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a b s t r a c t

Residual extropy was proposed to measure residual uncertainty of a random variable.
Monotone properties and characterization results of this measure were studied. Similar
properties of the proposed measure of order statistics were also discussed.
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1. Introduction

Let X be a non-negative and absolutely continuous random variable with probability density function (pdf) f . To measure

the uncertainty contained in X , the entropy was defined by Shannon (1948) as follows,

H(X) = −

∫
∞

0
f (x) log f (x) dx.

Recently, an alternative measure of uncertainty called extropy was proposed by Lad et al. (2015). For random variable X , its
extropy is defined as

J(X) = −
1
2

∫
∞

0
f 2(x) dx. (1.1)

One statistical application of extropy is to score the forecasting distributions. For example, under the total log scoring rule, the 
expected score of a forecasting distribution equals the negative sum of the entropy and extropy of this distribution (Gneiting 
and Raftery, 2007). In commercial or scientific areas such as astronomical measurements of heat distributions in galaxies, 
the extropy has been universally investigated (Furuichi and Mitroi, 2012; Vontobel, 2013). Most recently, Qiu (2017) further 
studied this new measure, exploring some characterization results, monotone properties and lower bounds of extropy of 
order statistics and record values.

As pointed out by Asadi and Ebrahimi (2000), if X is regarded as the lifetime of a newunit, thenH(X) is no longer useful for
measuring the uncertainty about remaining lifetime of the unit. In such situations, one should consider the residual entropy
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of X , which was proposed by Ebrahimi (1996) as the entropy of Xt = [X − t|X ≥ t], i.e.,

H(Xt ) = −

∫
∞

t

f (x)
F̄ (t)

log
f (x)
F̄ (t)

dx, (1.2)

where F̄ is the survival function of X . Analogous to (1.2), the residual extropy of X is defined as the extropy of Xt in this
paper. It is shown that the residual extropy of X is determined uniquely by its failure rate function in Section 2. Based on
this point, several distributions are characterized in terms of its residual extropy. In Section 3, somemonotone properties of
residual extropy of the first order statistic are built. We also show that the underlying distributions can be characterized by
the residual extropy of order statistics.

2. Residual extropy and characterization results

2.1. Residual extropy

By analogy to Ebrahimi (1996), we propose the following definition of the residual extropy. For random variable X , its
residual extropy is defined as

Jt (X) ≜ J(Xt ) = −
1
2

∫
∞

0
f 2t (x) dx = −

1
2F̄ 2(t)

∫
∞

t
f 2(x) dx, t ≥ 0, (2.1)

where ft (x) = f (x+ t)/F̄ (t), x ≥ 0, t ≥ 0, is the pdf of Xt . It is obvious that the residual extropy of a continuous distribution
is always negative, while the residual entropy of a continuous distribution may take any value on the extended real line,
including −∞ and ∞. It should be noted that if we put t = 0 in (2.1), then we get J0(X) = J(X), which coincides with (1.1).

The next theorem shows that the residual extropy of a randomvariable is determined uniquely by its failure rate function.

Theorem 2.1. The residual extropy Jt (X) of X is determined uniquely by rX (t), where rX (t) = f (t)/F̄ (t), t ≥ 0 is the failure rate
function of X.

Proof. It is obvious from (2.1) that

dJt (X)
dt

= −
1

2F̄ 4(t)

[
−f 2(t)F̄ 2(t) + 2F̄ (t)f (t)

∫
∞

t
f 2(x) dx

]
=

1
2

[
r2
X
(t) + 4rX (t)Jt (X)

]
.

Thus, we have
dJt (X)
dt

− 2rX (t)Jt (X) =
1
2
r2
X
(t). (2.2)

Solving the above differential equation leads to

Jt (X) = e2
∫
rX (t) dt

[
1
2

∫
r2X (t)e

−2
∫
rX (t) dt dt + C

]
, (2.3)

where C is a constant and is determined by Jt (X)|t=0 = J(X). This completes the proof. □

Remark 2.2. It follows from (2.2) that Jt (X) is increasing (decreasing) in t if and only if Jt (X) ≥ (≤) − rX (t)/4.

