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Lack of discrimination power and poor weight dispersion remain major issues in Data Envelopment Anal-
ysis (DEA). Since the initial multiple criteria DEA (MCDEA) model developed in the late 1990s, only goal
programming approaches; that is, the GPDEA-CCR and GPDEA-BCC were introduced for solving the said
problems in a multi-objective framework. We found GPDEA models to be invalid and demonstrate that
our proposed bi-objective multiple criteria DEA (BiO-MCDEA) outperforms the GPDEA models in the
aspects of discrimination power and weight dispersion, as well as requiring less computational codes.
An application of energy dependency among 25 European Union member countries is further used to
describe the efficacy of our approach.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Data envelopment analysis (DEA) was first proposed by Char-
nes, Cooper, and Rhodes (1978) and remained the leading tech-
nique for measuring the relative efficiency of decision-making
units (DMUs) based on their respective multiple inputs and out-
puts. DEA has been the fastest growing discipline in the past three
decades covering easily over a thousand papers in the Operations
Research and Management Science discipline (Emrouznejad, Parker,
& Tavares, 2008; Hatami-Marbini, Emrouznejad, & Tavana, 2011).
The efficiency of a DMU is defined as a weighted sum of its outputs
divided by the weighted sum of its inputs on a bounded ratio scale.

One of the drawbacks of DEA is the lack of discrimination
among efficient decision making units (DMUs), hence yielding
many DMUs to be efficient. The problem is highlighted when the
number of DMUs evaluated is significantly lesser than the number
of inputs and outputs used in the evaluation. The weights derived
from a DEA analysis may reveal that some inputs or outputs have
zero values. This is counter-intuitive especially in a decision mak-
ing exercise, where one expects to use all the inputs and output
values that are rated for the DMUs. Hence, it further implies that
some of the variables were not used in the evaluation judgment
in achieving the final ranking. On the contrary, the unrealistic
weight distribution for DEA also occurs when some DMUs are rated
as efficient due to extremely large weights in a single output and/
or extremely small weights in a single input.

Thompson, Singleton, Thrall, and Smith (1986) are among the
first authors to propose the use of weight restriction to increase
the discrimination power of DMUs. The issue was immediately
picked up by many authors, including Dyson and Thanassoulis
(1988), Charnes, Cooper, Huang, and Sun (1990), Thanassoulis
and Allen (1998). Hence, several methods such as assurance region
(AR) procedure (Khalili, Camanho, Portela, & Alirezaee, 2010; Mecit
& Alp, 2013; Sarrico & Dyson, 2004; Thompson, Langemeier, Lee, &
Thrall, 1990) and cone ratio envelopment (Cao & Kong, 2010; Char-
nes et al., 1990) were addressed in the literature as strategies to
solve problems arising from unrealistic weight distribution. How-
ever, there are some drawbacks to the methods – AR and cone ratio
techniques are highly dependent on the measurement of the in-
puts-outputs units, which may lead to infeasible solutions. In other
words, both the methods incorporate extra constraints to the mod-
el; thus, making it harder to solve the problem.

Subsequently, other DEA models were introduced in the litera-
ture to overcome the discriminant power problems, such as the
super-efficiency model (Andersen & Petersen, 1993; Chen, 2005;
Chen, Du, & Huo, 2013; Lee, Chu, & Zhu, 2011) and cross-efficiency
evaluation technique (Anderson, Hollingsworth, & Inman, 2002;
Doyle & Green, 1995; Green, Doyle, & Cook, 1996; Sexton, Silkman,
& Hogan, 1986; Wang & Chin, 2010, 2011). The super-efficiency
DEA model may obtain infeasible solutions for efficient DMUs; par-
ticularly, under variable returns to scale (VRS) model. However, at-
tempts had been made to solve the infeasibility problem in super
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efficiency methods. Chen (2005) proposed an approach in which
both input-oriented and output-oriented super-efficiency models
are used to fully characterize the super-efficiency model, thus
claiming that the approach kept infeasibility to a rare occasion.
However, Soleimani-damaneh, Jahanshahloo, and Foroughi
(2006) presented some counter examples to negate Chen’s (2005)
claims without any proposed alternative. Drawing from two main
sources (i.e. Chen, 2005; Cook, Liang, Zha, & Zhu, 2009), Lee et al.
(2011) later provided a solution by a two-stage process catering
to adjustments in input saving and output surpluses. Chen and
Liang (2011) subsequently formulated a one-model solution to
the two-stage process. Lee and Zhu (2012) found that the solution
can still be infeasible should some of the input variables have zero
values.

With regards to cross-efficiency evaluation technique, the non-
uniqueness of the DEA weights could provide a large number of
multiple optimal solutions for DEA models. Although recent
improvements of cross-efficiency evaluation techniques were pro-
posed (Angiz & Sajedi, 2012), the solution is computationally
expensive with the need to solve a series of linear programming
problems. The suggestion of imposing secondary goals to improve
variability of cross efficiency scores still leaves the non-uniqueness
problem looming (see Cook & Zhu, 2013).

Drawing from a multiple objective decision making framework,
the multiple criteria (or multi-objective) DEA model (Chen, Larban-
i, & Chang, 2009; Foroughi, 2011; Li & Reeves, 1999) was suggested
as a means to overcome discriminant power and weight dispersion
problems. However, the original formulation of Li and Reeves
(1999) does not promise complete ranking but merely presupposes
the decision maker to use its model’s 3 objectives interactively.
Thus, in the MCDEA model, the three objectives are analyzed sep-
arately; one at a time, and no preference order was set for those
objectives. Bal, Örkcü, and Çelebioglu (2010) recently proposed
the goal programming approach for solving all 3 objectives of the
MCDEA model simultaneously. Their GPDEA models (i.e. constant
returns to scale and variable returns to scale) were claimed to im-
prove the dispersion of weights and discriminatory power in a
MCDEA framework. This paper highlights that those claims were
unfounded, and goes onto show a new bi-objective multiple crite-
ria DEA (BiO-MCDEA) model that could solve those drawbacks.

The focus of this paper is to introduce a weighted model for
improving the discrimination power and weight dispersion in the
domain of Multiple Criteria Data Envelopment Analysis (MCDEA).
The rest of the paper is organized as follows. Section 2 gives a brief
description of the multiple criteria data envelopment analysis
(MCDEA) and the more recent goal programming data envelop-
ment analysis (GPDEA) as a procedure for MCDEA. Section 3 high-
lights the drawbacks of using GPDEA to represent MCDEA analysis.
We therefore introduce an alternative bi-objective multiple criteria
model (BiO-MCDEA) to improve the discrimination power of
MCDEA in Section 4. An application of energy dependency among
25 EU member countries demonstrates the efficacy of the model
in Section 5. Concluding remarks are given in Section 6.
2. Improving discrimination power in DEA: Recent
developments

2.1. Multiple criteria data envelopment analysis (MCDEA)

Li and Reeves (1999) first proposed the MCDEA model as a means
to improve the discrimination power of the classical DEA model. In
their solution procedure, Li and Reeves (1999) suggested an interac-
tion approach for solving three objectives. The first objective or crite-
rion considers the classical definition of relative efficiency, thus
capturing the classical DEA solution within the set of MCDEA solu-
tions. The other two objectives, Minimax and Minsum objectives
provide a more restrictive or lax efficiency solutions, respectively.
This implies that a wider solution is possible with MCDEA, so as to
gain more reasonable input and output weights.

