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Abstract: This paper describes the development of neural network models for noise reduction. The networks used to enhance 

the performance of modeling captured signals by reducing the effect of noise. Both recurrent and multi-layer Backpropagation 

neural networks models are examined and compared with different training algorithms. The paper presented is  to illustrate 

the effect of training algorithms and  network architecture on neural network performance for a given application.  
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1. Introduction 

In physical systems, transmitted signals are usually 

distributed partially, or sometimes almost completely, 

by an additive noise from the transmitter, channel, and 

receiver. The approach investigated in this work is to 

consider noise reduction as an essentially required 

process to enhance the estimation process of image 

reconstruction of the captured signal. Noise reduction is 

considered as a continuous mapping process of the 

noisy input data to a noise free output data. The 

resulted enhanced signal can be applied to the 

holographic imaging process and improves the 

performance of the estimated model. Artificial Neural 

Networks (ANNs) are finding increasing use in noise 

reduction problems [1, 2, 3, 4, 7, 8, 12, 13, 16, 17], and 

the main design goal of these Neural Networks (NNs) 

was to obtain a good approximation for some input-

output mapping. In addition to obtaining a conventional 

approximation, NNs are expected to generalize from 

the given training data. The generalization is to use 

information that NN learned during training phase in 

order to synthesize, similar but not identical, input-

output mapping [11]. 

In this paper, two different NN architectures are 

employed. These are Recurrent Neural Networks 

(RNNs) and MultiLayer Neural Networks (MLNNs). 

Both networks are trained with five training algorithms. 

The training functions used are: Gradient descent 

backpropagation (traingd), gradient descent with 

momentum backpropagation (traingdm), gradient 

descent with adaptive lr (learning rate) backprobagation 

(traingda), gradient descent w/momentum and adaptive 

lr backpropagation (traingdx), and Leverberg 

Marquardt backpropagation (trainlm).  

The designed NNs are trained with input sequences 

that are assumed to be a composition of the desired 

signal plus an additive white Gaussian noise. The 

networks are expected to learn the noisy training data 

with the corresponding desired output and generalize 

the model. This research is an attempt to employ ANN 

for the enhancement of the measured corrupted signal 

and reduce the noise. The main contribution includes 

the following: 

• The input training sequences to the designed NNs 

are assumed to be a composition of the desired 

signal plus an additive white Gaussian noise. This 

assumption speeds up the learning process and 

improves the approximation of the desired model 

[15]. 

• The development and comparison of NN 

architectures for use in noise reduction applications. 

• A comparison of modeling performance using 

multi-layer and recurrent NNs. 

• An examination of the relationship between 

training performance and training speed with the 

training algorithm used for a given NN architecture. 

 

2. Artificial Neural Networks 

There are two main phases in the operation of ANN: 

learning and testing. Learning is the process of 

adapting or modifying the NN weights in response to 

the training input patterns being presented at the input 

layer. How weights adapt in response to a learning 

example is controlled by a training algorithm. Testing 

is the application mode where the network processes a 

tested input pattern presented at its input layer and 

creates a response at the output layer. 

Designing an ANN for a given application requires 

determining the NN architecture, the optimal size for 

the network (the total number of layers, the number of 

hidden units in the middle layers, and number of units 

in the input and output layers) in terms of accuracy on 

a test set, and the training algorithm used during the 
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learning phase. Two types of neural networks are used 

to perform the required extraction of the knowledge 

from a noisy training set to achieve better signal 

enhancement. These networks are RNN and MLNN. 

The architectures of both networks are presented in the 

following section. 

 

2.1. Architecture  

2.1.1. Recurrent Neural Network Architecture 

The designed RNN is called Elman network. Elman 

networks are two-layer backpropagation networks, with 

the addition of a feedback connection from the output 

of the hidden layer to its input. This feedback path 

allows Elman networks to learn to recognize and 

generate temporal patterns, as well as spatial patterns 

[6]. A two-layer Elman network is shown in Figure 1.  

