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Abstract: With the development of smart grid, energy consumption on residence will play an important role in the electricity
market, while the Home Energy Management System (HEMS) has huge potential to help energy conservation. In this study, a
practical HEMS model with renewable energy, storage devices and plug-in electric vehicles, considering the battery
sustainability and the full utilisation of the renewable energy, is first established. Then, according to the combinations of the
genetic algorithm (GA) and the multi-constrained integer programming method, an improved GA is proposed, which goal is to
minimise the electricity purchase and maximise the renewable energy utilisation. Finally, it is demonstrated by an example that
the proposed method is significant in cost saving and reducing energy wastes. To verify the performances of the proposed
algorithm, the numerical results indicate that the proposed algorithm has high computational efficiency and good robustness. In
addition, it can avoid the disadvantages easy to trap at a local optimal point, and are insensitive to initial solutions. The effect of
the storage device on system property and the sensitivity of cost savings versus demand response, size of the battery, and the
electricity price sell to the grid are also analysed.

1 Introduction
1.1 Motivation and background

Recently, the energy consumption increased quickly. The energy
consumption on residence and business will increase to 20–40% of
the total global energy consumption in the next decade and will
play a decisive role in the electricity market [1]. Driven by the
concept of smart grid, the usage habit of energy for customers and
metering methods of electrical energy will be radically changed. In
the context of giving priority to energy-saving, it is necessary to
achieve the intelligence of household appliances, which will
encourage and help the customers to use electric power reasonably.
The demand response (DR) is introduced to enhance the interaction
between the grid and the user by the price signal and the incentive
mechanism [2]. DR means that when users receive the guiding
signal given by the power supply company, they will change their
ingrained usage pattern. That is to say, they will reduce or delay the
load to ensure the stability of power system [3], when the
reliability of the power system is faced with challenges.

Energy management in household attracts more and more
attention with the increasing demand of household energy. HEMS
(Home Energy Management System) make full use of sensors to
find superfluous energy and control household appliances to
achieve the purpose of saving energy, which will take into account
the trade-off between the family energy saving and the comfortable
life. It has profound impact on reducing energy waste, improving
energy efficiency and changing the concept of energy conservation.
The HEMS utilises optimal scheduling and advanced control
methods to maximise energy savings and ensure customer
satisfaction. It is crucial important to seek efficient and practical
intelligent algorithms to solve the optimal scheduling problem of
HEMS.

1.2 Literature overview

In the HEMS, system modelling and scheduling strategy are two
main research focuses [4].

Yi et al. [5] and Pipattanasomporn et al. [6] save residents’
electricity bills by scheduling household appliances in the light of
DR schemes. Ranjan and Thomas [7] proposed a model for HEMS
which considers the customer's preferences and maintains the
power consumption below the sanctioned limit such that the
minimum comfort violation occurs. However, the models in [6, 7]
only adopted DR as a signal to guide the user's behaviour, not
provided an operating strategy considering real-time electricity
price variability to minimise the daily cost. Paterakis et al. [8]
proposed a half-hour-ahead rolling optimisation to achieve
household economic benefits in response to real-time electricity
price (RTP) schemes, which can optimise the schedule for home
appliances and battery charging/discharging behaviour, even if the
forecasted information is not accurate. The models mentioned
above only use single signal (DR or RTP) to guide the scheduling,
and it is obvious that both of them are helpful to the energy
management of the household. The model will be excellent if two
signals are combined to guide the scheduling.

Kazemi et al. proposed a method based on grey wolf
optimisation and genetic algorithm (GA) to achieve the optimal
schedule for appliances in terms of cost and peak-to-average ratio
(PAR) [9]. However, in the system model, renewable energy,
storage batteries and electric vehicles (EVs) are not taken into
account. Kuzlu proposed a smart HEM model including renewable
sources and energy storage system (ESS), which achieves the goals
of resource conservation and cost saving [9]. However, in the
models mentioned above the renewable energy utilisation, the
battery sustainability and the power interaction costs are not
considered in the process of modelling. Therefore, it is necessary to
structure a more practical and comprehensive HEMS model.

