids from
glucose, synthesize nucleotides via de novo or salvage
pathways, have functional fatty acid synthesis pathway
(from acetyl-CoA to palmital-CoA), and can synthesize
key membrane lipids. These functionalities are a result
of the basic universal metabolic function test integrated
into mCADRE, which can be further customized to re-
flect the specific capabilities of individual tissues and cell
types. The latest version of these models, as well as add-
itional models built with latest data (e.g., RNA-seq) can
be downloaded from [21]. To facilitate further manual
curation, inconsistent reactions (core reactions that
removed during model reconstruction and non-
expressed reactions retained in the final tissue model)
Figure 4 Number and distribution of reactions in TSEM models. (A) Ve
green bars show the size distribution across TSEM models. (B) Horizontal b
reaction is included; green bars show the frequency distribution across rea
for each model are included in the Supplementary
Material as well as in the above website.
With this comprehensive set of tissue-specific draft

metabolic models, we can start to evaluate global prop-
erties of these networks and their relationship to human
metabolism in the body (Figure 4). Models in the TSEM
contain 1161 reactions on average (47% of flux-carrying
reactions in Recon 1), with most models ranging from
1000 to 1300 reactions (Figure 4A). The smallest model
is neutrophiles, which included 826 reactions. The lar-
gest models are liver tumor, normal liver and kidney,
which included 1550, 1530 and 1416 reactions respect-
ively. This is expected as the liver and kidney are among
the most metabolically active tissues in the human body.
There are 2311 reactions that appeared in at least one of
the 126 context-specific models, representing 93% of the
flux-carrying reactions in Recon 1 (Figure 4B); 600 reac-
tions appear in at least 90% of the 126 models, and 546
reactions appear in at most 10% of the models.

Distributions of TSEM model reactions correspond to known
features of brain and tumor tissues
We identified pathways that are enriched in brain tissue
models—i.e., pathways with more reactions present in
normal brain tissues than in normal non-brain tissues
(Table 3). Among the pathways most enriched for com-
pleteness in brain (compared to normal non-brain tissues)
were taurine and hypotaurine metabolism, aromatic
amino acid biosynthesis, cysteine metabolism, alanine and
aspartate metabolism, glutamate metabolism, and valine,
leucine, and isoleucine metabolism. This makes sense, as
many amino acids are either neurotransmitters or inter-
mediates in neurotransmitter synthesis. The brain is also
known to contain higher concentrations of long-chain
rtical blue lines indicate the number of reactions in each tissue model;
lue lines indicate the fraction of models in which each Recon 1
ctions.



Table 4 Recon 1 metabolic pathways differentially
represented in tumor and normal tissues

Pathwaysa % complete in
tumor models

% complete in
normal models

Rank sum
p-value

Folate
Metabolism

50% 27% 2.8E-03

Eicosanoid
Metabolism

34% 13% 6.6E-04

Fatty acid
activation

91% 81% 1.8E-02

Tryptophan
metabolism

17% 10% 1.2E-02

Transport,
Lysosomal

17% 11% 7.8E-03

Nucleotides 69% 63% 1.9E-04

Aminosugar
Metabolism

56% 53% 4.8E-02

Transport,
Mitochondrial

25% 23% 3.4E-02

Sphingolipid
Metabolism

13% 12% 3.2E-02

aPathways are sorted by difference in percentage of reactions present in
tumor vs. normal tissues.

Table 3 Recon 1 metabolic pathways differentially
represented in brain and non-brain normal tissues

