
The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010 289

Development of Neural Networks

 for Noise Reduction

Lubna Badri

Faculty of Engineering, Philadelphia University, Jordan

Abstract: This paper describes the development of neural network models for noise reduction. The networks used to enhance

the performance of modeling captured signals by reducing the effect of noise. Both recurrent and multi-layer Backpropagation

neural networks models are examined and compared with different training algorithms. The paper presented is to illustrate

the effect of training algorithms and network architecture on neural network performance for a given application.

Keywords: Noise reduction, recurrent neural networks, multi-layer backpropagation.

Received January 3, 2009; accepted February 25, 2009

1. Introduction

In physical systems, transmitted signals are usually

distributed partially, or sometimes almost completely,

by an additive noise from the transmitter, channel, and

receiver. The approach investigated in this work is to

consider noise reduction as an essentially required

process to enhance the estimation process of image

reconstruction of the captured signal. Noise reduction is

considered as a continuous mapping process of the

noisy input data to a noise free output data. The

resulted enhanced signal can be applied to the

holographic imaging process and improves the

performance of the estimated model. Artificial Neural

Networks (ANNs) are finding increasing use in noise

reduction problems [1, 2, 3, 4, 7, 8, 12, 13, 16, 17], and

the main design goal of these Neural Networks (NNs)

was to obtain a good approximation for some input-

output mapping. In addition to obtaining a conventional

approximation, NNs are expected to generalize from

the given training data. The generalization is to use

information that NN learned during training phase in

order to synthesize, similar but not identical, input-

output mapping [11].

In this paper, two different NN architectures are

employed. These are Recurrent Neural Networks

(RNNs) and MultiLayer Neural Networks (MLNNs).

Both networks are trained with five training algorithms.

The training functions used are: Gradient descent

backpropagation (traingd), gradient descent with

momentum backpropagation (traingdm), gradient

descent with adaptive lr (learning rate) backprobagation

(traingda), gradient descent w/momentum and adaptive

lr backpropagation (traingdx), and Leverberg

Marquardt backpropagation (trainlm).

The designed NNs are trained with input sequences

that are assumed to be a composition of the desired

signal plus an additive white Gaussian noise. The

networks are expected to learn the noisy training data

with the corresponding desired output and generalize

the model. This research is an attempt to employ ANN

for the enhancement of the measured corrupted signal

and reduce the noise. The main contribution includes

the following:

• The input training sequences to the designed NNs

are assumed to be a composition of the desired

signal plus an additive white Gaussian noise. This

assumption speeds up the learning process and

improves the approximation of the desired model

[15].

• The development and comparison of NN

architectures for use in noise reduction applications.

• A comparison of modeling performance using

multi-layer and recurrent NNs.

• An examination of the relationship between

training performance and training speed with the

training algorithm used for a given NN architecture.

2. Artificial Neural Networks

There are two main phases in the operation of ANN:

learning and testing. Learning is the process of

adapting or modifying the NN weights in response to

the training input patterns being presented at the input

layer. How weights adapt in response to a learning

example is controlled by a training algorithm. Testing

is the application mode where the network processes a

tested input pattern presented at its input layer and

creates a response at the output layer.

Designing an ANN for a given application requires

determining the NN architecture, the optimal size for

the network (the total number of layers, the number of

hidden units in the middle layers, and number of units

in the input and output layers) in terms of accuracy on

a test set, and the training algorithm used during the

290 The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

learning phase. Two types of neural networks are used

to perform the required extraction of the knowledge

from a noisy training set to achieve better signal

enhancement. These networks are RNN and MLNN.

The architectures of both networks are presented in the

following section.

2.1. Architecture

2.1.1. Recurrent Neural Network Architecture

The designed RNN is called Elman network. Elman

networks are two-layer backpropagation networks, with

the addition of a feedback connection from the output

of the hidden layer to its input. This feedback path

allows Elman networks to learn to recognize and

generate temporal patterns, as well as spatial patterns

[6]. A two-layer Elman network is shown in Figure 1.