The optimal scheduling is a multiple dimension, non-linear
problem with various constraint conditions. There are many
optimal algorithms, such as mixed-integer programming, real-time
rolling optimisation, particle swarm optimisation (PSO), and
dynamic priority algorithm. In [10–12], HEMS optimisation was
considered as mixed-integer linear programming (MILP) problems
and formulated by some mature mathematical programming
optimisation procedures. Chen et al. [10] and Erdinc et al. [11]
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solved the problem by MILP solvers (CPLEX), while Huang et al.
[12] solved this MILP problem by linear interactive and general
optimiser. These solvers can solve the optimisation problem
quickly. In some cases, the calculation only needs times in the level
of milliseconds. However, the solver handles the constraints in a
simple way (especially in integer programming problems). In this
case, we can only get sole solution ultimately, which cannot
evaluate the performance of solution comprehensively, and it is
really hard to apply in the real situation. What's more, because the
solving process cannot be changed, in order to improve the
performance, what we can do is to optimise the model. To improve
the adaptability, intelligent algorithms are adopted to solve HEMS
scheduling problem. PSO is one of the heuristic algorithms, which
is often used in HEMS optimal scheduling. Rehman [13] designed
a binary PSO (BPSO) algorithm. It manages energy demand
according to power supply, by automatically controlling the
appliances or by shifting the load from peak to off peak hours.
However, the PSO is suitable for solving real number optimisation
problems rather than discrete optimisation problems. For discrete
optimisation problems (e.g. HEMS), it is easy to fall into local
optimum. Geng et al. [14] adopted discrete multi-objective
bacterial colony chemotaxis algorithm (DMOBCC) to solve the
HEMS scheduling problem. The objective function is to minimise
the users’ electricity costs as well as maximise the users’
satisfaction. Basit et al. [15] proposed a Dijkstra algorithm to solve
HEMS scheduling problem, which has much lower complexity.
Multi-objective kinetic-molecular theory optimisation algorithm in
[5] and electron drifting algorithm in [16] were also proposed,
which schedule their power consumption to save energy, reduce
emission, shift peak load and reduce the financial burden.
Compared with the traditional heuristic algorithms, these
algorithms can reduce the complexity, however, there is no definite
rule for various parameter settings, and it has a large uncertainty.
Furthermore, the ability to handle large quantities of variables at
the same time is limited.

The GA can deal with either linearly or non-linearly, discrete or
continuous objective functions and constraints. The ergodic
properties of evolutionary operators make it possible to effectively
perform global optimisation in a probabilistic sense. Javaid et al.
[17] adopted GA for HEMS scheduling, the coding method can
handle more different types of variables at the same time, which
overcome the drawback mentioned above. However, traditional
GA is easy to trap in a local optimal and sensitive to give initial
solutions. In order to avoid these shortcomings, the performance of
the traditional GA needs to be improved, and it is the focus of this
paper.

In summary, there exist some problems that need to be
addressed suitably:

i. Although the models mentioned above can achieve the purpose
of reducing electricity costs or increasing user's satisfaction,
the renewable energy utilisation, the battery sustainability and
power interaction costs are still not addressed in the previous
works, which can cause energy wastage and extra cost.

ii. Considering the calculation time and complexity, the above
algorithms have weak convergence performance and are easy

to plunge into local optima. Moreover, they are sensitive to
given initial solutions.

1.3 Contributions and organisation

The main contribution of this paper can be represented as follows:

i. We incorporate the battery sustainability and the full utilisation
of the renewable energy into the system, and establish a more
comprehensive and practical model, which was not mentioned
in the previous work.

ii. Combining the GA and the multi-constrained integer
programming method, an improved GA named multi-
constrained integer programming genetic algorithm (MCIP–
GA) is proposed, which goal is to minimise the electricity cost
and maximum the utility of renewable energy. The proposed
algorithm can avoid the disadvantages which are easy to trap in
a local optimal and are sensitive to given initial solutions. We
also prove that the algorithm generates solution significantly
shorter than the previous methods.

The paper is organised as follows: Section 2 establishes the
system model, including the mathematical model of all devices.
Section 3 presents the HEMS scheduling objectives. Section 4
gives the design of MCIP–GA. Section 5 gives the analysis of the
simulation experiment. Section 6 summarises the full text.

2 System model
In this paper, the model contains household appliances, distributed
power generation (DG), EV and energy storage devices. Combined
with the RTP and DR (the upper limit of electric power)
information provided by the grid, the surplus energy can be sold to
the grid.

The framework of HEMS is shown in Fig. 1, where the
information of the next scheduling cycle in the family, the output
power of DG, RTP and DR, will transmit to the energy
management controller before scheduling. RTP adopts the forecast
data. Each device is equipped with smart sockets, and the
scheduling controller will communicate with each endpoint
through wireless ZigBee network so as to achieve fully automatic
control of household appliances. 

2.1 Electric devices models

According to the flexibility of scheduling time, the load can be
divided into the rigid load (such as lighting, television, and
computer) and flexible load. For the rigid load, when being
requested, it should be served immediately. The user's satisfaction
will decrease if the rigid load participates in the scheduling. The
flexible load has little effect on user's satisfaction and has time
elasticity, which is sensitive to RTP and DR.

The household appliance is modelled according to the
properties of the device. H is defined as the scheduling space. In
this paper, one day is divided into 48 continuous time slots Δh,
Δh = 1, 2, …, 48. All appliances are represented by a collection of
A, each of them is represented by a, a ∈ A. The power of the
device is expressed as Pa, and Pa(h) represents the power in per
slots. The da is the length of time to complete the task of a, and
[αa, βa] is the allowable operation time range set by the user, which
is the slots user expects device to work. An auxiliary binary
variable Sa is introduced to indicate the state of the appliance, and
Sa(h) = 0 indicates that a is closed during the h, and Sa(h) = 1 is
on.