Example 2.3. Let X be a Pareto random variable with pdf f (x) = γαγ /(α + x)γ+1, x ≥ 0, α, γ > 0. Obviously,
rX (x) = γ /(α + x), x ≥ 0. It follows from (2.3) that

Jt (X) = e2
∫ γ
α+t dt

[
1
2

∫
γ 2

(α + t)2
e−2

∫ γ
α+t dt dt + C

]
= −

γ 2

2(2γ + 1)
1

α + t
+ C(α + t)2γ , t ≥ 0.

Letting t = 0, we have

Jt (X)|t=0 = −
γ 2

2α(2γ + 1)
+ Cα2γ

= J(X) = −
γ 2

2α(2γ + 1)
.

Thus, C = 0 and Jt (X) = −γ 2/[2(2γ + 1)(α + t)], t ≥ 0. Obviously, Jt (X) is increasing in t .

Table 1 lists the residual extropy (entropy) for some commonly-used distributions.
Next we will investigate alternative conditions under which Jt (X) is decreasing in t . To this end, we first recall the

definitions of two stochastic orders.
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Table 1
Residual extropy/entropy for some commonly-used distributions.

Name pdf Residual extropy Residual entropy

Finite range a(1 − x)a−1, x ∈ (0, 1), a > 1 −
a2

(4a−2)(1−t) log 1−t
a +

a−1
a

Uniform 1
b , x ∈ (0, b), b > 0 −

1
2(b−t) log(b − t)

Exponential λe−λx, x ≥ 0, λ > 0 −
λ
4 1 − log λ

Pareto γαγ

(α+x)γ+1 , x ≥ 0, α, γ > 0 −
γ 2

2(2γ+1)
1
α+t log α+t

γ
+

γ+1
γ

Power axa−1, x ∈ (0, 1), a > 0 −
a2(1−t2a−1)

2(2a−1)(1−ta)2
log 1−ta

a +
(a−1)ta log t

1−ta +
a−1
a

Definition 2.4 (Shaked and Shanthikumar, 2007). Let X and Y be two non-negative random variables with survival functions
F̄ and Ḡ, pdfs f and g , respectively. X is said to be smaller than Y

(1) in the likelihood ratio order, denoted by X≤lrY , if f (x)/g(x) is decreasing in x ≥ 0,
(2) in the usual stochastic order, denoted by X≤stY , if F̄ (x) ≤ Ḡ(x) for all x ≥ 0.

It is well known that X≤lrY H⇒ X≤stY , and X≤stY if and only if Eφ(X) ≤ Eφ(Y ) for all increasing functions φ.

Theorem 2.5. Let X be a random variable with cumulative distribution function (cdf) F and pdf f . If f (F−1(x)) is increasing in
x ≥ 0, then Jt (X) is decreasing in t ≥ 0.

Proof. Let Ut be a random variable uniformly distributed on (F (t), 1) with pdf gt (x) = 1/F̄ (t), F (t) < x < 1. Then, it follows
from (2.1) that

Jt (X) = −
1

2F̄ 2(t)

∫ 1

F (t)
f (F−1(u)) du

= −
1

2F̄ (t)

∫ 1

F (t)
gt (u)f (F

−1(u)) du

= −
1

2F̄ (t)
E
[
f (F−1(Ut ))

]
.

Suppose that 0 ≤ t1 < t2. Then gt1
(x)/gt2

(x) = ∞ if F (t1) < x ≤ F (t2), and gt1
(x)/gt2

(x) = F̄ (t2)/F̄ (t1), a constant,
if F (t2) < x < 1. Thus, gt1

(x)/gt2
(x) is decreasing in x ∈ (F (t1), 1), which implies Ut1≤lrUt2 . Hence, Ut1≤stUt2 and

0 ≤ E
[
f (F−1(Ut1 ))

]
≤ E

[
f (F−1(Ut2 ))

]
by the assumption that f (F−1(x)) is an increasing function. Since 0 < 1/F̄ (t1) ≤ 1/F̄ (t2),

we conclude the desired result by noting that

Jt1 (X) = −
1

2F̄ (t1)
E
[
f (F−1(Ut1 ))

]
≥ −

1
2F̄ (t2)

E
[
f (F−1(Ut2 ))

]
= Jt2 (X). □

Remark 2.6. The quantity f (F−1(x)) is known as the density-quantile function in the literature, and is used to approximate
the moments of order statistics (David and Nagaraja, 2003).