Figure 1. The architecture of Elman Network [10].

The Elman network constructed has tansig neurons in

its hidden (recurrent) layer, and purelin neurons in its

output layer, shown in Figures 2 and 3, respectively.

The numbers of neurons in the hidden and output layers

are 10 and 1, respectively. The hidden units and the

output unit also have biases. These bias terms act like

weights on connections from units whose output is

always 1. The bias gives the network an extra variable,

and so the network with bias is expected to be more

powerful than those without [10]. This combination is

special in that two-layer networks with these transfer

functions can approximate any function (with a finite

number of discontinuities) with arbitrary accuracy. The

only requirement is that the hidden layer must have

enough neurons. More hidden neurons are needed as

the function being fitted increases in complexity. Note

that the Elman network differs from conventional two-

layer networks in that the first layer has a recurrent

connection. The delay in this connection stores values

from the previous time step, which can be used in the

current time step. Thus, even if two Elman networks,

with the same weights and biases, are given identical

inputs at a given time step, their outputs can be

different due to different feedback states [5].

Figure 2. Tansig transfer function.

Figure 3. Purline transfer function.

Elman network performs the following:

1. The input units receive the first input.

2. Both the input units and context units (group of

units that receives feedback signals from the

previous time step [8]) activate the hidden units.

3. The hidden units also feedback to activate the

context units (copying the content of the hidden

unit).

4. The output units is compared with a teacher input

(desired output) and backpropogation of error is

used to incrementally adjust the connection

strength.

The recurrent connections allow the network's hidden

units to see its own previous output, so that the

subsequent behaviour can be shaped by previous

responses. These recurrent connections are what give

the network memory. The context units are also

"hidden" in the sense that they interact exclusively

with other nodes internal to the network, and not the

outside world [7].

2.1.2. Multilayer Neural Network Architecture

A MLNN is designed with three layers as shown in

Figure 4. The feedforward network has two hidden

layers of tansig neurons (f
1
 and f

2
) followed by an

output layer of purelin neurons (f
3
). The numbers of

neurons in the first and second hidden layers are 7 and

3 respectively. The hidden units and the output unit

also have biases. These bias terms act like weights on

connections from units whose output is always 1.

Multiple layers of neurons with nonlinear transfer

functions allow the network to learn nonlinear and

linear relationship between input and output vectors.

The backpropagation model is multilayered since it

has distinct layers. The neurons within each layer are

connected with the neurons of the adjacent layers

through directed edges. There are no connections

among the neurons within the same layer.

Development of Neural Networks for Noise Reduction 291

Only the direction of information flow for the

feedforward phase of operation is shown. During the

backpropagation phase of learning, signals are sent in

the reverse direction.

Figure 4. The Architecture of three-layer neural network [10].

Three-layer neural network performs the following:

During feedforward phase, the input unit receives an

input signal and broadcasts this signal to the each of the

hidden units in the first hidden layer. Each of the

hidden units then computes its activation and sends its

signal to the hidden units in the second layer. Each

hidden unit in the second layer computes its activation

and sends its signal to the output units. Finally, the

output unit computes its activation to form the response

of the net for the given input pattern. During training

phase, each output unit compares its computed

activation with its target value to determine the error

associated with that unit. The error is distributed from

output layer back to all units in the next lower layer,

and also used to update the weights between the output

and the second hidden layer. The computed error in the

second layer is distributed to all units in the previous

layer and used to update the weights between the

second hidden layer and the first hidden layer. The

computed error in the first hidden layer is used to

update the weights between the first hidden layer and

the input layer.