Pathwaysa % complete in
brain models

% complete
non-brain
models

Rank sum
p-value

Taurine and
hypotaurine
metabolism

66% 35% 4.14E-08

Fatty acid elongation 67% 37% 1.69E-09

Tyr, Phe, Trp
Biosynthesis

77% 56% 4.96E-02

Salvage Pathway 94% 81% 2.26E-02

Cysteine Metabolism 50% 37% 3.61E-03

Alanine and Aspartate
Metabolism

73% 61% 2.41E-09

Glutamate
metabolism

86% 76% 1.59E-06

Butanoate Metabolism 32% 23% 9.34E-03

Valine, Leucine, and
Isoleucine Metabolism

69% 61% 4.00E-02

Transport, Nuclear 33% 25% 2.05E-11
aPathways are sorted by difference in percentage of reactions present in brain
vs. non-brain tissues.
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polyunsaturated fatty acids (PUFAs) than most other tis-
sues, and both cerebral endothelium and astrocytes elong-
ate and desaturate precursors of the long-chain PUFAs
[32,33]. As such, it is not surprising to see that the fatty
acid elongation pathway includes significantly more reac-
tions in brain tissues than non-brain models. Pathways
better enriched in brain tissue models are in agreement
with known brain-specific metabolic functions, demon-
strating the quality of these models.
We also identified pathways enriched in the 18 tumor

tissues compared to their 17 corresponding normal tis-
sues (including two different tumors that arise from the
same normal tissue; Table 4), including folate metabol-
ism, eicosanoid metabolism, fatty acid activation and nu-
cleotide metabolism. Folate metabolism is necessary for
de novo nucleotide synthesis. The enrichment of reac-
tions for this pathway—as well as the nucleotides path-
way—in tumor tissue models makes sense because
nucleotide synthesis is more active in proliferating
tumor cells, and many enzymes in nucleotide synthesis
are classical chemotherapy targets.
Additionally, tumors overexpress fatty-acid synthase

(FASN) and undergo significant de novo fatty-acid syn-
thesis [34]—FASN has been identified as a drug target in
many tumors [35]. Fatty acid activation reactions are cat-
alyzed by acyl-CoA synthetase (ACS), which acts down-
stream of FASN and converts long-chain fatty acids to
acyl-CoA. Fatty acid activation is a critical step in sev-
eral lipid metabolic pathways, including phospholipid
and triacylglycerol biosynthesis. Some genes in this
pathway (e.g., ACSL4 and ACSL5) are overexpressed
in certain types of cancer and inhibition of these
genes induced apoptosis in cancer cells [36]. Notably,
eicosanoid metabolism is the second most tumor-
enriched pathway. Eicosanoids, which are biologically
active lipids derived from arachdonic acid by cycloox-
ygenase, lipoxygenase, and P450 epoxygenase, have
been implicated in inflammation and cancer [37]. Bio-
logically active sphingolipids are involved in cancer
pathogenesis-ceramide functions as a tumor-suppres-
sor lipid, while sphingosine-1-phosphate functions as
a tumor-promoting lipid [38]. This supports the iden-
tification of the sphingolipid pathway as enriched in
tumor metabolic networks.
As a comparison, we also calculated the enrichment

statistic for these brain and tumor enriched pathways
using only expression data. Using the gene-reaction-path-
way annotation from Recon 1, we calculated the average
ubiquity score of metabolic genes in a pathway (i.e., how
often the gene is expressed in tissue samples) and
compared values for the above pathways in brain vs.
non-brain and tumor vs. normal tissues. As shown in
Additional file 3: Table S12, only 4 of the 10 brain-
enriched pathways and 1 of the 9 tumor-enriched path-
ways identified by the model-based approach are also
found by expression data alone, respectively. This shows
the increased signal that can be extracted through the
model-based approach.
We repeated the analysis to identify individual reac-

tions that occur significantly more frequently in tumor
tissue models than in normal tissues. Interestingly, the



Figure 5 The leukotriene synthesis pathway formed by the
reactions occur significantly more often in 17 tumor tissues
compared to corresponding normal tissues. 6 reactions are
shown; the other 7 reactions transport metabolites between
cellular compartments.
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top most differentially included reactions (Table 5) to-
gether form part of the eicosanoid metabolism pathway,
from arachidonic acid to leukotriene A4, C4, D4, E4 and
F4 (Figure 5). The first two reactions are catalyzed by 5-
lipoxygenase, which is induced by inflammatory stimuli
and is often constitutively expressed in various cancers
[37]. Furthermore, inhibition of 5-lipoxygenase has been
shown to reduce cell proliferation and angiogenesis [39]
and augment the antitumor activity of other drugs [40].
Leukotrienes have been implicated in various diseases
such as asthma, cardiovascular diseases, and cancer [41].
For example, leukotriene C4 and D4 promote angiogen-
esis [42]; leukotriene D4 also promotes intestinal epithe-
lial cell migration [43]. While involvement of genes and
metabolites in the eicosanoid metabolic pathway has
been reported in some cancers, our pathway and reac-
tion level analysis revealed the importance of this path-
way across a broad range of tumors arising from many
different tissues.