Remark 2.7. If X has the finite range distribution as in Table 1, then f (F−1(x)) = a(1 − x)(a−1)/a is decreasing in x ∈ (0, 1).
However, we know from Table 1 that Jt (X) is decreasing in t . So, the condition in Theorem 2.5 that f (F−1(x)) is increasing in
x is sufficient but not necessary.

Example 2.8. Let X be a B(2, 1) random variable with cdf F (x) = x2, 0 < x < 1, then f (F−1(x)) = 2
√
x, 0 < x < 1. The

condition of Theorem 2.8 is satisfied. Thus, the residual extropy of X is decreasing in t .

2.2. Characterizations of several distributions

The pdfs of some commonly-used distributions have been given in Table 1. Next we characterize some distributions in
terms of residual extropy.

Theorem2.9. Let X be a random variable with failure rate rX . If for all t ≥ 0, Jt (X) = −krX (t), where k is a non-negative constant.
Then X has

(1) a finite range distribution if and only if k > 1/4,
(2) an exponential distribution if and only if k = 1/4,
(3) a Pareto distribution if and only if k < 1/4.
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Proof. The necessities of Parts (1)–(3) can be verified easily by using Table 1. Next we only consider sufficiencies. Suppose
that Jt (X) = −krX (t) for all t ≥ 0. It follows from (2.2) that

r ′

X
(t)

r2
X
(t)

= −
1 − 4k
2k

, t ≥ 0.

Solving this equation yields rX (t) = 1/(pt + d), t ≥ 0,where p = (1 − 4k)/(2k), d = 1/rX (0).

(1) If k > 1/4, then p < 0, and rX (t) becomes the failure rate of a finite range distribution.
(2) If k = 1/4, then p = 0, and rX (t) turns out to be a constant,which is just the condition underwhichX has an exponential

distribution.
(3) If k < 1/4, then p > 0, and rX (t) becomes the failure rate of a Pareto distribution.

This completes the proof by noting that the distribution function is determined uniquely by its failure rate. □

3. Residual extropy of order statistics

Order statistics can be used in many fields, including statistical inference, goodness-of-fit tests, reliability, and quality
control. For example, in reliability theory, order statistics are used for statistical modeling. The ith order statistic in a
sample of size n represents the life length of an (n − i + 1)-out-of-n system. Recently, several authors studied the subject
of characterizing underlying distribution of a sample based on the entropy or its generalized versions of order statistics.
Baratpour et al. (2007, 2008) showed that Shannon entropy and Rényi entropy of the ith order statistic can characterize the
underlying distribution uniquely. Similar results can be found in Baratpour (2010) for cumulative residual entropy of the
first order statistic, and in Gupta et al. (2014) for dynamic entropy of the ith order statistic. In this section, we first study the
monotone properties of residual extropy, and then we show that the residual extropy of order statistics can also determine
the underlying distribution uniquely.

3.1. Monotone properties

Let X1, X2, . . . , Xn be independent random samples of size n from population X with cdf F and pdf f . Denote by X1:n ≤

· · · ≤ Xn:n the order statistics of X1, X2, . . . , Xn. The survival function and pdf of X1:n are given by F̄1:n(x) = F̄ n(x) and
f1:n(x) = nF̄ n−1(x)f (x), x ≥ 0, respectively. If f is decreasing, then f1:n(F−1

1:n (x)) = nx1−1/nf [F−1(1 − x1/n)] is increasing in
x ∈ (0, 1). Thus, we have the following result by Theorem 2.5.

Theorem 3.1. If X has a decreasing pdf f on [0, ∞), then Jt (X1:n) is decreasing in t ≥ 0.

The counterexample below shows that the result in Theorem 3.1 could not be generalized to Xi:n, i > 1.

Counterexample 3.2. Let X be a random variable with decreasing pdf f (x) = 1/(1 + x)2, x ≥ 0. The cdf of X2:2 is given by
F2:2(x) = x2/(1 + x)2, x ≥ 0. Thus,

Jt (X2:2) = −2
1[

1 −
t2

(1+t)2

]2

∫
∞

t

x2

(1 + x)6
dx, t ≥ 0.