In MCDEA, the three objectives are analyzed separately; one at a
time, with no preference order set for those objectives. The solu-
tions derived from each run are considered non-dominated in the
multi-objective linear programming (MOLP) sense. Li and Reeves
(1999) note that generally the Minimax criterion is more restric-
tive than the Minsum criterion, while the first criterion (i.e. Classi-
cal DEA objective) is considered to be the least restrictive of the
three. Since the Minimax and Minsum criteria tend to provide less
number of efficient DMUs as compared to the first criterion, it is
said to provide better discrimination power than a classical DEA
model. As such, the Minimax and Minsum criteria are helpful when
the number of DMUs is not sufficiently larger than the number of
inputs and outputs used for evaluation.

Consider the relative efficiency of n DMUs which use m inputs
(xij, i = 1, . . . , m, j = 1, . . . , n) to produce s outputs (yrj, j = 1, . . . , s,
j = 1, . . . , n). The MCDEA model proposed by Li and Reeves (1999)
which considers three objective functions: (i) minimizing do (or
maximizing ho), (ii) minimizing the maximum deviation, and (iii)
minimizing the sum of deviations, is defined as follows in Model 1:

2.2. Model 1: Multiple criteria data envelopment analysis

min do or max ho ¼
Xs

r¼1

uryro

 !

min M;

min
Xn

j¼1

dj

Xm

i¼1

v ixio ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ dj ¼ 0; j ¼ 1; . . . ;n;

M � dj P 0; j ¼ 1; . . . ;n;

ur P 0; r ¼ 1; . . . ; s;

v i P 0; i ¼ 1; . . . ;m;

dj P 0; j ¼ 1; . . . ;n:

ð1Þ

The quantity d0 in the first objective function is bounded on an
interval [0,1) and is regarded as a measure of inefficiency. Thus,
DMU0 is efficient at h0 = 1 � d0 where h0 is the efficiency measure
in a classical DEA. In short, the first objective function
i:e: min d0 or max

Ps
r¼1uryro

� �� �
is equivalent to the objective

function of the classical DEA. The M in the second objective function
(Minmax criterion) represents the maximum quantity of all devia-
tion variables dj(j = 1, . . . ,n). The third objective function is a Min-
sum of all deviation variables. Another noteworthy point is the
introduction of the M � dj P 0, (j = 1, . . . , n) constraint in MCDEA,
which does not alter the feasible region of the solution but merely
ensure that max dj P 0.

2.3. Goal programming DEA models (GPDEA)

Li and Reeves (1999) did not suggest a solution for their pro-
posed MCDEA model that optimizes all objectives simultaneously.
The aim of their proposed MCDEA model solution process is not to
extract an optimal solution; but instead, to find a series of non-
dominated solutions that is left to the analyst in selecting the most
preferred one, if need be. Therefore, goal programming can be seen



Table 1
Example 1 dataset.

DMU Outputs Inputs

y1 y2 y3 y4 x1 x2 x3 x4

1 47 93 54 65 32 50 82 46
2 88 56 92 80 61 56 68 37
3 94 65 80 80 42 58 45 34
4 50 53 93 97 73 39 88 81
5 47 42 70 52 45 38 68 41
6 86 45 100 47 86 62 44 32
7 83 91 62 74 38 74 71 74
8 79 60 72 98 61 54 70 62
9 85 68 51 41 84 52 38 47

10 78 95 70 92 87 47 31 52
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as a natural progression in converting the multi-objective pro-
gramming of the MCDEA model into a single objective problem.

Goal programming is a type of multi-objective optimization,
which can provide a way of striving towards several such objec-
tives simultaneously. The basic approach of goal programming is
to establish a specific numeric goal for each of the objectives, for-
mulate an objective function for each objective, and then seek a
solution that minimizes the (weighted) sum of unwanted devia-
tions of these objective functions from their respective goals.

Bal et al. (2010) recently proposed the following goal program-
ming to solve the formulation proposed by Li and Reeves (1999).
The former adopted the non-weighted approach in their solution
design and claimed to be an equivalent single objective form to
the latter’s three objectives.

2.4. Model 2: Goal programming data envelopment analysis under CRS
(GPDEA-CCR)

min a ¼ d�1 þ dþ1 þ dþ2 þ
X

j

d�3j þ
X

j

dj

( )

Xm

i¼1

v ixio þ d�1 � dþ1 ¼ 1;

Xs

r¼1

uryro þ d�2 � dþ2 ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ dj ¼ 0; j ¼ 1; . . . ;n;

M � dj þ d�3j � dþ3j ¼ 0; j ¼ 1; . . . ; n;

ur P 0; r ¼ 1; . . . ; s;

v i P 0; i ¼ 1; . . . ;m;

dj P 0; j ¼ 1; . . . ;n;

d�1 ; d
þ
1 ; d

�
2 ; d

þ
2 P 0;

d�3j; d
þ
3j P 0; j ¼ 1; . . . ;n:

ð2Þ

The above model is with the assumption of constant returns to scale
(CRS) (Bal et al., 2010), where d�1 and dþ1 are the unwanted devia-
tions for the goal which the weighted sum of inputs equal to unity,
d�2 and dþ2 are the wanted and unwanted deviation variables which
make the weighted sum of outputs less than or equal to one,
whereas d�3j and dþ3jðj ¼ 1; . . . ;nÞ are the unwanted and wanted devi-
ation variables for the goal M � dj P 0, (j = 1, . . . , n). remains as the
maximum deviation, for DMUj(j = 1, . . . , n), which is also an un-
wanted deviation. A similar model under the VRS assumption is
placed in Appendix A.

The achievement objective function d�1 þ dþ1 þ dþ2þ
�P

jd
�
3j þ

P
jdjg states that all deviations have been given equal

weights. In the GPDEA’s case, minimizing the unwanted deviations
from the goal values are to be desired (Ignizio, 1976; Lee, 1972).
However, there are fundamental flaws associated with the GPDEA
models, ranging from the interpretation of a goal programming
method to the reported results. We highlight some of these issues
separately in the next section.

3. The drawbacks on GPDEA models

The purpose of this section is to highlight the drawbacks of the
GPDEA models, which will help us to further develop the new bi-
objective multiple criteria DEA (BiO-MCDEA) model in Section 4.

3.1. The validity of GPDEA and the issue of zero weights for all
variables in some DMUs

We were initially intrigued by the use of goal programming as a
means to achieve greater weight dispersion and discrimination
power among criteria in DEA. When attempting to reproduce the
analysis in Bal et al. (2010), we have noted some methodological
and formulation problems. We found some of these problems to
be consistent for all datasets in Bal et al. (2010). However, for the
purpose of illustrating the inappropriateness of the GPDEA models,
we only explain the solutions of ‘dataset 1’ and ‘university dataset’
in Bal et al. (2010).