Comparison of TSEM kidney model with the existing kidney
metabolic model
As a demonstration of the utility of models in TSEM,
we compared the TSEM kidney (kidneyTSEM) meta-
bolic model with the existing reduced kidney metabolic
model (kidneyReduced) from Chang et al. [12]. While
kidneyTSEM is a genome-scale metabolic model with
1416 reactions, kidneyReduced aims to capture the core
kidney metabolic phenotype and only includes 443 reac-
tions. First, we compared the 578 and 34 gene-associated
reactions unique to each model that also have protein
staining evidence (Additional file 3: Table S13). 554 and
Table 5 Top 13 reactions over-represented in tumor
tissue models versus corresponding normal tissue models

Reactionsa % tumor
models

% normal
models

Rank sum
p-value

ALOX5 72% 6% 8.6E-05

ALOX52 72% 6% 8.6E-05

EX_leuktrC4(e) 72% 6% 8.6E-05

GGT5r 72% 6% 8.6E-05

GGT6 72% 6% 8.6E-05

GLUtr 72% 6% 8.6E-05

GTHRDtr 72% 6% 8.6E-05

LEUKTRA4tr 72% 6% 8.6E-05

LEUKTRC4t 72% 6% 8.6E-05

LEUKTRD4tr 72% 6% 8.6E-05

LTC4CP 72% 6% 8.6E-05

LTC4Sr 72% 6% 8.6E-05

LTD4DP 72% 6% 8.6E-05
aThese reactions form a pathway that catalyzes the production of leukotrienes
from arachidonic acid.
32 of gene-associated reactions unique to each model have
non-negative protein staining, respectively. As expected,
the kidneyTSEM model includes many more enzymes that
are expressed in the kidney.
Chang et al. compiled a list of 41 important renal meta-

bolic functions, which consisted of the secretion and up-
take of metabolites that regulate blood pressure. Following
Chang et al., we added exchange and demand reactions
for the 41 metabolites, and maximized the uptake or
secretion of each metabolite according to whether it is
absorbed or secreted by the kidney.
kidneyTSEM was able to achieve 35 of the 41 renal

metabolic functions (Additional file 3: Table S14) while
kidneyReduced—as expected—achieved all 41 renal
metabolic functions that it was designed for. The six renal
functions that kidneyTSEM failed to achieve included
secretion of prostaglandin I2, vitamin D, tryptamine, and
absorption of acetate, oxalate, and L-carnosine, demon-
strating a need for additional manual curation after the
automated reconstruction.
Chang et al. also compiled a list of 20 gene deficiencies

that are known to cause kidney disorders. 11 of the 20
genes are in kidneyTSEM model, and all 11 gene deficien-
cies were predicted by kidneyTESM to affect at least one
of the 35 renal metabolic functions kidneyTSEM can
achieve under normal conditions (Additional file 3: Table
S15). Thus, the recall rate was 55%, with a precision
of 100%. Although not as accurate as kidneyReduced,
kidneyTSEM can simulate most renal metabolic functions
and demonstrates good predictability of genetic perturba-
tions. It is important to note that while kidneyReduced is
based on a significant amount of metabolomics data, tran-
scriptomic data, and most importantly, manual literature
curation, the reconstruction of kidneyTSEM is fully auto-
mated using transcriptomic data alone – an important
point for rapid applicability to a broad range of contexts.