Since J0.4(X2:2) = −0.0676073 < −0.0624589 = J0.8(X2:2), Jt (X2:2) is not decreasing in t.

The following theorem shows that Jt (X1:n) is also decreasing in n if f is decreasing.

Theorem 3.3. If X has a decreasing pdf f on [0, ∞), then Jt (X1:n) is decreasing in n ≥ 1.

Proof. We note that the pdf of [X1:n|X1:n > t] is given by

g t
1:n

(x) =
nF̄ n−1(x)f (x)

F̄ n(t)
, x ≥ t.

We also note that
g t
1:(2n−1)

(x)

g t
1:(2n+1)

(x)
=

(2n − 1)F̄ 2(t)
(2n + 1)F̄ 2(x)

is increasing in x ∈ [t,∞). Thus, [X1:(2n+1)|X1:(2n+1) > t] ≤lr [X1:(2n−1)|X1:(2n−1) > t], which implies [X1:(2n+1)|X1:(2n+1) >

t] ≤st [X1:(2n−1)|X1:(2n−1) > t]. If f is decreasing, then,

E[f (X1:(2n+1))|X1:(2n+1) > t] ≥ E[f (X1:(2n−1))|X1:(2n−1) > t].
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Fig. 1. Jt (Xn:n) of a random variable with pdf f (x) = 1/(1 + x)2, x ≥ 0 for t = 0.4 and n = 1, 2, . . . , 10.

Now, it follows from (2.1) that

Jt (X1:n) = −
n2

2F̄ 2n(t)

∫
∞

t
F̄ 2n−2(x)f 2(x) dx

= −
n2

2(2n − 1)F̄ (t)

∫
∞

t

(2n − 1)F̄ 2n−2(x)f (x)
F̄ 2n−1(t)

f (x) dx

= −
n2

2(2n − 1)F̄ (t)

∫
∞

t
g t
1:(2n−1)

(x)f (x) dx

= −
n2

2(2n − 1)F̄ (t)
E[f (X1:(2n−1))|X1:(2n−1) > t]. (3.1)

Hence,

Jt (X1:n)
Jt (X1:(n+1))

=
n2(2n + 1)

(n + 1)2(2n − 1)
E[f (X1:(2n−1))|X1:(2n−1) > t]
E[f (X1:(2n+1))|X1:(2n+1) > t]

≤
E[f (X1:(2n−1))|X1:(2n−1) > t]
E[f (X1:(2n+1))|X1:(2n+1) > t]

≤ 1.

This completes the proof since the residual extropy of a random variable is non-positive. □

One may wonder whether the first order statistic X1:n in Theorem 3.3 can be replaced by order statistics Xi:n, i > 1. The
following counterexample gives a negative answer.

Counterexample 3.4. Let X be as defined in Counterexample 3.2. The residual extropy of Xn:n is given by

Jt (Xn:n) = −
1

2
[
1 −

tn
(1+t)2n

]2

∫
∞

t

n2x2n−2

(1 + x)2n+2 dx, t ≥ 0.

Fig. 1 shows that J0.4(Xn:n) is increasing in n ∈ {1, 2, . . . , 10} although f is decreasing.

3.2. Characterizations of underlying distributions of order statistics

Qiu (2017) showed that the underlying distribution can be characterized uniquely by the extropy of the ith order statistic.
In this subsection,we show that the residual extropy of the ith order statistic can also characterize the underlying distribution
uniquely.
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Theorem 3.5. Let Jt (X1:n) and Jt (Y1:n) be the residual extropy of the first order statistic from X and Y , respectively. Then X d
= Y if

and only if for all t ≥ 0 and n ≥ 1, Jt (X1:n) = Jt (Y1:n).