Let us first start with the hypothetical dataset consisting of 10
DMUs with four inputs and four outputs (see Table 1 which is
reproduced from Bal et al. (2010) for ease of reference).

We used Model 1 formulation for both CRS and VRS assump-
tions to reproduce the results as depicted in Tables 2 and 3. It is
easy to observe that the true efficiency values differ significantly
from the ones reported in Bal et al. (2010). More importantly, we
examined the weights and noticed contrary to what had been
claimed in Bal et al. (2010), the input–output weights and effi-
ciency values for some DMUs could attain zero values for all vari-
ables. For example in this case, zero weights were discovered for
all variables for DMU1 (under CRS) and DMU5 (under CRS and
VRS). This just disproves the ‘‘. . .improvement of the dispersion
of input–output weights and the improvement of discrimination
power. . .’’ as claimed in Bal et al. (2010). This is problematic when
some of the efficiency values can be ‘1’ at the same instance, thus
confirming the inability for the input and output weights to trans-
late into technical efficiency effectively (see Appendix B for proof).

It is rather quite simple to reason where the problem lies. As
one can easily observe in the next section, we impose some restric-
tions on the weights to avoid this issue. In an input-oriented mod-
el, it is necessary to set the constraint

Pm
i¼1v ixio ¼ 1, and seek to

achieve an output that is as high as possible. This is a fundamental
aspect of scaling and benchmarking, where one has to fix either the
sum of input or the sum of the output to be 1, before proceeding to
determine the other. In Bal et al.’s case (Bal et al., 2010), they chose
to set both

Pm
i¼1v ixio þ d�1 � dþ1 ¼ 1 and

Ps
r¼1uryro þ d�2 � dþ2 ¼ 1. It

stands to reason that proper scaling cannot be achieved in this
manner as the model is neither input nor output oriented. Even
if we eliminate

Ps
r¼1uryro þ d�2 � dþ2 ¼ 1, there is a possibility for

0 6
Pm

i¼1v ixio 6 1 due to the minimization of d�1 � dþ1 in the objec-
tive function.
3.2. The validity of GPDEA when compared with the results of MCDEA

To explore the results of MCDEA models we further compared
the results of GPDEA with MCDEA. We discovered that the GPDEA
models do not conduct nor achieve the same purposes as the
MCDEA model. MCDEA model uses non-dominated solutions and
each objective is handled one at a time. Unlike GPDEA models,
MCDEA does not attempt to get a global optimal value but more to-
wards generating a series of non-dominated solutions interac-
tively. In other words, MCDEA can be used to achieve either a



Table 2
GPDEA-CCR results based on Example 1 dataset.

DMU Output weights Input weights Efficiency (true values) Efficiency provided by Bal et al. (2010)

u1 u2 u3 u4 v1 v2 v3 v4

1 0 0 0 0 0 0 0 0 0 0.968
2 0.00317 0.00434 0.00464 0 0.00403 0.01347 0 0 0.948 0.951
3 0.00333 0.00456 0.00488 0 0.00424 0.01417 0 0 1 1
4 0 0.00488 0.00797 0 0.00336 0.01182 0.00059 0.00298 1 1
5 0 0 0 0 0 0 0 0 0 0.950
6 0.00268 0.00367 0.00392 0 0.00341 0.01140 0 0 0.788 0.794
7 0.00070 0.00371 0.00564 0 0.00245 0.00990 0 0.00235 0.745 0.779
8 0.00084 0.00446 0.00679 0 0.00295 0.01193 0 0.00283 0.823 0.843
9 0.00305 0.00417 0.00446 0 0.00388 0.01297 0 0 0.771 0.767

10 0.00322 0.00441 0.00471 0 0.00409 0.01370 0 0 1 1

Table 3
GPDEA-BCC results based on Example 1 dataset.

DMU Output weights Input weights Efficiency (true values) Efficiency provided by Bal et al. (2010)

u1 u2 u3 u4 v1 v2 v3 v4

1 0.00762 0.00000 0.00172 0 0.00155 0.01901 0 0 0.765 0.971
2 0.00340 0.00328 0.00307 0 0.00368 0.01385 0 0 0.945 0.951
3 0.00355 0.00343 0.00321 0 0.00385 0.01446 0 0 1 1
4 0 0.00500 0.00821 0 0.00314 0.01190 0.00032 0.00344 1 1
5 0 0 0 0 0 0 0 0 0 0.961
6 0.00289 0.00279 0.00261 0 0.00313 0.01178 0 0 0.788 0.965
7 0.00520 0 0.00118 0 0.00106 0.01297 0 0 0.718 0.798
8 0.00349 0.00338 0.00316 0 0.00379 0.01424 0 0 0.890 1
9 0.00330 0.00319 0.00298 0 0.00358 0.01345 0 0 0.824 0.909

10 0.00350 0.00338 0.00316 0 0.00379 0.01426 0 0 1 1
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stricter or more lenient solution set, depending on whether a more
or less number of efficient DMUs are sought by the analyst in the
decision making process.

We recomputed the results of the MCDEA model of Li and Re-
eves (1999) using only the Minsum objective function of

P
jdj

and reproduce them in Table 4 (CRS) and Table 5 (VRS). If one were
to compare the MCDEA-Minsum analysis with the results gathered
from analyzing the GPDEA models (see Tables 2 and 3), the effi-
ciency values were found to be similar. It has to be emphasized
that the comparison has to be made on the corrected values de-
noted as ‘true values’ in Tables 2 and 3 and not the ‘values reported
in Bal et al. (2010). Given that the GPDEA models only capture the
solution set of a single objective in MCDEA (i.e. Minsum), it is triv-
ial to note that the GPDEA models’ objective function

d�1 þ dþ1 þ dþ2 þ
P

jd
�
3j þ

P
jdj

n o
cannot handle all of the three crite-

ria in the MCDEA model.

3.3. The validity of GPDEA when investigating the case of variable
returns to scales (VRS)

In classical VRS model (Banker, Charnes, & Cooper, 1984), co is a
free variable placed in both the objective function and the inequal-
ity constraint. We ran the analysis based on a wrongly formulated
VRS model on purpose, by considering only co in the constraintPs

r¼1uryrj �
Pm

i¼1v ixij þ dj ¼ 0 but not in the Minsum objective
function of

P
jdj (see Appendix C). With the exception of DMU5,

we achieved the same efficiency results as Bal et al. (2010) with
the incorrect formulation! This can be observed by comparing
the true values in Table 3 against the efficiency values in Table 5.
It can therefore be concluded that the GPDEA-BCC model proposed
by Bal et al. (2010) is not an acceptable extension of VRS model
(Banker et al., 1984) for MCDEA.

3.4. The validity of GPDEA and the issue of zero weights for all DMUs

Table 6 can be found in Bal et al. (2010), which is reproduced
here for ease of reference. The data consist of 7 departments
(DMUs) of a university with the following input and output vari-
ables: number of academic staff (x1), academic staff salaries in
thousands of pounds (x2), support staff salaries in thousands of
pounds (x3), the number of undergraduate students (y1), number
of postgraduate students (y2), number of research papers (y3).