Comparing mCADRE with the recently published INIT
method
During the preparation of this manuscript, a new method
(Integrative Network Inference for Tissues, INIT) capable
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of genome scale tissue-specific metabolic network recon-
struction was published. This method was used to build
genome-scale metabolic networks for 69 human cell types
and 16 cancer types, collectively referred to as the Human
Metabolic Atlas (HMA) [44]. The fundamental strategy of
mCADRE and INIT is somewhat similar. Both mCADRE
and INIT start from a generic human metabolic model,
and use expression data to infer a tissue-specific sub-
network. Both methods require that the model should be
able to produce certain important metabolites. While
mCADRE requires the model to produce universally im-
portant metabolites from simple precursors like glucose
(which may overestimate the metabolic capabilities of
human cells), INIT allows the model to uptake all metabo-
lites to produce these key metabolites (which may under-
estimate the metabolic capabilities of human cells).
There are certain important differences between the

two methods. INIT primarily uses the evidence from the
Human Protein Atlas (HPA) as input, but can also in-
corporate gene expression and metabolomics data; algo-
rithm parameters (e.g., weights assigned to different
level of evidence) are also optimized for HPA data [44].
mCADRE can use any data that can quantitatively meas-
ure mRNA or protein abundance, but herein primarily
uses gene expression microarray data. Although prote-
ome data from HPA provide more direct evidence for
the existence of corresponding metabolic reactions,
current proteomic data is much less comprehensive than
transcriptomic data from microarray or RNA-seq. To
date, transcriptomic data from public repositories have
explored a much broader range of human tissue/cell
types and pathophysiological conditions: we were able to
use mCADRE to build 126 human tissue-specific meta-
bolic models based on transcriptomic data from a single
microarray platform. Additionally, while mCADRE and
other model building algorithms (MBA, GIMME, iMAT,
etc.) are based on the steady state assumption of no net
accumulation of metabolites, i.e., mass-balance, INIT
allows for a small positive net accumulation of metabo-
lites if a metabolite is present in a cell type according to
metabolomics data.
We validated mCADRE by showing that the

mCADRE-built liver model can simulate a wide range of
liver metabolic functions (Table 2 and Additional file 3:
Table S6-S8). An INIT-built liver model was shown to
more accurately cover liver metabolic gene expression
than the manually reconstructed HepatoNet1 [13]. How-
ever, it is unclear how this better coverage at the gene level
will translate to model functionality: while HepatoNet1
was tested to be able to simulate a comprehensive set of
442 liver metabolic objectives, no such metabolic function
simulation was reported for the INIT-built liver model.
We also compared the Tissue-Specific Encyclopedia of

Metabolism (TSEM) built by mCADRE and the Human
Metabolic Atlas built by INIT. Overall, TSEM included
126 models and HMA included 85 models. HMA
included 16 cancer models while TSEM included 26 can-
cer models; 11 are shared. There are 100 and 69 normal
tissue/cell types in TSEM and HMA respectively. Over-
all, the two collections shared 21 normal tissues (count-
ing multiple cell types of the same tissue in HMA as one
single tissue), with 30 unique to HMA and 79 to TSEM.
One main difference is the coverage of tissues in the
brain. While HMA included 8 models covering 3 brain
structures (each brain structure has 2 or 3 cell-type spe-
cific models), TSEM included 30 models covering 30
distinct brain structures. Thus, the two collections of tis-
sue-specific metabolic models are largely complimentary,
with TSEM covering many more tissues.

Conclusion
Large amounts of data have accumulated in public data re-
positories, characterizing the molecular phenotype of a
variety of human tissue and cell types across a wide range
of pathophysiological states [45]. However, the number of
available tissue-specific metabolic models, which enable
the systematic simulation of metabolic functions in normal
and disease contexts, remains relatively small. To bridge
this gap, we have developed a new automated method
(metabolic Context specificity Assessed by Deterministic
Reaction Evaluation, mCADRE) to efficiently build tissue-
specific metabolic models in a high-throughput manner.
From the comparison of brain and non-brain tissue mod-
els and the comparison of tumor and normal tissue mod-
els, it is clear that the pathway-level analysis is in
agreement with literature. The corresponding models
therefore enable further exploration of brain-specific
metabolic functions and identification of drug targets that
specifically kill tumor cells with minimal side effects on
normal tissues. Combined with automated data acquisition
and annotation tools [46,47], mCADRE has the potential
to transform large repositories of gene expression data into
repositories of functional tissue-specific metabolic models.
Importantly, metabolism is under extensive transcrip-