2.2. Training Neural Networks

The neural networks are trained using backpropagation

algorithm. There are several variations to the training

algorithm of backpropagation NN. These variations are

the basis of test procedures evaluation the overall most

effective way to model the system. The distinction

between training and generalization accuracies lies in

the test patterns adopted. Good training accuracy can be

achieved by forming complex decision boundaries,

which in turn requires a large network size. Also, good

generalization accuracy needs not to push too hard on

the training accuracy; the overtraining may result in

degraded generalization. This may occur if too many

hidden units are used [12]. A number of network

architectures have been designed and tested with

different noisy data samples. The aim was to have good

training process, to avoid overtraining problem, and to

have better Mean Square Error (MSE) goal during the

training process. It has been proven [10] that the

addition of random noise to the desired signal during

the training process of the neural network can improve

the generalization of the network and can avoid the

learning process from being trapped into local

minimum. Assume xk denotes the k
th
 element of an

input vector; yi is the i
th
 output of the output layer. Let

di(t) denote the desired response for output neuron i at

time t, where t is the discrete time index. The error

signal ei(t) is defined as the difference between the

target response di(t) and the actual response yi(t).

)()()(tiytidtie −= (1)

The aim of learning is to minimize a cost function

based on the error signal ei(t), with respect to network

parameters (weights), such that the actual response of

each output neuron in the network approaches the

target response [6]. A criterion commonly used for the

cost function is the MSE criterion, defined as the

mean-square value of the sum squared error:

∑=

i

tieEJ 2))((
2

1
 (2)

∑ −=

i

tiytidE 2))()((
2

1
 (3)

where E is the statistical expectation operator and the

summation is over all the neurons of the output layer.

Usually the adaptation of weights is performed by

using the desired signal di(t) only. In [6] it is stated

that a new signal)t(in)t(id + can be used as a

desired signal for output neuron i instead of using the

original desired signal di(t), where ni(t) is a noise

term. This noise term is assumed to be white Gaussian

noise, independent of both the input signals xk(t) and

the desired signals di(t). With the new desired signals,

the MSE of equation 3 can be written as:

]2))()()((
2

1
[∑ −+=

i

t
i

yt
i

nt
i

dEJ (4)

It is shown in [6] that Eq.4 is equal to:

∑ +−=

i

txtintidEtiyEJ 2)})(|)()({)((
2

1

∑ ++

i

txtintidE))(|))()(var((
2

1
 (5)

where the symbol means conditional probabilities and

'var' is an abbreviation of variance. The second term in

the right hand side of equation 5 will contribute to the

total error J and as learning progresses, but it does not

affect the final value of the weights because it is not a

292 The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

function of the network weights, while the first term

will decide the optimal value of the weights [6]. Since

the noise is zero mean and it is independent of both

desired and the input signals, thus:

)}(|)({{)}(|)()({{ txtidEtxt
i

nt
i

dE =+ (6)

It is clear from equations 5 and 6 that the final

weight values can be determined without the existence

of noise in the equation. The training of NN was made

to follow the model described by the following

equation for holograph image process:

SCos θrASrAd(x) 2
22 ++= (7)

where θ is a phase difference between Ar and S is

reflected signal from the object under imaging process,

and Ar is reference signal due to the requirement of

inline holography.

3. Experimental Results

In this section, the experimental results obtained using

RNN and MLNN architectures on the recorded signal

from a test object. A test object consists of two steel

rods of 2.5cm diameter was used. The separation

between the two rods was 7cm. The distance Zo

between the object and recording planes was 90cm. The

object was covered by two different opaque materials: a

sheet of paper and a Styrofoam. The object was

illuminated by ultrasound waves using ultrasonic

transmitting transducers [2].

The received signals from the object due to the

reflection are recorded and in order to enhance them, or

in other words, to decrease the effect the environments

such as the relatively high background that caused by

the opaque material; the neural network is used to

increase the SNR of holographic data. Designing neural

network architecture for a given application requires

determining the optimal size for the network in terms of

accuracy on a test set, usually by increasing its size

until there is no longer significant decrease in error.

The analysis was performed through programs

implemented on MATLAB software.