When applying the GPDEA models, we first noticed the results
reported in Bal et al. (2010) were incorrect. We therefore reported
the corrected results in Tables 7–10. It is easy to observe that the
input–output weights do not discriminate well and the GPDEA
model cannot be representative of the MCDEA model. Based on
the corrected weights reported in Tables 7–10 derived from the
analysis, it can be noted that the third input is completely ignored
by almost all DMUs in Tables 7 and 9. Also, the first and third out-
puts are completely ignored by all DMUs in Tables 8 and 10 (i.e. all
weights are set to zero). This suggests that the variables have no
effect in the efficiency values of the evaluation! We will see that
in the proposed model of Section 4; we would impose some
restrictions on the weights to avoid this issue.
4. A new bi-objective multiple criteria (BiO-MCDEA) model

The aim of this section is to introduce an alternative MCDEA
model which is able to provide better weight dispersion and dis-
crimination power while allowing multiple criteria to be optimised
simultaneously. We seek to avoid the earlier issues raised in the
GPDEA models through our proposed BiO-MCDEA model.

Although there are a variety of solution procedures for multi-
objective or multiple criteria linear programming (MOLP or MCLP),
only goal programming had been suggested for optimizing all
objectives simultaneously. The difficulty of a multi-objective prob-
lem is not just in finding an optimal solution for each objective
function but to find an optimal solution that simultaneously opti-
mizes all objectives. In most cases, no single optimal solution
would satisfy all the conditions simultaneously, thus requiring a
set of efficient or non-dominated solutions. Further details on
MOLP problem can be found in (Cohon, 1987; Dimitris, 2003).



Table 4
Minsum DEA-CCR results based on Example 1 dataset.

DMU Output weights Input weights Efficiency

u1 u2 u3 u4 v1 v2 v3 v4

1 0.00102 0.00543 0.00827 0 0.00359 0.01453 0 0.00345 1
2 0.00317 0.00434 0.00464 0 0.00403 0.01347 0 0 0.948
3 0.00333 0.00456 0.00488 0 0.00424 0.01417 0 0 1
4 0 0.00488 0.00797 0 0.00336 0.01182 0.00059 0.00298 1
5 0.00119 0.00636 0.00967 0 0.00420 0.01699 0 0.00403 1
6 0.00268 0.00367 0.00392 0 0.00341 0.01140 0 0 0.788
7 0.00070 0.00371 0.00564 0 0.00245 0.00990 0 0.00235 0.745
8 0.00084 0.00446 0.00679 0 0.00295 0.01193 0 0.00283 0.823
9 0.00305 0.00417 0.00446 0 0.00388 0.01297 0 0 0.771

10 0.00322 0.00441 0.00471 0 0.00409 0.01370 0 0 1

Table 5
Minsum DEA-BCC results based on Example 1 dataset.

DMU Output weights Input weights Efficiency

u1 u2 u3 u4 v1 v2 v3 v4

1 0.00762 0 0.00172 0 0.00155 0.01901 0 0 0.765
2 0.00340 0.00328 0.00307 0 0.00368 0.01385 0 0 0.945
3 0.00355 0.00343 0.00321 0 0.00385 0.01446 0 0 1
4 0 0.00500 0.00821 0 0.00314 0.01190 0.00032 0.00344 1
5 0.00491 0.00475 0.00444 0 0.00532 0.02001 0 0 1
6 0.00289 0.00279 0.00261 0 0.00313 0.01178 0 0 0.788
7 0.00520 0 0.00118 0 0.00106 0.01297 0 0 0.718
8 0.00349 0.00338 0.00316 0 0.00379 0.01424 0 0 0.890
9 0.00330 0.00319 0.00298 0 0.00358 0.01345 0 0 0.824

10 0.00350 0.00338 0.00316 0 0.00379 0.01426 0 0 1

Table 6
Example 2 university dataset.

DMU Outputs Inputs

y1 y2 y3 x1 x2 x3

1 60 35 17 12 400 20
2 139 41 40 19 750 70
3 225 68 75 42 1500 70
4 90 12 17 15 600 100
5 253 145 130 45 2000 250
6 132 45 45 19 730 50
7 305 159 97 41 2350 600
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In Li and Reeves (1999) proposed MCDEA model, they used the
‘non-dominated’ solution approach. Bal et al. (2010) proposed goal
programming as an alternative for achieving all objectives simulta-
neously in the MCDEA model. It has been pointed out in the previ-
ous section that the proposed GPDEA models suffer from serious
drawbacks. We are compelled therefore to consider an alternative
approach to optimize all objectives simultaneously in a MCDEA
model, i.e. a bi-objective weighted formulation.

Recalling Li and Reeves (1999) approach, the MCDEA model’s
objective functions consist of three parts: min d0, min M, and minP

jdj as defined in model 1. In a weighted method, the MCDEA’s tri-
objective function can be restated as follows, w1do þw2M þw3

P
jdj

for the single weighted objective equivalent. The weights
wi(i = 1,2,3) can be varied to obtain different efficient solutions.
Table 7
GPDEA-CCR results of the university dataset.

DMU Output weights Input weights

u1 u2 u3 v1 v2 v

1 0 0 0 0 0 0
2 0.00333 0.00921 0.00288 0.02019 0.00082 0
3 0.00160 0.00442 0.00139 0.00970 0.00039 0
4 0 0 0 0 0 0
5 0.00130 0.00361 0.00113 0.00791 0.00032 0
6 0.00339 0.00936 0.00293 0.02053 0.00084 0
7 0.00260 0.00218 0 0 0.00041 0
However, given that the first objective w1 is in fact the equiva-
lent to a conventional CCR model, it can be eliminated from the
MCDEA in the weighted objective sense. Besides, Li and Reeves
had demonstrated that the first objective yields lower discrimina-
tion power as compared to the other two objectives. Hence, for our
proposed BiO-MCDEA model, we solved the bi-objective weighted
problem using both the second and third objectives. The value of
w1 is set equal to zero because whenever

P
jdj is minimized, do will

be minimized as well. Thus, we proposed the following model:

4.1. Model 3: A new bi-objective MCDEA (BiO-MCDEA) model under
CRS

min h ¼ w2M þw3

X
j

dj

 !

Xm

i¼1

v ixio ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ dj ¼ 0; j ¼ 1; . . . ;n;

M � dj P 0; j ¼ 1; . . . ;n;

ur P e; r ¼ 1; . . . ; s;

v i P e; i ¼ 1; . . . ;m;

dj P 0; j ¼ 1; . . . ;n;

ð3Þ
Efficiency true values Efficiency provided by Bal et al. (2010)

3

0 1
0.956 0.955
0.765 0.764
0 0.576
1 1
1 1

.00006 1 1



Table 8
GPDEA-BCC results of the university dataset.