tional regulation [48]. Mutations in transcription factors
can cause various metabolic diseases [49], and many
tumor suppressor genes and oncogenes are also transcrip-
tional regulators of metabolism [50]. Combined with
methods that automatically integrate transcriptional regu-
latory networks and metabolic networks [51], mCADRE
may help to systematically identify the metabolic effects of
transcription factors perturbations in various tissues.
Ultimately, we hope to expand the TSEM to include both
metabolic and corresponding transcriptional regula-
tory networks for many tissues and cell types. Add-
itionally, metabolic interactions between different
tissues and cell types play important roles in health
and disease [52-55], and there have been pioneering
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studies that used integrated multi-cell type or multi-tissue
type models to such interactions [18,19]. The large collec-
tion of tissue and cell type specific models in the TSEM
may facilitate the integrated modeling of metabolic inter-
actions such as those between adipocytes and macro-
phages, different brain tissues, and between tumor and
stromal microenvironment.
Methods
The majority of the automated reconstruction pipeline in
mCADRE, including the MAS5 detection call, is imple-
mented in Matlab, and the pipeline produces genome-scale
draft metabolic models from raw expression intensity files.
To validate this pipeline, we built a liver model with MAS5
as the binarization method and compared it to a liver
model constructed with MBA. Aside from the hepatic
functional testing of liver models, all steps described below
were subsequently applied to generate context-specific
models for 126 different human tissues. Note that the
Gene Expression Barcode project already used the barcode
method to produce binarized transcriptomic data for the
126 tissues, so MAS5 was not used in this case. As the bar-
code binarization tends to be more stringent in calling a
gene expressed than MAS5 [20], the resulting models may
also be smaller than when MAS5 is used.
Gene expression data processing
This new method uses gene expression microarray data
as input evidence to prune a generic model (e.g., Human
Recon 1) to a context-specific subset; the SBML file for
Recon 1 was obtained from the BiGG database [56] and
converted into COBRA Toolbox [57] model structure
for subsequent analysis. To construct a context-specific
metabolic model for the liver, we acquired raw gene
expression profiles from 23 liver tissue samples from
[58-61] and GSE7307 (no citation available). All of these
studies were identified and annotated by the Gene Ex-
pression Barcode Project [20]. To approximate the pres-
ence or absence of the enzyme and transporter-encoding
gene in a particular profile, we used the Affymetrix
MAS5 detection call to binarize raw microarray data
[62]: present calls are treated as 1, while marginal and
absent calls are treated as 0. Other binarization methods,
such as the gene expression barcode [20], can also be
used. The final binarized expression data for all genes
g∈G in samples n∈N for a selected context or phenotype
is represented as the expression matrix X|G|×|N|, where
Xg,n = {0,1} represents the presence of gene g in sample
n; for our liver training data, |G| = 20,283. There are
54,613 probe sets on the Affymetrix U133Plus2 platform
(excluding quality control probes). Only probes that can
uniquely map to a single gene are retained; these probes
map to 20,283 unique genes. When multiple probes map
to the same gene, the maximum expression value is
used.

Assigning evidence scores to reactions
For each reaction r∈R in the generic model, we assign evi-
dence scores (E(r)) to deterministically evaluate which
reactions to keep or remove when pruning to get a
context-specific network. We first calculate the expres-
sion-based evidence Ex(r) for all reactions to provide an
overall ranking and to divide reactions into core and non-
core sets. Next, the network topology of the generic model
is used to calculate the connectivity-based evidence Ec(r)
for each non-core reaction; this provides a second level
of evidence when determining the order of reactions to
remove during pruning. Finally, if expression- and
connectivity-based evidence is insufficient to deter-
mine the rank of a reaction, evidence based on confi-
dence level in the generic model El(r) is considered.