The device a should satisfy the basic time constraints shown as
follows:

∑αa

βa Sa(h) = da

1 ≤ αa ≤ H − da + 1
da ≤ βa ≤ H

(1)

Fig. 1  HEMS framework
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Sa(h) = 0, h ∈ H∖ αa, βa (2)

Ea = Pa × da (3)

The above constraints are for all flexible loads, where Ea and Pa in
(3) are the total power consumed and the sum of power consumed
in the unit slot, respectively.

2.2 Load models

The flexible load can be divided into interruptible load (such as
EVs) and non-interruptible load (such as washing machines and
dishwashers).

(i) Interruptible loads

Sa(h) = {0, 1}, h ∈ [αa, βa] (4)

∑
h = αa

βa

Sa(h) × Pa = Ea (5)

(ii) Non-interruptible loads: Some device cannot be interrupted
from start working to the completion of the task. Regarding the
above situation, new constraints should be added to

∑
h = τ + 1

τ + da

Sa(h) ≥ Ja ⋅ [Sa(τ + 1) − Sa(τ)]

τ ∈ [αa − 1, βa − da]
(6)

where Ja indicates the number of time slots required for device
operation, and if the device is started at τ + 1, it will last for at least
da hours.
(iii) Air conditioner system

Tin(h) = Tin(h) ⋅ e−(Δh/ξ) + Req ⋅ Pa(h) ⋅ Kairc ⋅ 1 − e−(Δh/ξ)

+Tout(h) ⋅ 1 − e−(Δh/ξ)
(7)

where Tin is the indoor temperature, Tout is the outdoor
temperature, Pa(h) is the power of air conditioner, Req is the
equivalent thermal resistance of room, Kairc is the power
conversion coefficient, constant ξ = Mair ⋅ C ⋅ Req, Mair is the indoor
air quality, and C is the atmospheric heat capacity at atmospheric
pressure C = 0.525 kWh/∘C .

Tin
min ≤ Tin(h) ≤ Tin

max (8)

The indoor temperature should be kept within the pre-set range
Tin

min, Tin
max .

The energy consumption of the air conditioning in a time slot
should meet the following constraints:

0 ≤ Pa(h) ≤ Pa
max ⋅ Sa(h) (9)

where Pa
max is rated power.

(iv) Water heater system: The temperature of hot water is related to
water temperature, environmental temperature, flow rate of hot
water, structure of water heater, rated power and so on

Twater(h + 1) = Twater(h) ⋅ e− (1/R′(h) ⋅ C) ⋅ Δh + 1 − e− (1/R′(h) ⋅ C) ⋅ Δh

× GEWH ⋅ R′(h) ⋅ TEWH, env(h)
+B(h) ⋅ R′(h) ⋅ TEWH, in(h) + Q(h) ⋅ R′(h)

(10)

where Twater, TEWH, env, TEWH, in are the temperature of the hot
water, the ambient temperature, and the water temperature of the
inlet valve in the time slot h, respectively.

The significance of other parameters is given in [18].

The water temperature should be kept within the pre-set range
Twater

min , Twater
max .

Twater
min ≤ Twater(h) ≤ Twater

max (11)

2.3 Storage battery model

The storage battery dynamically adjusts charge or discharge
behaviour according to the system energy, which can bring more
flexibility to the optimisation. The storage state should be
considered, this paper characterises it with the state of charge
(SOC). SOC reflects the ratio of the battery's remaining capacity to
its rated capacity. An auxiliary binary variable Sbatt is introduced to
indicate the state of the battery (Sbatt(h) = 1 indicates the state of
charging and Sbatt(h) = 0 indicates the state of discharging). And
the dynamic process is as follows:

SOC(h + 1) = SOC(h) + (Pbatt
ch (h) − Pbatt

dch(h)) ⋅ h
Ebatt

(12)

where Pbatt
ch (h) and Pbatt

dch(h) denote charging and discharging powers
of the battery, respectively, and Ebatt is the rated capacity of the
battery.

In order to prolong the lifetime of the battery, it is necessary to
limit the SOC to a certain range, the constraint conditions are
described as follows:

SOCmin < SOC(h) < SOCmax (13)

where SOCmax and SOCmin denote the upper and lower limits of
battery's SOC, respectively.

Considering the charging and discharging efficiencies of the
battery, the charging and discharging limits of the battery are as
follows:

0 ≤ Pbatt
ch (h)
ηch

≤ Pch
max ⋅ Sbatt(h) (14)

0 ≤ Pbatt
dch(h) ⋅ ηdch ≤ Pdch

max ⋅ (1 − Sbatt(h)) (15)

where ηch, ηdch are the battery's charging and discharging
efficiencies, respectively, Pch

max, Pdch
max are the battery maximum

charging and discharging powers, respectively.
Pbatt(h), the output power of the battery (positive value for

charging and negative value for discharging), is calculated as

Pbatt(h) =
Pbatt

ch (h)
ηch

⋅ Sbatt(h) − Pbatt
dch(h) ⋅ ηdch ⋅ (1 − Sbatt(h)) (16)

2.4 EV model

The model of EV is similar to a storage battery, but the
performance of the EV's battery will get worse. In order to prolong
the lifetime of the EV, as far as possible to reduce the battery
discharge operation, so in this paper, the EV can only be charged.
The dynamic process is described as follows:

SOCEV(h + 1) = SOCEV(h) + PEV
ch (h) ⋅ h

EEV
(17)

Equation (17) indicates that the EV is a flexible load in the system,
EV can only accept the power PEV

ch (h) .