DMU Output weights Input weights Efficiency (true values) Efficiency provided by Bal et al. (2010)

u1 u2 u3 v1 v2 v3

1 0 0 0 0 0 0 0 1
2 0.00834 0.00700 0 0 0.00131 0.00021 1 0.963
3 0.00420 0.00353 0 0 0.00066 0.00010 0.960 0.813
4 0.01031 0.00866 0 0 0.00162 0.00025 0.480 0.576
5 0.00311 0.00261 0 0 0.00049 0.00008 1 1
6 0.00861 0.00722 0 0 0.00136 0.00021 1 1
7 0.00260 0.00218 0 0 0.00041 0.00006 1 1

Table 9
Minsum DEA-CCR results of the university dataset.

DMU Output weights Input weights Efficiency

u1 u2 u3 v1 v2 v3

1 0.00583 0.01612 0.00505 0.03536 0.00144 0 1
2 0.00333 0.00921 0.00288 0.02019 0.00082 0 0.956
3 0.00160 0.00442 0.00139 0.00970 0.00039 0 0.765
4 0.00418 0.01157 0.00362 0.02537 0.00103 0 0.577
5 0.00130 0.00361 0.00113 0.00791 0.00032 0 1
6 0.00339 0.00936 0.00293 0.02053 0.00084 0 1
7 0.00121 0.00334 0.00105 0.00732 0.00030 0 1

Table 10
Minsum DEA-BCC results of the university dataset.

DMU Output weights Input weights Efficiency

u1 u2 u3 v1 v2 v3

1 0.01575 0.01322 0 0 0.00248 0.00039 0.564
2 0.00834 0.00700 0 0 0.00131 0.00021 1
3 0.00420 0.00353 0 0 0.00066 0.00010 0.960
4 0.01031 0.00866 0 0 0.00162 0.00025 0.480
5 0.00311 0.00261 0 0 0.00049 0.00008 1
6 0.00861 0.00722 0 0 0.00136 0.00021 1
7 0.00260 0.00218 0 0 0.00041 0.00006 1
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where d0 and dj (j = 1, . . . , n) are the deviation variables for DMU0

and the jth DMU respectively. DMU0 is efficient if and only if
d0 = 0, otherwise the efficiency value of DMU0 is ho = 1 � do. The ef-
fect of constraints M � dj P 0(j = 1, . . . , n) does not change the fea-
sible region of the solution but merely to make M the maximum
deviation. The values of ur and vi are set to be greater than or equal
to, thus ensuring this lower bound specification prevents inputs or
outputs from being ignored by the DMUs.

We analyzed the dataset of ‘Example 1’ and the ‘university data-
set’ with our proposed BiO-MCDEA approach. The efficiency values
in Tables 11 and 12 perform better when compared against the ac-
tual efficiency values of the GPDEA-CCR models (Tables 2 and 7,
respectively).
Table 11
BiO-MCDEA model results based on Example 1 dataset (e = 0.0001).

DMU Output weights Input weights

u1 u2 u3 u4 v1 v2

1 0.00420 0.00481 0.00573 0.00010 0.00453 0.01
2 0.00290 0.00435 0.00480 0.00010 0.00404 0.01
3 0.00358 0.00408 0.00488 0.00010 0.00386 0.01
4 0.00010 0.00486 0.00782 0.00010 0.00344 0.01
5 0.00420 0.00624 0.00690 0.00010 0.00576 0.01
6 0.00245 0.00369 0.00408 0.00010 0.00344 0.01
7 0.00116 0.00373 0.00522 0.00010 0.00283 0.01
8 0.00147 0.00445 0.00617 0.00010 0.00339 0.01
9 0.00279 0.00418 0.00463 0.00010 0.00389 0.01

10 0.00294 0.00441 0.00488 0.00010 0.00410 0.01
5. An application of energy dependency among EU member
countries

We further illustrate our proposed model with a 3-input and 2-
output dataset of 25 European Union (EU) member countries (ex-
cept Malta and Estonia) as presented in Appendix D. Data were
based on the EU Emissions Trading Scheme of more than 10,000
installations that generate an excess of 20MW each within the coun-
try. This is believed to capture about half of the CO2 emissions
within EU. We termed the model as energy dependency as the
choice of inputs are based on a set of resources that generate car-
bon emissions and the output will be the extent of those resources
in limiting the carbon effects. The operational definition of the 3 in-
puts and 2 outputs are as follows (see Table 13):

Although the weights of our proposed BiO-MCDEA can be varied
to obtain a set of efficiency scores according to the decision ana-
lyst’s preference, we have set equal objectives such that
w2 = w3 = 0.5 for the purpose of this study. The results are pre-
sented in Table 14 along with Bal et al.’s GPDEA-CCR solution.
The results show that the BiO-MCDEA outperforms the GPDEA
model; both, in terms of discrimination power and weight
dispersion.

Comparing the two (where an infinitesimal value is chosen), it
can be easily observed from Table 14 that the efficiency scores
from our BiO-MCDEA model could provide ease of ranking without
any ties (other than the efficient units). Such is not the case for the
GPDEA efficiency scores. All of the efficiency scores and weights for
GPDEA appear to be close to zero. Fig. 1 illustrates that BiO-MCDEA
outperforms GPDEA. The Nonparametric Levene test confirms that
there is a significantly greater weight dispersion for the Bio-
MCDEA model (see Appendix E).

In the case of setting e = 0, the GPDEA model cannot even gen-
erate a value to be above zero; that is, all the efficiency values, in-
put and output weights are zeroes (see Table 15). However, the
BiO-MCDEA model did not suffer a similar fate and appeared to
be robust.
Efficiency Super Efficiency Rank

v3 v4

678 0.00010 0.00016 0.961 0.961 4
324 0.00010 0.00014 0.948 0.948 5
429 0.00010 0.00013 1 1.210 2
191 0.00058 0.00288 1 1.079 3
906 0.00010 0.00024 0.947 0.947 6
123 0.00010 0.00011 0.789 0.789 8
031 0.00010 0.00165 0.767 0.767 9
237 0.00010 0.00190 0.837 0.837 7
275 0.00010 0.00014 0.761 0.761 10
346 0.00010 0.00015 1 1.419 1



Table 12
BiO-MCDEA model results based on the university dataset (e = 0.0001).

DMU Output weights Input weights Efficiency Super Efficiency Rank

u1 u2 u3 v1 v2 v3

1 0.00584 0.01619 0.00486 0.03711 0.00138 0.00010 1 1.136 3
2 0.00335 0.00930 0.00270 0.02200 0.00077 0.00010 0.955 0.955 5
3 0.00162 0.00452 0.00120 0.01151 0.00034 0.00010 0.763 0.763 6
4 0.00419 0.01162 0.00343 0.02707 0.00097 0.00010 0.575 0.575 7
5 0.00133 0.00372 0.00095 0.00975 0.00027 0.00010 1 1.171 2
6 0.00341 0.00947 0.00275 0.02236 0.00078 0.00010 1 1.037 4
7 0.00122 0.00342 0.00086 0.00909 0.00024 0.00010 1 1.241 1

Table 13
Model variables and operational definition.