Expression-based evidence
After binarizing the input data, we first quantify how
often a gene is expressed across samples of the same
context; this is the ubiquity score U(g) for each gene g:

U gð Þ ¼ 1=ð jN jÞ
X

n∈N
Xg ;n:

This score ranges from 0 (not expressed in any con-
text samples) to 1 (ubiquitously expressed in context
samples). According to gene-reaction rules, ubiquity
scores for metabolic genes are mapped to corresponding
reactions. That is, the expression-based evidence Ex(r)
for reaction r is a function of how often its associated
genes gr∈Gr are expressed in the selected context, as
measured by the ubiquity score:

Ex rð Þ ¼ f U grð Þð Þ; gr∈Gr:

The relationship between the ubiquity scores of Gr

and Ex(r), denoted by f, is a composite of the Boolean
gene-reaction rules defined in the generic model: AND
is replaced with MIN, while OR is replaced with MAX,
following ref [17] (Figure 1A). By definition, the
expression-based evidence Ex(r) also ranges from 0 to 1,
indicating how likely the reaction is to be present in the
selected context. The high-confidence core set of reac-
tions is then defined as those with Ex(r) > 0.9 when
building liverCADRE with MAS5 call binarization, and
Ex(r) > 0.5 when building the 126 tissue models with the
Barcode binarization. Higher cutoff is used for MAS5
call binarized data, as it is less stringent than Barcode in
calling a gene expressed. Reactions with Ex(r) = 0 are
defined as the negative reaction set: these reactions have
strong evidence of not being active in the tissue context.
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Connectivity-based evidence
For non-core reactions, we use network topology to define
a secondary metric called connectivity-based evidence
Ec(r). This score is particularly designed to rank non-gene
-associated reactions, which account for 40% of all reac-
tions in Recon 1, and by definition, will not be in the core
because they are not associated with expression data. The
connectivity-based evidence for each non-core reaction
accounts for both the expression-based evidence and con-
nectedness of all adjacent reactions (core or non-core).
Using the stoichiometric relationships defined in the S
matrix, we can describe whether any two reactions in the
generic model are connected (i.e., share at least one me-
tabolite) with the binary adjacency matrix A|R|×|R|. Specif-
ically, Ai,j = {0,1}, where 1 indicates reaction i is connected
to reaction j.
We consider the outgoing influence I(r) of each reac-

tion as its normalized connectedness to all adjacent
reactions. That is, for each reaction r,

I rð Þ ¼ 1=
X

j∈R=r
Ar ;j

� �
:

In this way, r exhibits influence on all other reactions
j∈R/r that is inversely proportional to the number of
reactions to which it is connected. Furthermore, we
measure the weighted influence WI(r) = Ex(r)×I(r) such
that r will exhibit stronger influence on connected reac-
tions if it was found to have strong expression-based evi-
dence; reactions with Ex(r) = 0 thus have no weighted
influence on adjacent reactions.
Finally, we define connectivity-based evidence Ec(r) as

the net incoming weighted influence to reaction r from
all other reactions j∈R/r:

Ec rð Þ ¼
X

j∈R=r
WI jð Þ Ar ;j ¼ 1

�� �
:

�

If a non-core reaction rj is connected to a highly
expressed reaction ri that has few other connections, this
provides strong support for its inclusion in the context-
specific model. Conversely, if a core reaction ri is con-
nected to many other reactions, then it is less clear
whether any particular connected non-core reaction rj is
the one that functions in a pathway with ri in the pruned
network; as such, the resulting connectivity-based evi-
dence for rj will be lower.

Confidence level-based evidence
Confidence scores indicate the level of biological evi-
dence associated with each reaction, as determined dur-
ing manual curation of the generic metabolic model—in
this case, Human Recon 1. The confidence level evidence
El(r) for a reaction ranges from 1 (in silico modeling evi-
dence only) to 3 (experimental biochemical or genetic evi-
dence); midlevel scores (2) indicate some physiological
evidence, or experimental support from a related organ-
ism, and a score of 0 indicates that the reaction was not
evaluated. Importantly, these confidence scores represent
evidence for the generic model, not for the specific con-
text, and thus are considered as a tertiary measure of evi-
dence for non-core reactions.
Pruning the generic model
After defining the high-confidence core and ranking all
non-core reactions, our algorithm attempts to sequen-
tially remove each non-core reaction, starting from those
ranked at the bottom (lowest evidence). The selected re-
action will be removed only if (i) the core set of reaction
remains consistent; and (ii) removal does not prevent
model from producing any key metabolites. Reactions in
high-confidence core set can only be removed when (i)
reactions in the negative reaction set (reactions with Ex