Both networks performed the required reduction of

the noise in the captured signal, i.e., the RNN and

MLNN. The MLNN performs better than RNN in terms

of run time and also the Mean Square Error (MSE)

performance. Tables 1 and 2 summarize the results of

NN's training by comparing the Elapsed time, Epochs,

and the MSE of RNN and MLNN with five training

algorithms. These algorithms are Traingd, Traingdm,

Traingda, Trainlm, and Traingdx [5]. All of these

algorithms use the gradient of the performance function

to determine how to adjust the weights to minimize

performance (i.e., MSE). As can be seen in Tables 1

and 2, the MLNN trained with TRAINLM

backpropagation function results in a fastest algorithm

implementation (90 epochs) with a best performance

(MSE equals 0.0112285).

Table 1. Elapsed time and epochs of RNN and MLNN with five

training algorithms

 Recurrent Neural

Network (RNN)

Multilayer Neural

Network (MLNN)

Algorithm Elapsed Time

(Sec)

Epochs Elapsed Time

(Sec)

Epochs

Traingd 7.563 1800 24.047 7000

Traingdm 8.328 2000 75.235 20000

Traingda 8.656 2000 7.813 2000

Trainlm 4.781 500 1.484 90

Traingdx 4.563 1000 12.593 3500

Table 2. Mean square error of RNN and MLNN with five training
algorithms.

 Mean Square Error (MSE)

Algorithm Recurrent Neural

Network (RNN)

Multilayer Neural

Network (MLNN)

Traingd 0.0151797 0.0153542

Traingdm 0.0151767 0.014463

Traingda 0.016874 0.0157362

Trainlm 0.0111192 0.0112285

Traingdx 0.0150799 0.0126875

The trainlm function works according to levenberg-

marquardz optimization technique [5]. Figure 5 shows

MLNN performance during the training process with

TRAINLM algorithm. Extensive testing is made to

improve the performance of MLNN. Table 3 shows

the MLNN performance with two experiments cases:

sheet of paper and Styrofoam isolated materials. The

designed MLNN was able to decrease the effect of

concealing medium and the noise in the captured

signal. Figure 6 shows the behavior of the neural

network output after applying the captured signal h(n)

in the sheet of paper and styrofoam cases,

respectively.

Figure 5. Multilayer neural network MLNN performance during

the training process with TRAINLM training algorithm.

4. Conclusions

In this paper, two different neural networks have been

compared to minimize the effect of noise in the model

of a concealed object and increase the SNR of

holographic data. Experimental results show that using

Development of Neural Networks for Noise Reduction 293

neural network to enhance the captured signal can

improve the tracking of the model parameters. The

RNN and MLNN architecture have been studied and

tested to obtain the optimal architecture in terms of

number of hidden layers and neurons in each layer. The

results obtained show that during the pre-processing

stage, the RNN and MLNN were able to enhance the

tested recorded signal and produce an output signal that

follows the desired model with minimum MSE

(0.0112285). The effect of adding white Gaussian noise

to the desired signal when training the neural network

with backpropagation has been discussed. Both

analytically and experimentally it has been

demonstrated that the additive noise improves the

network generalization on the tested patterns and the

training trajectory. Similar results have been obtained

when training both RNN and MLNN.

Table 3. Multilayer neural network performance with two

experiments cases: sheet of paper and Styrofoam isolating materials.

Mean Square Error (MSE) Training Algorithm

Sheet of Paper Case Styrofoam Case

Traingd 0.053542 0.177533

Traingdm 0.014463 0.170649

Traingda 0.0157362 0.15886

Trainlm 0.0112285 0.149683

Traingdx 0.0126875 0.164845

Figure 6. Multilayer neural network MLNN output after applying

the captured signal h(n) in two cases: sheet of paper and Styrofoam

opaque materials.