Input variables Definition

Installation Count (x1) An installation is a stationary technical unit where one or more activities are carried out, which could have an effect on
emissions and pollution

Allocated Carbon Allowances (x2) It is an allowance distributed each year for free to installations according to the national allocation plan, measured in
tonnes of carbon dioxide equivalent

Gross Inland energy consumption (GIC), by
fuel (x3)

GIC is the quantity of energy, expressed in oil equivalents, consumed within the borders of a country. It is calculated as
total domestic energy production plus energy imports and changes in stocks minus energy exports

Output variables
Electricity Generated From Renewable

Sources (y1)
Percentage of gross electricity consumed

Share of renewable energy in fuel
consumption of transport (y2)

The degree to which conventional fuels have been substituted by biofuels in transportation

Table 14
BiO-MCDEA model and Bal et al.’s GPDEA-CCR model results of the 25-country dataset (e = 0.00001).

DMU Outputs Inputs Performance

u1 u1
b u2 u2

b v1 v1
b v2 v2

b v3 v3
b Eff. Rank Eff.b Rankb

Austria 0.00913 0.00047 0.01671 0.00321 0.00001 0.00001 0.88495 0.01627 0.00002 0.00001 0.718 8 0.052 3
Belgium 0.02173 0.00047 0.06671 0.00321 0.81837 0.00001 1.29635 0.01627 0.00013 0.00001 0.352 15 0.013 18
Bulgaria 0.00832 0.00047 0.05677 0.00321 0.00001 0.00001 0.28790 0.01627 0.00018 0.00001 0.116 25 0.007 24
Cyprus 0.00989 0.00047 0.06750 0.00321 0.00001 0.00001 0.34229 0.01627 0.00021 0.00001 0.136 24 0.006 25
Czech Republic 0.00549 0.00047 0.03745 0.00321 0.00001 0.00001 0.18991 0.01627 0.00012 0.00001 0.165 22 0.014 17
Denmark 0.00783 0.00047 0.04149 0.00321 8.36858 0.00001 0.58502 0.01627 0.00001 0.00001 0.231 19 0.014 16
Finland 0.00590 0.00160 0.02152 0.00502 2.05593 0.00001 0.40883 0.09925 0.00002 0.00001 0.202 21 0.053 2
France 0.02749 0.00047 0.10460 0.00321 0.00001 0.00001 2.16515 0.01627 0.00016 0.00001 1.000 1 0.026 8
Germany 0.01974 0.00047 0.06204 0.00321 0.00001 0.00001 1.22543 0.01627 0.00012 0.00001 0.673 9 0.026 7
Greece 0.00806 0.00047 0.05500 0.00321 0.00001 0.00001 0.27892 0.01627 0.00017 0.00001 0.159 23 0.009 22
Hungary 0.03370 0.00047 0.11127 0.00321 10.55950 0.00001 2.06097 0.01627 0.00014 0.00001 0.580 11 0.013 19
Ireland 0.01038 0.00047 0.06628 0.00321 1.31826 0.00001 0.29005 0.01627 0.00021 0.00001 0.271 18 0.013 20
Italy 0.02631 0.00047 0.08266 0.00321 0.00001 0.00001 1.63285 0.01627 0.00017 0.00001 0.854 6 0.022 11
Latvia 0.01269 0.00047 0.01703 0.00321 0.00001 0.00001 1.41464 0.01627 0.00001 0.00001 0.645 10 0.027 6
Lithuania 0.01541 0.00047 0.08855 0.00321 19.49392 0.00001 1.17342 0.01627 0.00001 0.00001 0.457 13 0.016 15
Luxembourg 0.02199 0.00047 0.06911 0.00321 0.00001 0.00001 1.36516 0.01627 0.00014 0.00001 0.226 20 0.008 23
Netherlands 0.02308 0.00047 0.07254 0.00321 0.00001 0.00001 1.43276 0.01627 0.00014 0.00001 0.516 12 0.018 14
Poland 0.00849 0.00047 0.05788 0.00321 0.00001 0.00001 0.29353 0.01627 0.00018 0.00001 0.327 16 0.018 13
Portugal 0.01953 0.00047 0.07430 0.00321 0.00001 0.00001 1.53809 0.01627 0.00011 0.00001 0.917 3 0.027 5
Romania 0.02721 0.00047 0.08550 0.00321 0.00001 0.00001 1.68894 0.01627 0.00017 0.00001 0.896 4 0.018 12
Slovakia 0.01982 0.00047 0.06086 0.00321 0.74654 0.00001 1.18257 0.01627 0.00012 0.00001 0.878 5 0.036 4
Slovenia 0.01699 0.00047 0.05611 0.00321 5.32473 0.00001 1.03927 0.01627 0.00007 0.00001 0.732 7 0.023 9
Spain 0.02721 0.00047 0.08552 0.00321 0.00001 0.00001 1.68928 0.01627 0.00017 0.00001 1.000 1 0.023 10
Sweden 0.00576 0.00160 0.00984 0.00502 0.00001 0.00001 0.57960 0.09925 0.00001 0.00001 0.397 14 0.127 1
United Kingdom 0.01283 0.00047 0.08750 0.00321 0.00001 0.00001 0.44371 0.01627 0.00027 0.00001 0.322 17 0.012 21
F(1,49) 21.962⁄⁄ 21.941⁄⁄ 116.694⁄⁄ 21.941⁄⁄ 75.106⁄⁄

b Assigned to indicate Bal et al. (2010) model results. All inputs of the raw data were scaled by the population size of their respective countries. See Appendix D for the raw
data.
⁄⁄ All 5 input–output variables registered significantly higher variation for BiO-MCDEA model as compared to the GPDEA-CCR model at p < 0.01.
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6. Concluding remarks

With the exception of this study; to date, only GPDEA models
were proposed as a solution method to the MCDEA model. We have
demonstrated that the GPDEA models are not alternatives to the
MCDEA model. It has major drawbacks in both discrimination
power and weight dispersion, aside from the misreported effi-
ciency values of all the tests. Hence, the fair basis of comparison
would be between our proposed BiO-MCDEA model and the
GPDEA models, given that the MCDEA model merely provided a
mathematical formulation with an interactive solution procedure
without any emphasis placed on the issues of discrimination
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power and weight dispersion. In short, we have illustrated that the
BiO-MCDEA model outperforms the GPDEA models in terms of
both weight dispersion and discrimination power.

Although we have proposed a bi-objective weighted method for
solving the MCDEA model, we stress that there may be other solu-
tion procedures that can be used to extract solutions under multi-
objective LP environment. We merely showed a procedure that
performs better than the GPDEA in terms of ease of formulation
and mathematical programming (i.e. less computational codes).
We hope that future researchers in DEA will explore other methods
such as metaheuristic solution procedures for the MCDEA model.