 
Figure 1. The architecture of Elman Network [10]. 

 

The Elman network constructed has tansig neurons in 

its hidden (recurrent) layer, and purelin neurons in its 

output layer, shown in Figures 2 and 3, respectively. 

The numbers of neurons in the hidden and output layers 

are 10 and 1, respectively. The hidden units and the 

output unit also have biases. These bias terms act like 

weights on connections from units whose output is 

always 1. The bias gives the network an extra variable, 

and so the network with bias is expected to be more 

powerful than those without [10]. This combination is 

special in that two-layer networks with these transfer 

functions can approximate any function (with a finite 

number of discontinuities) with arbitrary accuracy. The 

only requirement is that the hidden layer must have 

enough neurons. More hidden neurons are needed as 

the function being fitted increases in complexity. Note 

that the Elman network differs from conventional two-

layer networks in that the first layer has a recurrent 

connection. The delay in this connection stores values 

from the previous time step, which can be used in the 

current time step. Thus, even if two Elman networks, 

with the same weights and biases, are given identical 

inputs at a given time step, their outputs can be 

different due to different feedback states [5]. 

 

 
Figure 2. Tansig transfer function. 

 
Figure 3. Purline transfer function. 

 

Elman network performs the following: 

1. The input units receive the first input. 

2. Both the input units and context units (group of 

units that receives feedback signals from the 

previous time step [8]) activate the hidden units. 

3. The hidden units also feedback to activate the 

context units (copying the content of the hidden 

unit). 

4. The output units is compared with a teacher input 

(desired output) and backpropogation of error is 

used to incrementally adjust the connection 

strength.  
 

The recurrent connections allow the network's hidden 

units to see its own previous output, so that the 

subsequent behaviour can be shaped by previous 

responses. These recurrent connections are what give 

the network memory. The context units are also 

"hidden" in the sense that they interact exclusively 

with other nodes internal to the network, and not the 

outside world [7]. 

 

2.1.2. Multilayer Neural Network Architecture 

A MLNN is designed with three layers as shown in 

Figure 4. The feedforward network has two hidden 

layers of tansig neurons (f
1
 and f

2
) followed by an 

output layer of purelin neurons (f
3
). The numbers of 

neurons in the first and second hidden layers are 7 and 

3 respectively. The hidden units and the output unit 

also have biases. These bias terms act like weights on 

connections from units whose output is always 1. 

Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear and 

linear relationship between input and output vectors. 

The backpropagation model is multilayered since it 

has distinct layers. The neurons within each layer are 

connected with the neurons of the adjacent layers 

through directed edges. There are no connections 

among the neurons within the same layer. 
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Only the direction of information flow for the 

feedforward phase of operation is shown. During the 

backpropagation phase of learning, signals are sent in 

the reverse direction.  

 
Figure 4. The Architecture of three-layer neural network [10]. 

 

Three-layer neural network performs the following: 

During feedforward phase, the input unit receives an 

input signal and broadcasts this signal to the each of the 

hidden units in the first hidden layer. Each of the 

hidden units then computes its activation and sends its 

signal to the hidden units in the second layer. Each 

hidden unit in the second layer computes its activation 

and sends its signal to the output units. Finally, the 

output unit computes its activation to form the response 

of the net for the given input pattern. During training 

phase, each output unit compares its computed 

activation with its target value to determine the error 

associated with that unit. The error is distributed from 

output layer back to all units in the next lower layer, 

and also used to update the weights between the output 

and the second hidden layer. The computed error in the 

second layer is distributed to all units in the previous 

layer and used to update the weights between the 

second hidden layer and the first hidden layer. The 

computed error in the first hidden layer is used to 

update the weights between the first hidden layer and 

the input layer. 