References

[1] Badri L. and Al-Azzo M., “Burg-Neural Network

Based Holographic Source Localization,” WSEAS

Transactions on Signal Processing, vol. 2, no. 14,

pp. 414-422, 2006.

[2] Badri L. and Al-Azzo M., “Modelling of Long

Wavelength Detection of Objects Using Elman

Network Modified Covariance Combination,”

International Arab Journal of Information

Technology (IAJIT), vol. 5, no. 3, pp. 265-272,

2008.

[3] Brueckmann R., Scheidig A., and Gross H.,

“Adaptive Noise Reduction and Voice Activity

Detection for improved Verbal Human-Robot

Interaction using Binaural Data,” in Proceedings

of the IEEE International Conference on

Robotics and Automation, Italy, pp. 10-14, 2007.

[4] Chuan W. and Jose P., “Training Neural

Networks with Additive Noise in the Desired

Signal,” Transactions on Neural Networks, vol.

10, no. 6, pp. 1511-1517, 1999.

[5] Demuth H. and Beale M., Neural Network

Toolbox-for Use with MATLAB User’s Guide,

The Mathworks, Massachusetts, 2002.

[6] Dorronsoro J., López V., Cruz C., and Sigüenza

J., “Autoassociative Neural Networks and Noise

Filtering,” IEEE Transactions on Signal

Processing, vol. 51, no. 5, pp. 1431-1438, 2003.

[7] Elman J., “Finding Structure in Time,” Cognitive

Science, vol. 14, no. 2, pp.179-211, 1990.

[8] Fausett L., Fundamentals of Neural Networks:

Architectures, Algorithms, and Applications,

Prentice Hall International, New Jersey, 1994.

[9] Giles C., Lawrence S., and Tsoi A., “Noisy Time

Series Prediction Using a Recurrent Neural

Network and Grammatical Inference,” Machine

Learning, vol. 44, no. 1-2, pp. 161-183, 2001.

[10] Hagan M., Demuth H., and Beale M., Neural

Network Design, PWS Publishing Company and

Thomson Asia, 2002.

[11] Khairnar D., Merchant S., and Desai U., “Radar

Signal Detection In Non-Gaussian Noise Using

RBF Neural Network,” Journal of Computers,

vol. 3, no. 1, pp. 32-39, 2008.

[12] Kung S., Digital Neural Network, Printice Hall,

1993.

[13] Mastriani M. and Giraldez A., “Neural

Shrinkage for Wavelet-Based SAR

Despeckling,” International Journal of

Intelligent Technology, vol. 1, no. 3, pp. 211-

222, 2006.

[14] Parveen S. and Green P., “Speech Enhancement

with Missing Data Techniques Using Recurrent

Neural Networks,” in Proceedings of the IEEE

International Conference on Acoustics, Speech

and Signal Processing, Canada , pp. 1733-1736,

2004.

[15] Radonja P., “Neural Networks Based Model of

A Highly Nonlinear Process,” in Proceedings of

the IX Telekomunikacioni Forum Telfor’2001,

Beograd, 2001.

[16] Yoshimura H., Shimizu T., Matumura T.,

Kimoto M., and Isu N., “Adaptive Noise

Reduction Filter for Speech Using Cascaded

Sandglass-Type Neural Network,” in

Proceedings of the IEEE International

Conference on Robotics and Automation, Italy,

pp. 10-14, 2007.

[17] Zhang X., “Thresholding Neural Network for

Adaptive Noise Reduction,” IEEE Transactions

on Neural Networks, vol. 12, no. 3, 2001.

294 The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

Lubna Badri received her BSc and

MSc degree in computer and control

engineering, from the University of

Technology, Baghdad in 1994 and

1996, respectively, and the PhD

degree in computer engineering,

from University of Technology in

Baghdad, Iraq, in 1999. Her research interest includes

neural network and fuzzy logic, knowledge acquisition

systems, and embedded system design. She has one

book and more than 15 publications in reputed journals

and conferences.