SOCEV
min ≤ SOCEV(h) ≤ SOCEV

max (18)
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Constraints (18) limits the scope of SOC between SOCEV
min and

SOCEV
max.

0 ≤ PEV
ch (h)
ηch

≤ Pch
max ⋅ SEV(h) (19)

Constraints (19) impose a limit on the charging power of the EV

∀h ∈ Ta, Tb (20)

where Ta, Tb represent the arrival time of the EV to household and
the departure timing of the EV from household, respectively. The
scheduling must be performed in this interval

PEV(h) =
PEV

ch(h)
ηch

⋅ SEV(h) (21)

where PEV(h) is the output power of the battery (positive value for
charging and negative value for discharging), is calculated as

SOCEV
ini = SOCEV Ta (22)

Equation (22) limits the SOC of EV at the arrival time
SOCEV Ta , which coincides with the initial state-of-energy of

the EV SOCEV
ini .

SOCEV(h) = SOCEV
ini , ∀h ∉ Ta, Tb (23)

If it is not in the scheduling range, the state-of-energy of the EV
will remain the initial state.

3 Scheduling objective
The scheduling objective is to minimise the electricity purchase
from grid and maximise the renewable energy utilisation, the
power consumed during per slot is shown as

Ptotal(h) = ∑
a = 1

m + n
Sa(h) ⋅ Pa(h) + Pmust(h) + Pbatt(h) − PDG(h) (24)

where the first term represents the power consumption of flexible
load, Pmust(h) is the rigid load's consumption, Pbatt(h) indicates the
battery output (positive charge, negative discharge), and PDG(h)
indicates the DG output. The objective function is shown as

min ∑
h = 1

48
Ptotal(h) ⋅ RTP(h)

s . t . Ptotal(h) ≤ D(h)

∑
h = 1

48
∑
a = 1

m + n
Sa(h) = ∑

a = 1

m + n
da

(25)

The constraint indicates that the power consumption of perslot
should not exceed the maximum power limit.

4 MCIP–GA design
The GA can deal with either linearly or non-linearly, discrete or
continuous objective functions and constraints. But it is easy to trap
in a local optimal and sensitive to given initial solutions. In order to
improve the performance of the traditional GA, initialisation
operator, repair operator and dynamic mutation are introduced to
the algorithm.

4.1 Algorithm design

A large number of invalid chromosomes are generated in the
iterative process, which reduce the valid evolution mode of the

population. It is necessary to design reasonable initialisation,
crossover and mutation operator to make it ‘valid,’ where ‘valid’
means that the solution space generated by the genetic operators
satisfies the equation constraint.

(i) Chromosome coding: The chromosomes of GA has binary
encoding, which can represent the working state of the devices at
different time slots, and 0/1 indicates that the device is turned
off/on. The chromosome of a can be expressed as
Xa = Xa

h, h = 1, 2, . . . , 48 = Xa
1, Xa

2, . . . , Xa
48 . For the non-

interruptible device, the start time is Xa
τ, and the end time is Xa

τ + da.
All conditions of the non-interruptible device can be expressed by
the start time with one code. The total number of ‘1’ can express
the number of total working periods, and the allowable working
range can be set by limiting the beginning and the end range of the
‘1’. There are m non-interruptible devices, and n interruptible
devices, all the devices state composed an individual as follows:

X = Xa, a ∈ 1, …, m + n =

X1
1 X1

2 ⋯ X1
48

⋮ ⋮ ⋮ ⋮
Xm

1 Xm
2 ⋯ Xm

48

⋮ ⋮ ⋮ ⋮
Xm + n

1 Xm + n
2 ⋯ Xm + n

48

(26)

(ii) Initial population generating: Initial population randomly
generated is the start of search, and it is necessary to ensure all
individuals are valid in the groups. The initialisation operator can
generate solutions in da, any solution randomly generated is an
individual which meets the constraints. The initialisation operator
can directional and randomly generate population with a uniformly
distributed. Therefore, it can effectively overcome the sensitivity of
given initial solutions, and the convergence performance of the
algorithm is improved. For example, the initial solution of a device
can be randomly generated under the scheduling interval αa, βa ,
and the working time da = 5, where the genotype is shown as
follows:

Xa = 00000000100100111000
[αa, βa]

…00000.