  

2.2. Training Neural Networks 

The neural networks are trained using backpropagation 

algorithm. There are several variations to the training 

algorithm of backpropagation NN. These variations are 

the basis of test procedures evaluation the overall most 

effective way to model the system. The distinction 

between training and generalization accuracies lies in 

the test patterns adopted. Good training accuracy can be 

achieved by forming complex decision boundaries, 

which in turn requires a large network size. Also, good 

generalization accuracy needs not to push too hard on 

the training accuracy; the overtraining may result in 

degraded generalization. This may occur if too many 

hidden units are used [12]. A number of network 

architectures have been designed and tested with 

different noisy data samples. The aim was to have good 

training process, to avoid overtraining problem, and to 

have better Mean Square Error (MSE) goal during the 

training process. It has been proven [10] that the 

addition of random noise to the desired signal during 

the training process of the neural network can improve 

the generalization of the network and can avoid the 

learning process from being trapped into local 

minimum. Assume xk  denotes  the k
th
 element of an 

input vector; yi  is the i
th
 output of the output layer. Let 

di(t) denote the desired response for output neuron i at 

time t, where t is the discrete time index. The error 

signal ei(t) is defined as the difference between the 

target response di(t) and the actual response yi(t).            

)()()( tiytidtie −=                                                  (1) 
 

The aim of learning is to minimize a cost function 

based on the error signal ei(t), with respect to network 

parameters (weights), such that the actual response of 

each output neuron in the network approaches the 

target response [6]. A criterion commonly used for the 

cost function is the MSE criterion, defined as the 

mean-square value of the sum squared error: 
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where E is the statistical expectation operator and the 

summation is over all the neurons of the output layer. 

Usually the adaptation of weights is performed by 

using the desired signal di(t) only.  In [6] it is stated 

that a new signal )t(in)t(id +  can be used as a 

desired signal for output neuron i instead of using the 

original desired signal di(t), where ni(t) is a noise 

term. This noise term is assumed to be white Gaussian 

noise, independent of both the input signals xk(t) and 

the desired signals di(t). With the new desired signals, 

the MSE of equation 3 can be written as: 
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It is shown in [6] that Eq.4 is equal to: 
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where the symbol means conditional probabilities and 

'var' is an abbreviation of variance. The second term in 

the right hand side of equation 5 will contribute to the 

total error J and as learning progresses, but it does not 

affect the final value of the weights because it is not a 
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function of the network weights, while the first term 

will decide the optimal value of the weights [6]. Since 

the noise is zero mean and it is independent of both 

desired and the input signals, thus: 

)}(|)({{)}(|)()({{ txtidEtxt
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nt
i

dE =+                 (6) 

It is clear from equations 5 and 6 that the final 

weight values can be determined without the existence 

of noise in the equation. The training of NN was made 

to follow the model described by the following 

equation for holograph image process: 
 

SCos θrASrAd(x) 2
22 ++=                                 (7)                             

where θ  is a phase difference between Ar and  S is 

reflected signal from the object under imaging process, 

and Ar is reference signal due to the requirement of 

inline holography. 

3. Experimental Results 

In this section, the experimental results obtained using 

RNN and MLNN architectures on the recorded signal 

from a test object. A test object consists of two steel 

rods of 2.5cm diameter was used. The separation 

between the two rods was 7cm. The distance Zo 

between the object and recording planes was 90cm. The 

object was covered by two different opaque materials: a 

sheet of paper and a Styrofoam. The object was 

illuminated by ultrasound waves using ultrasonic 

transmitting transducers [2]. 

The received signals from the object due to the 

reflection are recorded and in order to enhance them, or 

in other words, to decrease the effect the environments 

such as the relatively high background that caused by 

the opaque material; the neural network is used to 

increase the SNR of holographic data. Designing neural 

network architecture for a given application requires 

determining the optimal size for the network in terms of 

accuracy on a test set, usually by increasing its size 

until there is no longer significant decrease in error. 

The analysis was performed through programs 

implemented on MATLAB software. 