Proof. It suffices to prove the sufficiency. Denote the residual lifetime of X1:n at age t ≥ 0 by X1:n; t = [X1:n − t|X1:n ≥ t].
Then the survival function of X1:n; t is given by F̄1:n; t (x) = F̄1:n(t + x)/F̄1:n(t) =

[
F̄ (t + x)/F̄ (t)

]n
, x ≥ 0, t ≥ 0. Therefore,

X1:n; t
d
= min{X1; t , X2; t , . . ., Xn; t}, (3.2)

where Xi; t = [Xi − t|Xi ≥ t], i = 1, 2, . . . , n. If Jt (X1:n) = Jt (Y1:n) for all t ≥ 0 and n ≥ 1, then by (3.2) and Remark 3.3 in
Qiu (2017) that Xt

d
= Yt for all t ≥ 0. i.e. Ft (x) = Gt (x) for all x ≥ 0 and t ≥ 0, where Ft (x) and Gt (x) are cdfs of Xt and Yt ,

respectively. Thus, F (x + t) = F̄ (t)G(x + t)/Ḡ(t) for all x ≥ 0 and t ≥ 0. Letting x → ∞ yields that F̄ (t) = Ḡ(t) for all t ≥ 0,
that is, X and Y have the same distribution function. □

To generalize Theorem 3.5 from X1:n to Xi:n, i ≥ 1, we consider the problem of finding a sufficient condition for the unique
solution of the initial value problem (IVP)

dy
dx

= f (x, y), y(x0) = y0, (3.3)

where f is a function of two variables whose domain is a region D ⊂ R2, (x0, y0) is a point in D and y is the unknown
function. By the solution of (3.3), we find a function ϕ which satisfies the following conditions: (i) ϕ is differentiable on I ,
(ii) the growth of ϕ lies in D, (iii) ϕ(x0) = y0 and (iv) ϕ′(x) = f (x, ϕ(x)), for all x ∈ I . The following theorem will be used to
prove our characterization results.

Theorem 3.6 (Gupta and Kirmani, 1998). Let f be a continuous function defined in a domain D ⊂ R2 and let f satisfy Lipschitz
condition (with respect to y) in D, that is |f (x, y1) − f (x, y2)| ≤ k|y1 − y2|, k > 0, for every point (x, y1) and (x, y2) in D. Then
the function y = ϕ(x) satisfying the IVP y′

= f (x, y) and y(x0) = y0, x ∈ I , is unique.

We use the following lemma to present a sufficient condition which guarantees that the Lipschitz condition is satisfied
in D.

Lemma 3.7 (Gupta and Kirmani, 2008). Suppose that the function f is continuous in a convex region D ⊂ R2, ∂ f
∂y exists and is

continuous in D. Then f satisfies the Lipschitz condition in D.

Theorem 3.8. Let Jt (Xi:n) and Jt (Yi:n) be the residual extropy of the ith order statistic from X and Y , respectively. Then X d
= Y if

and only if for all t ≥ 0 and n ≥ i, Jt (Xi:n) = Jt (Yi:n).

Proof. It suffices to prove the sufficiency. It is known from (2.2) that

dJt (Xi:n)
dt

− 2rXi:n (t)Jt (Xi:n) =
1
2
r2
Xi:n

(t), t ≥ 0.

Taking derivative of the above equation with respect to t , we have

drXi:n (t)

dt
=

d2

dt2
Jt (Xi:n) − 2rXi:n (t)

d
dt Jt (Xi:n)

rXi:n (t) + 2Jt (Xi:n)
.

Assume that Jt (Xi:n) = Jt (Yi:n) = v(t) for all t ≥ 0, n ≥ i. Then for all t ≥ 0,

drXi:n (t)

dt
= ψ(t, rXi:n (t)),

drYi:n (t)

dt
= ψ(t, rYi:n (t)),

where

ψ(t, y) =
v′′(t) − 2yv′(t)

y + 2v(t)
.

It follows from Theorem 3.6 and Lemma 3.7 that rXi:n (t) = rYi:n (t) for all t ≥ 0, which implies Fi:n(t) = Gi:n(t) for all t ≥ 0,
where Fi:n(t) and Gi:n(t) are cdfs of Xi:n and Yi:n, respectively. In view of F (t) = B−1

i,n−i+1(Fi:n(t)), G(t) = B−1
i,n−i+1(Gi:n(t)), t ≥ 0,

where Bi,n−i+1(t) is the cdf of the beta distribution with parameters i and (n − i + 1), we have F (t) = G(t) for all t ≥ 0. The
desired result is proved. □

To end this subsection, we give new characterizations of several distributions in terms of residual extropy of the first
order statistic. The proof is similar to that of Theorem 2.9 and hence, is omitted by noting that rX1:n (t) = nrX (t) for all
t ≥ 0.
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Theorem 3.9. Let X be a random variable with failure rate rX . If Jt (X1:n) = −krX (t) for all t ≥ 0, where k is a non-negative
constant. Then X has

(1) a finite range distribution if and only if k > n/4,
(2) an exponential distribution if and only if k = n/4,
(3) a Pareto distribution if and only if k < n/4.