(iii) Fitness function: The fitness is the basis of measuring the
individual quality, which drives the evolution process, and gives
the quality degree of each individual. Then objective function is
shown as

objvalue(h) = ∑
h = 1

48 ∑
a = 1

m + n
Sa(h) ⋅ Pa(h) + Pmust(h)

+Pbatt(h) − PDG(h)
⋅ RTP(h) (27)

where pmust(h) is the rigid load.
The GA is based on the fitness degree to determine how much

the individual in the current group has the chance to pass on to the
next generation, and it requires that the fitness value must be non-
negative. It is necessary to convert the target function from the
minimum cost to the maximum cost. Therefore, the fitness is the
reciprocal of the objective function

fitness(h) = 1
obivalue(h) + c (28)

where c is the threshold, which depends on the initial value.
(iv) Selection: The roulette wheel selection is used to select the
excellent individuals from the current population, so they have the
opportunity to be the father to multiply the descendants for the next
generation. Strong-adaptability individuals make a contribution to
a large probability of one or more offspring for the next generation.
(v) Crossover: The individuals X1 and X2 are two-dimensional
matrices, which are selected by the crossover probability Pc, and
each row will be crossed. Since the non-interruptible device is
represented by only one bit, it has no practical meaning to cross, so
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it does not participate. Interruptible device cross by a single point,
which cross at random position produced in the allowable
operation time range. It is necessary to detect chromosomes after
crossover. For the infeasible chromosomes, the repair operator
fixes it to a feasible solution. The repair method is to detect the
degree genotype deviate from the constraint (dBite, be
dBite = Xda(a) − Xconstraint), and then select the correct genotype
randomly, at last reverse the gene value.
(vi) Mutation: All individuals with less than the mutation
probability Pm1 participate in the mutation, evidently. When
approaching the optimal solution (the fitness of the optimal
solution has not changed for a long time), the mutation rate is
improved to Pm2 so as to prevent solution from falling into the local
optimal solution. The mutated chromosome may be infeasible and
also needs to be repaired.

Due to the operations of crossover, mutation cooperate, and
compete with each other, the GA has the search capability of
balancing both the global and the local. Mutation operation is to
repair some genetic genes that may be lost in the process of
crossover. The mutation reflects the local search ability of GA
meanwhile maintains the diversity of the population. If the
crossover rate and mutation rate are selected appropriate, the GA
will avoid prematurely.

The proposed MCIP–GA can effectively avoid premature
convergence mainly because of the following three points: (a) The
initialisation operator can generate directional and randomly
population with a uniformly distributed. (b) The repair operator can
jump out of local solutions to improve the diversity of the
population when the population falls into local optimal or
suboptimal solutions (super individual). (c) Dynamic mutation rate.
In the early stage of GA, mutation rate is larger to improve the
search ability in the entire search space. In the late stage, when GA
approaches the optimal solution, the smaller value of mutation rate
should be made to prevent the destruction of the superior structure.

4.2 Constraint processing

4.2.1 Energy storage processing: The action of battery depends
on the energy delta(h) and the SOC(h) in the intra-system, and the
delta(h) represents the power difference between the total
consumption power and distributed power. If the output of
photovoltaic (PV) is still surplus after providing for all loads, the
battery will store excess energy, which relies on the relationship

between the rechargeable capacity of the battery and charging rate
of the per slot. If there is still excess power, then sell it to the grid
to obtain economic benefits. On the contrary, if the distributed
output is not enough to supply for all load (delta(h) > 0), the
system needs to use the battery power. The more times of battery
charging/discharging, the shorter life of the battery will be. So we
convert the charging/discharging loss to the power consumption.
The price sell to the grid in this paper is lower than RTP, which is
50% of the RTP. Battery decision process is shown in Fig. 2. 

4.2.2 DR processing: The total consumption also needs to satisfy
the limit of DR. The penalty function is a simple and effective
method in dealing with the constraint, which is used to convert the
power constraint to the fitness

p(h) =
μ ⋅ ∑

i = 1

m + n
p(i), ptotal(h) > pdemand(h)

∑
i = 1

m + n
p(i) ptotal(h) < pdemand(h)

(29)

where μ is the penalty parameter, which can effectively reduce the
solution fitness whose power exceeds the DR.

Through the decision, if the total power exceeds the limit of
DR, the actual power at this slot will multiply by a penalty value μ.
Then the target value will be large while the fitness will be small.
In the selection process of each generation, these individuals will
be gradually eliminated.

5 Example analysis
In this paper, we adopt RTP data on March 1, 2017 in Queensland
provided by the Australian energy market operators (AEMO) [19].
Power output of PV generation is from an open source database
[20]. Algorithm parameters: NIND = 40, MAXGEN = 500,
PRECI = 48, mm = 6, nn = 24, GGAP = 0.9, Pc = 0.7,
Pm1 = 0.005, Pm2 = 0.01. A lead-acid battery with a capacity of
6.68 kWh is applied. The maximum power of charging/discharging
in each time slot is 3 kW. SOC of the battery should be maintained
between 0.3 and 0.9. The initial state is a random number
generated within [0.3, 0.6], SOC(1) = 0.3 + 0.6 ∗ rand(1, 1). The
charge/discharge efficiency ηch = ηdch = 0.8, and charge/discharge

Fig. 2  Battery decision process
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loss is a random number generated within [0, 1]. The load
parameters are shown in Table 1 . 