In terms of the application, we have used an energy dependency
context for the performance comparison between BiO-MCDEA and
GPDEA. Given that environmental context has larger policy impli-
cations, future researches should look into the structural differ-
ences between the two disposability conditions of natural and
managerial disposability when comparing DEA models (see Sueyo-
shi & Goto, 2012). Natural disposability refers to decreases in input
vectors that correspond to decreases in undesirable output vectors
Table 15
BiO-MCDEA model and Bal et al.’s GPDEA-CCR model results of the 25-country dataset (e

DMU Outputs Inputs

u1 u1
b u2 u2

b v1 v1
b

Austria 0.00913 0.00000 0.01671 0.00000 0.00001 0.000
Belgium 0.02173 0.00000 0.06671 0.00000 0.81837 0.000
Bulgaria 0.00832 0.00000 0.05677 0.00000 0.00000 0.000
Cyprus 0.00989 0.00000 0.06750 0.00000 0.00000 0.000
Czech Republic 0.00549 0.00000 0.03745 0.00000 0.00000 0.000
Denmark 0.00652 0.00000 0.04052 0.00000 9.57808 0.000
Finland 0.00590 0.00000 0.02151 0.00000 2.05592 0.000
France 0.02749 0.00000 0.10460 0.00000 0.00000 0.000
Germany 0.01974 0.00000 0.06204 0.00000 0.00000 0.000
Greece 0.00806 0.00000 0.05500 0.00000 0.00000 0.000
Hungary 0.03370 0.00000 0.11126 0.00000 10.55950 0.000
Ireland 0.01038 0.00000 0.06628 0.00000 1.31826 0.000
Italy 0.02630 0.00000 0.08266 0.00000 0.00000 0.000
Latvia 0.01192 0.00000 0.01236 0.00000 0.00000 0.000
Lithuania 0.01412 0.00000 0.08776 0.00000 20.74351 0.000
Luxembourg 0.02199 0.00000 0.06911 0.00000 0.00000 0.000
Netherlands 0.02308 0.00000 0.07253 0.00000 0.00000 0.000
Poland 0.00848 0.00000 0.05788 0.00000 0.00000 0.000
Portugal 0.01953 0.00000 0.07430 0.00000 0.00000 0.000
Romania 0.02721 0.00000 0.08550 0.00000 0.00000 0.000
Slovakia 0.01982 0.00000 0.06086 0.00000 0.74654 0.000
Slovenia 0.01699 0.00000 0.05611 0.00000 5.32473 0.000
Spain 0.02721 0.00000 0.08552 0.00000 0.00000 0.000
Sweden 0.00492 0.00000 0.00510 0.00000 0.00000 0.000
United Kingdom 0.01283 0.00000 0.08750 0.00000 0.00000 0.000

b Assigned to indicate Bal et al. (2010) model results. All inputs of the raw data were sc
data.
(such as CO2emissions). On the other hand, managerial disposabil-
ity refers to increases in input vectors that can simultaneously in-
crease desirable output vectors and decrease undesirable output
vectors.

In our case, we have only considered natural disposability. By
further exploring the aspects of managerial disposability, techno-
logical innovation can be uncovered, especially in the context of
environmental modeling. For example, a country’s growth or pro-
ductivity (i.e. desirable output) is closely tied to its level of indus-
trialization, which is positively correlated to the by-product of CO2

emissions (i.e. undesirable output). The implication is such that
environmental strategies that are focused on curbing CO2 emis-
sions should not end up decreasing productivity due to the high
correlation between desirable and undesirable outputs. On the
methodological forefront, treating such problems may involve neg-
ative data, and interested readers may refer to the following papers
(see Emrouznejad, Amin, Thanassoulis, & Anouze, 2010;
Emrouznejad, Anouze, & Thanassoulis, 2010) for a solution.

Future researchers may also explore our BiO-MCDEA model in a
new light by applying the COOPER-framework (see Emrouznejad &
De Witte, 2010) which gives much thought to the structuring of
data. All of our variables are scaled by the population sizes of the
respective countries in order to eliminate the potential bias, given
that larger countries would naturally produce more emissions.
Nonetheless, it would be interesting to observe a different method
such as the clustering approach (see Amin, Emrouznejad, & Rezaei,
2011) for handling data from non-homogenous sets. This would
help in generating unbiased results while formulating energy pol-
icies that strike a balance between controlling CO2 emissions and
ensuring that the control measures do not impede on the produc-
tivity level, owing to a more comparable within-group effects.
Therefore, it is more feasible to investigate operational elements
that improve the output-input ratio for desirable outputs while
controlling for the output-input ratio for undesirable outputs. This
can only be achieved through innovative means in the process that
augment the production frontier.
= 0).

Performance

v2 v2
b v3 v3

b Eff. Rank Eff.b

00 0.88495 0.00000 0.00002 0.00000 0.718 8 0.00000
00 1.29635 0.00000 0.00013 0.00000 0.352 14 0.00000
00 0.28790 0.00000 0.00018 0.00000 0.116 25 0.00000
00 0.34229 0.00000 0.00021 0.00000 0.136 24 0.00000
00 0.18991 0.00000 0.00012 0.00000 0.165 22 0.00000
00 0.50657 0.00000 0.00000 0.00000 0.195 21 0.00000
00 0.40883 0.00000 0.00002 0.00000 0.202 20 0.00000
00 2.16515 0.00000 0.00015 0.00000 1.000 1 0.00000
00 1.22543 0.00000 0.00012 0.00000 0.673 9 0.00000
00 0.27892 0.00000 0.00017 0.00000 0.159 23 0.00000
00 2.06097 0.00000 0.00014 0.00000 0.580 11 0.00000
00 0.29005 0.00000 0.00021 0.00000 0.271 18 0.00000
00 1.63285 0.00000 0.00016 0.00000 0.854 6 0.00000
00 1.43718 0.00000 0.00000 0.00000 0.602 10 0.00000
00 1.09708 0.00000 0.00000 0.00000 0.446 13 0.00000
00 1.36516 0.00000 0.00014 0.00000 0.226 19 0.00000
00 1.43276 0.00000 0.00014 0.00000 0.516 12 0.00000
00 0.29352 0.00000 0.00018 0.00000 0.327 15 0.00000
00 1.53809 0.00000 0.00011 0.00000 0.917 3 0.00000
00 1.68894 0.00000 0.00017 0.00000 0.896 4 0.00000
00 1.18257 0.00000 0.00012 0.00000 0.878 5 0.00000
00 1.03927 0.00000 0.00007 0.00000 0.732 7 0.00000
00 1.68928 0.00000 0.00017 0.00000 1.000 1 0.00000
00 0.59294 0.00000 0.00000 0.00000 0.314 17 0.00000
00 0.44371 0.00000 0.00027 0.00000 0.322 16 0.00000

aled by the population size of their respective countries. See Appendix D for the raw
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Appendix A. Goal programming DEA model under VRS as
proposed in Bal et al. (2010) – GPDEA-BCC

min a ¼ d�1 þ dþ1 þ dþ2 þ
X

j

d�3j þ
X

j

dj

( )

Xm

i¼1

v ixio þ d�1 � dþ1 ¼ 1;

Xs

r¼1

uryro þ co þ d�2 � dþ2 ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ co þ dj ¼ 0; j ¼ 1; . . . ; n;

M � dj þ d�3j � dþ3j ¼ 0; j ¼ 1; . . . ;n;

ur P 0; r ¼ 1; . . . ; s;

v i P 0; i ¼ 1; . . . ;m;

dj P 0; j ¼ 1; . . . ;n;

d�1 ;d
þ
1 ;d

�
2 ;d

þ
2 P 0;

d�3j;d
þ
3j P 0; j ¼ 1; . . . ;n;

co free in sign
Appendix B. Proof of logical invalidity of GPDEA formulation

From Bal et al.’s GPDEA-CCR model (2):

Xs

r¼1

uryro þ d�2 � dþ2 ¼ 1 ðIÞ

Xm

i¼1

v ixio þ d�1 � dþ1 ¼ 1 ðIIÞ

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ dj ¼ 0 ðIIIÞ
Appendix D.
Appendix D. The energy dependency dataset

Dataset of 25 countries.