3.3. Two corollaries and further discussions

Given the (i−1)th order statistic, the ith order statistic can be viewed as the first order statistic froma residual distribution.
Therefore, we have the following two corollaries.

Corollary 3.10. If X has a decreasing pdf f on [0, ∞), then

(1) J(Xi:n − X(i−1):n|X(i−1):n = t) is decreasing in t ≥ 0 for fixed n and i ≥ 2,
(2) J(Xi:n − X(i−1):n|X(i−1):n = t) is decreasing in n for fixed t ≥ 0 and i ≥ 2.

Proof. By Proposition 2.1 in Hu and Zhuang (2005), we have [Xi:n − X(i−1):n|X(i−1):n = t] d
= X t

1:(n−i+1), where X t
1:(n−i+1) is the

first order statistic in a sample of size (n − i + 1) from distribution Ft (x) = 1 − F̄ (t + x)/F̄ (t), x ≥ 0, t ≥ 0. According to
(3.2), we further have

X t
1:(n−i+1)

d
= min{X1; t , X2; t , . . ., X(n−i+1); t}

d
= X1:(n−i+1); t .

Thus, J(Xi:n − X(i−1):n|X(i−1):n = t) = J(X1:(n−i+1); t ) = Jt (X1:(n−i+1)) and the proof is completed by Theorems 3.1 and 3.3. □

Similarly, we can prove the following corollary of Theorem 3.5.

Corollary 3.11. X d
= Y if and only if for all t ≥ 0 and n ≥ i ≥ 2, J(Xi:n − X(i−1):n|X(i−1):n = t) = J(Yi:n − Y(i−1):n|Y(i−1):n = t).

In addition, the characterization results in this paper may be used in goodness-of-fit tests. Let X1, . . . , Xn be random
samples of size n, from a population with unknown cdf F . We wish to test the null hypothesis H0 : F (x) = F0(x) for all x ≥ 0,
against H1 : F (x) ̸= F0(x) for some x ≥ 0, where F0(x) = 1 − e−λx, λ > 0, x ≥ 0. The importance of this test is that the
exponential distribution plays an important role in reliability theory. Thus, according to Theorem 3.9, the above goodness-
of-fit problem is equivalent to test the null hypothesis H0 : Jt (X1:n)+ nλ/4 = 0 for all t ≥ 0, against H1 : Jt (X1:n)+ nλ/4 ̸= 0
for some t ≥ 0. Recall that the maximum likelihood estimate for parameter λ is n/

∑n
i=1Xi. If we have a good estimate for

Jt (X1:n), say Ĵt (X1:n), then the large values of Ĵt (X1:n)+n2/(4
∑n

i=1Xi) can be regarded as a symptom of non-exponentiality and
therefore we reject the null hypothesis.

Note from (3.1) that Jt (X1:n) can be rewritten as

Jt (X1:n) = −
n2

2F̄ 2n(t)

∫ 1

0
(1 − u)2n−2

[
dF−1(u)

du

]−1

1(u ≥ F (t)) du,

where 1(u ≥ F (t)) denotes the indicator function of {u ≥ F (t)}. Similar to Park (1999), a sample estimate of Jt (X1:n), based
on sample of size k, may be constructed as

Ĵt (X1:n) = −
n2

2[1 − F̂ (t)]2n

k∑
i=1

[(
1 −

i
k + 1

)2n−2 2m
k2(Xi+m:k − Xi−m:k)

1
(

i
k + 1

≥ F̂ (t)
)]

,

where m ≤ k/2 is a positive integer which is called window size, F̂ is the empirical distribution function of X , Xi:k = X1:k if
i < 1 and Xi:k = Xk:k if i > k.
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