5.1 Simulation results analysis

First, in order to highlight the impact of each module on the user's
cost, the simulation is divided into five cases. From the traditional
family to the smart family, individually add the conditions of PV
module, battery module, and the ability to sell electricity. The
results are shown in Table 2.‘Y/N’ means that the system in the
corresponding case uses the module (PV or battery) and has the
ability to sell electricity or not. STG indicates whether the system
has the ability to sell electricity or not, and CD indicates that the
extent each factor affects the reduction of cost, which can provide
guidance for the next decision. The calculation of the CD is as

CDi = costcase(i − 1) − costcase(i)
costcase(i − 1)

(30)

It can be observed from Table 2 that the cost of traditional
families (584.6568 cent) is far more than smart households
(187.2734). And the existence of renewable energy plays an
important role in saving electricity costs, whose cost is reduced by
48.46% compared with case 1. Then, the other two factors also
contribute to cost saving, with little difference in effectiveness
(8.10 and 11.02%). Therefore, the model designed in this paper has
great potential in energy and cost saving. This paper focuses on the
system of case 5, which will be discussed in detail in the following
section.

According to the user's expected time, the task is randomly
arranged and the result is shown in Fig. 3. It can be found that there
are some time slots that substantially exceed the limit of DR (e.g.
7:00–7:30). In addition, people use appliances without any
planning, a lot of load work in the higher price time slot (as 7:00–
10:00, 16:00–20:00), which result in massive waste of energy. In
the simulation period, the user needs to pay 493.1588 cents. 

In Fig. 4, the optimised result is shown that RTP and PV played
a regulatory role and the power consumption is always below the
limit of DR. The load curve is smooth, and the grid guides the
user's decision through DR. In this case, the user needs to pay
187.2734 cents, which save 62% compared with Fig. 3. 

The power transmitted between the HEMS and the grid is
shown in Fig. 5. The HEMS can sell the electricity to the grid in
exchange for profit. In the low price period, HEMS get electricity
from the grid. When the output of PV is little, it is supplied by the
grid and the battery (e.g. 00:00–8:00). In the high price period (e.g.
8:00–16:30), it is supplied by PV and the battery, and the excess
power is sent to the grid. 

5.2 Comparison of different working patterns

According to system energy situation (excess or deficiency), the
battery exists two patterns of simulations. Pattern I is direct act,
while pattern II act after judging the RTP level.

5.2.1 Battery act directly (pattern I): This case means that as
long as the system needs energy, the battery willd is charge directly
without considering RTP.

5.2.2 Battery act based on RTP (pattern II): When the system
needs energy, the controller judges RTP to decide whether to use
the battery or not. When the RTP is higher than the average, the
battery discharges first. Otherwise, the system gets electricity from
the grid.

The simulation results are shown for Figs. 6–9. It can be found
that pattern I needs to pay 191.8308 cents to the grid, while the
pattern II gains 18.6109 cents profit. That is to say pattern II is
more economical. 

First, compared with the power exchange under two working
patterns in Figs. 6 and 8, positive indicates the grid output power to
HEMS, and negative vice versa. HEMS send more power to the
grid in pattern II when the PV output is large (e.g. 11: 00–13: 00).

The price is higher at this period, although the price sell to the grid
is just a half of RTP, it is still a considerable income.

Second, the SOC of the battery is shown in Figs. 7 and 9.
Comparing these two patterns, the advantage of the latter is that
only when the system needs energy severest (high RTP, heavy rigid
load), will the battery discharge, such as 7:00–8:00, 18:00–20:00.
In the pattern I, there is already no reservation in the battery, but
RTP is still high and PV output almost zero (e.g. 17:00–19:00). At
this time, HEMS is forced to get power from the grid. While with
pattern II, the battery at this stage has the available energy for
HEMS, which avoids the peak RTP period and large variation
charge of battery effectively. The pattern can maintain the spare
capacity in any cases and benefits battery life in the long run.

The essence of the two battery patterns is the game between the
economic benefits of selling electricity to the grid and potential
economic battery benefits. When there is surplus energy in the
system, charging power to the battery will gain a temporary profit
against selling power to the grid. Due to the energy deficiency of
the battery, the system needs other power supply, and the battery
faces the risk of limited available capacity in the high RTP case. If
there is not sufficient energy in the system, the battery is used only
when RTP is larger than the average value. Otherwise, we buy
electricity from the grid. When the RTP is relatively low, we can
get energy from the grid directly. It can reserve a certain backup
capacity for battery. So this pattern is more economical.

5.3 Performance of algorithm

The performance of algorithm is measured by two indices:
computational efficiency and robustness.

5.3.1 Computational efficiency: One of the key challenges to
implement the proposed algorithm is the computational efficiency.
The simulation experiments are performed in an Intelcore i3 PC
with the following hardware configurations: processor @ 3.40 
GHz, RAM 4 GB. In order to show the efficiency of the proposed
MCIP–GA, the calculation time to make the decision is evaluated.
The CPU times needed by MCIP–GA are shown in Table 3. For
comparison, the calculation time of PSO reported in [15] and
BPSO reported in [21] is also shown. 