Both networks performed the required reduction of 

the noise in the captured signal, i.e., the RNN and 

MLNN. The MLNN performs better than RNN in terms 

of run time and also the Mean Square Error (MSE) 

performance. Tables 1 and 2 summarize the results of 

NN's training by comparing the Elapsed time, Epochs, 

and the MSE of RNN and MLNN with five training 

algorithms. These algorithms are Traingd, Traingdm, 

Traingda, Trainlm, and Traingdx [5]. All of these 

algorithms use the gradient of the performance function 

to determine how to adjust the weights to minimize 

performance (i.e., MSE). As can be seen in Tables 1 

and 2, the MLNN trained with TRAINLM 

backpropagation function results in a fastest algorithm 

implementation (90 epochs) with a best performance 

(MSE equals 0.0112285). 

 
Table 1. Elapsed time and epochs of RNN and MLNN with five 

training algorithms 

 Recurrent Neural 

Network (RNN) 

Multilayer Neural 

Network (MLNN) 

Algorithm Elapsed Time 

(Sec) 

Epochs Elapsed Time 

(Sec) 

Epochs 

Traingd 7.563 1800 24.047 7000 

Traingdm 8.328 2000 75.235 20000 

Traingda 8.656 2000 7.813 2000 

Trainlm 4.781 500 1.484 90 

Traingdx 4.563 1000 12.593 3500 

 

Table 2. Mean square error of RNN and MLNN with five training 
algorithms. 

 Mean Square Error (MSE) 

Algorithm Recurrent Neural 

Network (RNN) 

Multilayer Neural 

Network (MLNN) 

Traingd 0.0151797 0.0153542 

Traingdm 0.0151767 0.014463 

Traingda 0.016874 0.0157362 

Trainlm 0.0111192 0.0112285 

Traingdx 0.0150799 0.0126875 

 

The trainlm function works according to levenberg-

marquardz optimization technique [5]. Figure 5 shows 

MLNN performance during the training process with 

TRAINLM algorithm. Extensive testing is made to 

improve the performance of MLNN. Table 3 shows 

the MLNN performance with two experiments cases: 

sheet of paper and Styrofoam isolated materials. The 

designed MLNN was able to decrease the effect of 

concealing medium and the noise in the captured 

signal. Figure 6 shows the behavior of the neural 

network output after applying the captured signal h(n) 

in the sheet of paper and styrofoam cases, 

respectively.  
 

 
 

Figure 5. Multilayer neural network MLNN performance during 

the training process with TRAINLM training algorithm. 

 

4. Conclusions 

In this paper, two different neural networks have been 

compared to minimize the effect of noise in the model 

of a concealed object and increase the SNR of 

holographic data. Experimental results show that using 
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neural network to enhance the captured signal can 

improve the tracking of the model parameters. The 

RNN and MLNN architecture have been studied and 

tested to obtain the optimal architecture in terms of 

number of hidden layers and neurons in each layer. The 

results obtained show that during the pre-processing 

stage, the RNN and MLNN were able to enhance the 

tested recorded signal and produce an output signal that 

follows the desired model with minimum MSE 

(0.0112285). The effect of adding white Gaussian noise 

to the desired signal when training the neural network 

with backpropagation has been discussed. Both 

analytically and experimentally it has been 

demonstrated that the additive noise improves the 

network generalization on the tested patterns and the 

training trajectory. Similar results have been obtained 

when training both RNN and MLNN. 

 
Table 3. Multilayer neural network performance with two 

experiments cases: sheet of paper and Styrofoam isolating materials. 

Mean Square Error (MSE) Training Algorithm 

Sheet of Paper Case Styrofoam Case 

Traingd 0.053542 0.177533 

Traingdm 0.014463 0.170649 

Traingda 0.0157362 0.15886 

Trainlm 0.0112285 0.149683 

Traingdx 0.0126875 0.164845 

 

 
 

Figure 6. Multilayer neural network MLNN output after applying 

the captured signal h(n) in two cases: sheet of paper and Styrofoam 

opaque materials. 
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