(r) =0) are needed to enable flux through the high confi-
dence core reactions; (ii) by removing the high
confidence core reactions, more non-core reactions (in-
cluding those in the negative reaction set) will be
removed. Consistency of the core reaction set is con-
firmed by calculating the maximum and minimum flux
for each reaction, and ensuring that at least one is non-
zero. As the naïve implementation of flux variability ana-
lysis (FVA) is extremely slow, we adapted the checkModel-
Consistency module described by Jerby et al. in [14] for
optimal performance in Matlab—in particular, we included
the option to use the efficient fastFVA algorithm [27].
The list of key metabolites that must be produced from

glucose is compiled based on the universal metabolic
model validation test in [18]. This includes metabolites in
glycolysis, TCA cycle, pentose phosphate pathway, as well
as non-essential amino acids, nucleotides, palmital-CoA,
cholesterol, and several membrane lipids. A full list of
these key metabolites is in Additional file 3: Table S1. In-
stead of testing the production of all non-essential fatty
acids, as in [18], we only tested the production of
palmital-CoA, which is derived from palmitate, the first
fatty acid produced in fatty acid synthesis, and the precur-
sor of longer chain fatty acids. Similarly, we only tested
those membrane lipids that can be derived from glucose
and non-essential amino acids. With the addition of es-
sential nutrients like choline, these membrane lipids can
be transformed to other membrane lipids such as phos-
phatidylcholine and sphingomyelin that cannot be directly
synthesized from glucose. We only check the production
of pyrimidine nucleotides from glucose, as de novo pyrimi-
dine synthesis can occur in a variety of tissues [22]. As de
novo purine synthesis occurs primarily in the liver and
other tissues use the salvage pathway [22], we test the abil-
ity of all tissues to synthesize purine nucleotides from pur-
ines bases and 5-phosphoribosyl 1-pyrophophate (PRPP).
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Functional test of liver models
In the amino acid degradation test, the model is only
allowed to uptake glucose and the amino acid being
tested; all other organic metabolites are constrained to
be efflux only. Transport of inorganic compounds (oxy-
gen, carbon dioxide, water, etc.) is unconstrained, except
ammonia: as ammonia detoxification is an important
hepatic function, only ammonia influx is allowed. The
simulation objective function is to maximize the uptake
of the amino acid being tested. Using FVA, if the model
can allow for finite urea efflux and amino acid influx,
the amino acid degradation test is declared as passed.
Similarly, in the ammonia detoxification test, only glu-

cose uptake is allowed, and the objective is to maximize
ammonia uptake. This test is passed if the model can
allow for finite ammonia influx and urea efflux. The
ethanol detoxification test is the same as ammonia de-
toxification test, except that no urea efflux is required
and ethanol is constrained to be influx.
In the glucogenic test, the model is only allowed to up-

take the glucogenic substrate being tested while all other
organic compounds, including glucose, are constrained to
be efflux only. Ammonia is only allowed to be influx, and
urea is only allowed to be efflux. The simulation objective
is to maximize glucose secretion. This test is passed if the
model can allow for finite glucose efflux. Glucogenic sub-
strates tested are the 18 glucogenic amino acids (all 20
amino acid except leucine and lysine, which are exclu-
sively ketogenic), lactate, pyruvate, and glycerol.
In growth simulation, the widely-used RPMI-1640 tis-

sue culture medium was used. Detail of medium com-
position is in Additional file 3: Table S11. The biomass
equation was adopted from [14]. The full list of biomass
components is in Additional file 3: Table S10. It consists
of amino acids, nucleotides, deoxynucleotides, lipids etc.
Recon 1 lacks a reaction accounting for the formation of
glycogenin, the primer for glycogen synthesis, so a sink
reaction for glycogenin is added to all the liver models
to allow for glycogen synthesis.
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