From the results, it can be found that the proposed method is
superior to other mentioned methods. The proposed MCIP–GA
requires the least time (12.70 s) to achieve the optimal value
compared to the other two heuristic algorithms (18.58 and 39.28 s).
With the same hardware configurations, the calculation time
depends on the algorithm's efficiency. The proposed algorithm has
superiority on efficient program coding, which can handle large
number of variables at the same time. Consequently, the proposed
algorithm has high efficiency.

Fig. 10 shows the convergence curve of the algorithm. In the
evolutionary process, the deviation between the mean value and the
optimal value is very large before the early 20 generations, which
indicates that population exists a large number of useless schemas.
The deviation becomes smaller after 50 generations, which means
that all solutions in the population are excellent. That is to say,
solutions not conforming to this habitat have been eliminated in the
process of ‘survival of the fittest,’ while the high fitness schema is
retained. It can be observed that the reduction of the electricity
price is steady in the 100 iterations. This fact indicates that the
number of iterations for GA is sufficient. 

To further evaluate the convergence performance and accuracy
of the proposed MCIP–GA, the value of StdDev is also calculated.
For comparison, the other five optimisation algorithms described in
[5] are also evaluated, whose objective function, constraint
condition and algorithm complexity are approximately the same as
MCIP–GA.

The calculation of the StdDev is as follows:

StdDev = Average value − Optimal value
Average value (31)

where Average value and Optimal value are the mean value and
the optimal solution in the last generation population, respectively.
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It can be seen from Table 4 that the MCIP–GA gets the optimal
value in the 70 generations. The iterations of MCIP–GA are less
than those of the others. MCIP–GA has a great advantage in
searching for the optimal solution quickly by finding the excellent
patterns among the chromosomes. For the heuristic algorithm, all
the solutions in the last generation should be quite good. If StdDev
is too large, the solution obtained has a risk of falling into the local

optimum. For MCIP–GA, the gap between the optimal solution and
mean value is controlled at 6.38%. While for other algorithms, the
gap is huge, even up to 49.26% (DSKMTOA algorithm). Thus, a
series of solutions obtained by the improved algorithm are
generally excellent, which has higher accuracy. 

5.3.2 Robustness: In this paper, the optimisation is based on the
forecast data (RTP, renewable energy output etc.). Due to the
deviation between the predicted value and true value, the
performance of scheduling may be different. Therefore, we replace
the forecast data by real data to verify the anti-disturbance ability
of the optimisation (robust optimisation). Our aim is to study the
relationship between the cost and PV utilisation versus the
uncertainties of the PV. The sensitivities of the electricity bill cost
and the robustness with respect to different optimisations are
depicted in Table 5. 

From Table 5, it is shown that total energy consumption has
little difference in the three cases. That is to say, the scheduling
strategy has little effect on the total energy consumption. However,
the PV utilisation, the power to the grid and the cost have large
differences in the three cases. The PV utilisation of the stochastic
scheduling (35.28%) is significantly less than the other two cases,
while the robust optimisation (95.31%) is close to the MCIP–GA
optimisation (100%). That is to say, the robust optimisation and
MCIP–GA optimisation almost have the same PV utilisation. In
addition, it can also be found that the former has slightly lower PV
utilisation than the later. The reasons are as follows. If the actual
power of PV is lower than the forecast value, then utilisation of PV
is 100%. However, if the actual power of PV is higher than the
forecast value, according to the previous strategy, the extra power
will not be used. At this time, the utilisation of PV will be <100%,
which is the reason the PV utilisation of robust optimisation is less
than that of MCIP–GA. Similarly, the power to the grid of the
stochastic scheduling (58.1 kW) is significantly less than the other
two cases, while the robust optimisation (100.5 kW) is close to the
MCIP–GA optimisation (103.4 kW). The reason is the same as the
PV utilisation above. Due to the existence of prediction error, the
actual electricity cost is inevitably higher than the predicted value.
It is gratifying that the gap of electricity cost between robust
optimisation and MCIP–GA optimisation is small (198.3102 and
187.2734), only 11.0368 cents. Thus, the data error between the
true value and predict value is insensitive to electricity cost saving.
The cost accuracy is calculated based on (32), which is 94.43%.
Even if the existence of the prediction deviation, the optimisation
results of the proposed algorithm still can achieve the high
accuracy. Consequently, the results indicate the algorithm has a
strong robustness under the disturbance of prediction error.