Countries Population (thousands) Outputs

Y1

Austria 8394 66.793
Belgium 10,712 6.083
Bulgaria 7494 9.808
Cyprus 1104 0.073
Czech Republic 10 493 6.783
Denmark 5550 27.390
Finland 5365 25.777
Multiplying equality (II) by �1:

�
Xm

i¼1

v ixio � d�1 � dþ1
� �

¼ �1 ðIVÞ

adding (I) and (IV) yields:

Xs

r¼1

uryro �
Xm

i¼1

v ixio þ d�2 � dþ2 � d�1 � dþ1
� �

¼ 0 ðVÞ

Suppose that j = o in equality (III):

Xs

r¼1

uryro �
Xm

i¼1

v ixio þ do ¼ 0 ðVIÞ

By considering (V) and (VI), it can be concluded:

do ¼ d�2 � dþ2 � d�1 � dþ1
� �

ðVIIÞ

Since the efficiency value for DMU under evaluation, ho, must be
equal to

Ps
r¼1uryro, (I) can be restated as:

ho ¼
Xs

r¼1

uryro ¼ 1� d�2 � dþ2
� �

Since ho = 1 � do in classical DEA, do ¼ d�2 � dþ2 in (viii) therefore, the
value of d�1 � dþ1 in (VII) must be equal to zero to render correctness.
Nonetheless, in Bal et al.’s GPDEA models, the weighted sum of in-
puts for DMU under evaluation

Pm
i¼1v ixio, can be zero or less than

unity, which is highly problematic. Without loss of generality, the
same problem applies to the GPDEA-BCC model.

Appendix C. Minsum BCC-DEA model under variable returns to
scale, a wrongly formulated VRS model

min
Xn

j¼1

dj

Xm

i¼1

v ixio ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ co þ dj ¼ 0; j ¼ 1; . . . ;n;

M � dj P 0; j ¼ 1; . . . ;n;

ur P 0; r ¼ 1; . . . ; s;

v i P 0; i ¼ 1; . . . ;m;

dj P 0; j ¼ 1; . . . ;n;
co free in sign
Inputs

Y2 X1 X2 X3

6.5 225 8810 31,887,710
3.3 362 2242 56,797,576
0.6 146 1087 40,591,231
2.0 13 98 5,089,082
3.4 425 2425 85,968,002
0.4 408 3242 23,912,314
2.3 661 7887 37,069,940



Appendix D. (continued)

Countries Population (thousands) Outputs Inputs

Y1 Y2 X1 X2 X3

France 62,787 13.547 6.0 1125 19,811 128,660,709
Germany 82,302 16.200 5.7 1997 27,693 391,714,624
Greece 11,359 12.276 1.1 162 1861 63,246,705
Hungary 9984 6.988 3.1 270 1854 23,844,843
Ireland 4470 13.925 1.9 124 641 19,951,911
Italy 60,551 20.536 3.8 1201 16,026 208,982,856
Latvia 2252 49.232 1.2 111 1567 3,532,491
Lithuania 3324 5.505 4.2 114 874 7,573,712
Luxembourg 507 3.678 2.1 15 121 2,488,229
Netherlands 16,613 9.152 4.2 443 3148 83,834,170
Poland 38,277 5.804 4.8 943 6265 202,011,597
Portugal 10,676 33.267 3.6 280 4734 30,902,050
Romania 21,486 27.916 1.6 275 5270 73,956,515
Slovakia 5462 17.880 8.6 201 1214 32,140,581
Slovenia 2030 36.783 1.9 100 887 8,216,051
Spain 46,077 25.747 3.5 1143 12,091 150,707,494
Sweden 9380 56.378 7.3 821 15,819 21,103,878
United Kingdom 62,036 6.664 2.7 1140 6214 217,404,830

Note: The data are taken from four databases: European commision’s Eurostat, Carbonmarketdata.com, www.i-insights.com and
United Nations, Department of Economic and Social Affairs.
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Appendix E. Statistical Analysis (BiO-MCDEA vs. GPDEA)

A number of researches (e.g. Bal et al., 2010; Bal, Örkcü, & Çele-
bioğlu, 2008) wrongly assume that the Mann–Whitney U test is
considered to be a non-parametric test because it does not rely
on homogeneity of variances (see Mann & Whitney (1947)). In
other words, a significant difference in scores between both groups
is presumed to indicate support for higher heterogeneity in the
data. This misinterpretation may stem from equating homogeneity
of data to a normally distributed data. Although there is no
assumption of normality, the Mann–Whitney U test still requires
data from both groups to be distributed in the same form (Golany
& Storbeck, 1999; Ward, Storbeck, Mangum, & Byrnes, 1997).

Zimmerman (2006) showed that type 1 error rates and the
power of two significance tests are distorted in the Mann–Whitney
U test under the influence of heterogeneity of variances. The prob-
lem exists even when sample sizes are equal, and are more pro-
nounced as sample sizes increase. Hence, studies (e.g. Bal et al.,
2010; Bal et al., 2008) that attempt to test whether input–output
weights are significantly dispersed in one DEA model as compared
to another should not be using the Mann–Whitney U test. In short,
Mann–Whitney U test is more appropriate when one wants to
compare two groups of decision making units with the same distri-
bution form through the use of order statistics (see Banker, Zheng,
& Natarajan, 2010).

To ascertain whether weight dispersion in one DEA model per-
forms better than another, a test for equality (or inequality) of vari-
ances must be conducted. Lim and Loh (1996) found Levene’s test
to be the most robust and powerful for small to medium sample
sizes when compared to other equality of variance tests such as
the Box-Andersen, Bartlett and Jacknife tests. The version of Le-
vene’s test mentioned in Lim and Loh (1996) is the One-way ANO-
VA F-test based on the median.

This study uses the nonparametric version of the Levene’s test,
which was found to have greater statistical power under skewed
population distributions, while maintaining the performance of
type 1 error rates (see Nordstokke & Zumbo, 2010). A one-way AN-
OVA is conducted on the absolute value of the mean ranks for each
group, such that the null hypothesis is that the populations are
identical in shape (but not necessarily location). The results indi-
cate that all of the 5 input–output variables are dispersed signifi-
cantly greater in the BiO-MCDEA model as compared to the
GPDEA model.
Appendix F. Mathematical Programming Codes

The Mathematica codes associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.ejor.2013.08.041.
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