Table 1 Parameters of deferrable loads
Appliance αa, βa Duration, h Rated power, kW

dish washera 08:00–12:00 1.5 0.73
20:00–23:00

washing machinea 06:00–07:30 1.0 0.80
15:00–17:00

humidifier 00:00–09:00 4.0 0.15
14:00–20:00

laundry drier 09:00–12:00 2.0 1.26
20:00–23:00 1.5

floor cleaning robot 06:00–12:00 3.0 0.74
08:00–18:00 2.5 0.70
20:00–23:30 1.5 0.64

water heater 04:00–08:30 3.0 0.74
16:00–20:00 2.0 0.70
21:00–24:00 1.5 0.64

air conditioner 0:00–8:00 — 0.75
19:00–24:00 — 0.75

electric kettle 06:00–07:30 0.5 1.50
16:00–20:00
21:00–23:00

water pump 00:00–08:00 3.0 1.00
07:00–18:00 4.0 1.80
16:00–24:00 4.0 1.00
18:00–24:00 4.0 1.10

pool pump 06:00–15:00 6.0 1.60
oil press 09:00–18:00 3.5 0.35
floor waxing 14:00–18:00 3.0 0.42
electric oven 00:00–08:00 4.0 1.10

12:00–17:00 2.5 2.00
13:00–18:00 2.0 1.30

PHEV 00:00–08:00 3.5 2.40
a- Non-interruptible loads.
 

Table 2 Sensitivity analysis of various models
Case PV Battery STG Electric cost CD, %
1 N N N 584.6568 —
2 Y N N 301.3263 48.46
3 Y Y N 276.9132 8.10
4 Y N Y 246.3951 11.02
5 Y Y Y 187.2734 —
STG – sell electricity to the grid and CD – correlation degree.
 

Fig. 3  Results of the stochastic decision making
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The calculation of the cost accuracy is as follows:

ζcost = costrobust − costMCIP − GA
costrobust

(32)

where ζcost is the cost accuracy between the robust optimisation and
MCIP–GA optimisation, costrobust, costMCIP − GA are the cost of the
robust optimisation and MCIP–GA optimisation, respectively.

5.4 Sensitivity analysis

To further study the impact of various factors on cost savings, we
make sensitivity analysis on DR, size of the battery, and the
electricity price sell to the grid.

The simulation results are shown in Table 6. First, with the
decrease of DR, the user's electricity cost increases. When the DR
<5, the electricity cost increase to 403.1536 cents. Therefore, it is
difficult to perform the schedule under an extremely low power
limit. However, when the DR = 8, DR almost cannot guide the
user's behaviour, so DR = 7 is more appropriate. Second, increasing

Fig. 4  Results of the algorithm optimisation
 

Fig. 5  Power exchange between HEMS and the grid
 

Fig. 6  Power exchange between HEMS and the grid in pattern I
 

Fig. 7  Battery SOC in pattern I
 

Fig. 8  Power exchange between HEMS and the grid in pattern Ⅱ
 

Fig. 9  Battery SOC in pattern Ⅱ
 

Table 3 CPU time comparison between different algorithms
Algorithm CPU time, s
PSO [15] 18.58
BPSO [21] 39.28
MCIP–GA 12.70
 

Fig. 10  Change of optimal solution and population mean
 

Table 4 Algorithm comparison
Algorithm Convergence algebra StdDev, %
BPSO 300 8.63
DSDE 600 17.6
BKMTOA 750 6.28
DSPSO 950 16.44
DSKMTOA 890 49.26
MCIP–GA 70 6.38

StdDev – standard deviation of best values.
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the capacity of the battery is also helpful to reduce the electricity
cost. Thus, for the users, it is more economical to install large
capacity batteries as much as possible. Although the cost of
investment in the early stage is large, the long-term return is
obvious. 

From Table 7 we can see that the electricity price sell to the grid
(Pr) play a decisive role. The Pr in cases 1 and 2 is related to RTP.
The advantage of these two modes is that the user can sell
electricity to the grid with a high price. Because the high RTP
always means the load peak, more power is needed in the grid at
this time. If the users sell electricity in this period, it will benefit
both the user and the grid (to slow down the load pressure). While
the low RTP always means the load valley. When the Pr is low, the
user gains little benefit, which drives the user to find another way
to seek greater economic value. By comparing cases 1 and 2, the
higher the Pr, the more HEMS will send power to the grid, and the
greater benefit will be made. The lower the Pr, the more HEMS
will use the battery first. The price is constant from cases 3 to 6.
We can see that with the decrease of Pr, the usage frequency of
battery increase accordingly. Meanwhile, it can reduce the power
sent to the grid and increase the user's costs. 

6 Conclusion
In this paper, a HEMS model aiming to minimise the electricity
cost and maximise the renewable energy utilisation is proposed. A
novel improved MCIP–GA, according to the combinations of the
GA and the MCIP method, is designed to perform the scheduling
strategy. The initialisation operator, repair operator and dynamic
mutation rate are designed in the improved algorithm to avoid the

disadvantages which are easy to trap in a local optimal and are
sensitive to given initial solutions.

From the results of the example used, the following can be
observed: (i) The existence of renewable energy plays an important
role in saving electricity cost. (ii) The proposed method is
significant in cost saving and reducing energy wastes. (iii) The
MCIP–GA can generate a solution with high efficiency and has
good robustness under the disturbance of prediction error, which
can provide a reference for similar optimisation problems. (iv) The
battery will discharge only when the system needs energy severest,
which is more economical. (v) For the users, it is more economical
to install large capacity batteries as much as possible. Although the
cost of investment in the early stage is large, the long-term return is
obvious. (vi) The dynamic Pr is beneficial for both user and the
grid, which can provide a reference for the power company.
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