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a b s t r a c t

Recently, severe accidents in nuclear power plants (NPPs) have become a global concern.

The aim of this paper is to predict the hydrogen buildup within containment resulting

from severe accidents. The prediction was based on NPPs of an optimized power reactor

1,000. The increase in the hydrogen concentration in severe accidents is one of the major

factors that threaten the integrity of the containment. A method using a fuzzy neural

network (FNN) was applied to predict the hydrogen concentration in the containment.

The FNN model was developed and verified based on simulation data acquired by

simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to

assist operators to prevent a hydrogen explosion in severe accident situations and

manage the accident properly because they are able to predict the changes in the trend of

hydrogen concentration at the beginning of real accidents by using the developed FNN

model.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.
1. Introduction

Recently, severe accidents in nuclear power plants (NPPs)

have become a global concern. In the event of severe acci-

dents, themajor safety parameters of nuclear reactors change

rapidly during the initial stages, leaving operators with

insufficient time to devise an appropriate response. The effi-

cient management of a serious accident requires observation

of the key parameters during the very brief duration of initial

events by establishing scenarios and initial events leading up
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to the accident. In particular, it is extremely important to

determine safety-related parameters and critical information

during the extremely short period following a loss of coolant

accident (LOCA) and steam generator tube rupture (SGTR).

This would enable verification of NPP status and determina-

tion of appropriate corrective action.

In case of severe accidents, the NPP operators are con-

cerned about hydrogen explosion due to hydrogen accumu-

lation in containment. Hydrogen is accumulated in

containment by leakage from the primary pressure boundary.
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Therefore, this work considered severe incidents that were

caused by LOCAs, which were analyzed by using data from

optimized power reactor 1,000 (OPR1000). The work aimed to

predict the hydrogen concentration in the event of a severe

accident. The increase in the hydrogen concentration is one of

the factors threatening the integrity of the containment. The

hydrogen inside the containment is generated by the radio-

activation of water in the atmosphere, corrosion of the inner

material of the containment by containment spray, and re-

action of steam with the zirconium cladding. Maintaining the

integrity of the containment by preventing the hydrogen

within from exploding would require the local hydrogen

concentration to be retained below 4%.

Therefore, in this study, various artificial intelligence (AI)

methods were examined to predict changes in the hydrogen

concentration. It was determined that a method using a fuzzy

neural network (FNN) was the most suitable for predicting the

hydrogen concentration. A number of AI techniques have

been applied successfully to a variety of research fields of

nuclear engineering, such as signal validation [1e3], plant

diagnostics [4e7], event identification [8e10], and smart

sensing (or function approximation) [11e13]. Many of the

previous works used fuzzy inference systems (FISs) and neu-

ral networks (NNs). Jang and Sun [14] demonstrated the

functional equivalence between NNs and FISs in cases when

the activation functions of the NNs and the membership

function of the FIS are the same.

An FNN is a data-based model that requires data for its

development and verification. As data from real severe acci-

dents do not exist, it is necessary to use numerical simula-

tions to obtain the required data for the proposed model. The

FNN model was verified based on the NPP simulation data

acquired using MAAP4 code [15]. The successful management

of NPPs as a result of the ability to rapidly predict safety-

critical parameters during real accidents could lead to the

safekeeping of NPPs.
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Fig. 1 e Fuzzy inference system (Mamdani-type).
2. Fuzzy neural network

Fuzzy theory has been studied in an attempt to use a mathe-

matical approach to prove the inaccuracy in human thoughts

and actions. The FIS has been produced based on the concepts

of intelligent learning and inference. An FNN model consists of

an FIS combined with its neuronal training system.

2.1. Fuzzy inference system

FIS generally uses conditional rules that comprise the if/then

rules of the antecedent part and consequent part, and it is one

of the methods of AI [3]. Both the antecedent and consequent

parts have membership functions capable of fuzzifying crisp

values. In most cases, the Gaussian, triangular, trapezoid,

and bell-shaped functions are used in the membership

function formula.

Fig. 1 shows a pictorial sketch of the FIS principle [16]. The

FIS output should be a real value that requires defuzzifying

prior to forming the FIS output. Using a Takagi-Sugeno-type

FIS that does not require the defuzzifier, an arbitrary i-th

rule can be expressed as follows [17]:
If x1ðkÞ is Ai1ðkÞ AND/ AND xmðkÞ is AimðkÞ; then

byiðkÞ is fi½x1ðkÞ; / ; xmðkÞ�
(1)

where xjðkÞ is the input variable to the fuzzy inference model

(j ¼ 1; 2;…;m; m is the number of input variables), AijðkÞ is

the membership function of the jth input variable for the ith

fuzzy rule (i ¼ 1; 2;…;n; n is the number of rules), and byiðkÞ is
the output of the ith fuzzy rule. In Equation 1, the function

fi½x1ðkÞ;/; xmðkÞ� represents a function of input variables. The

membership functions of the fuzzy sets Ai1;/;Aim for the ith

fuzzy rule are denoted as ai1ðx1Þ;/;aimðxmÞ, respectively.
The number of N input and output training data of the

fuzzy model zTðkÞ ¼ ½xTðkÞ; yðkÞ� (where xTðkÞ ¼ ½x1ðkÞ;
x2ðkÞ;/; xmðkÞ� and k ¼ 1; 2; /;Nai1) were assumed to be

available and the data point in each dimension was normal-

ized. A Gaussian membership function was used because of

the ability of this function to reduce the number of parameters

to be optimized. Using a TakagieSugeno-type FIS, the output

of the FIS can be expressed as follows [17]:

byðkÞ ¼ Xn
i¼1

ywiðkÞ (2)

where

ywiðkÞ ¼ wiðkÞfi½xðkÞ� (3)

wiðkÞ ¼ wiðxðkÞÞPn
i¼1 wiðxðkÞÞ

(4)

wiðkÞ ¼
Ym
j¼1

aij

�
xjðkÞ

�
(5)

aij

�
xjðkÞ

� ¼ e
�ðxj ðkÞ�cijÞ2

2s2
ij (6)

In Equation 3, the function fi½xðkÞ� is expressed as the first-

order polynomial of input variables for the ith fuzzy rule, and

the output of each rule is expressed as follows:

fi½xðkÞ� ¼
Xm
j¼1

bijxjðkÞ þ bi (7)

where bij is the weight of the ith fuzzy rule and the jth input

variable, and bi is the bias of the ith fuzzy rule.

Therefore, in this case the FIS is referred to as a first-order

Takagi-Sugeno-type FIS, because in the arbitrary ith fuzzy rule

output, fi is a real value and is expressed as the first-order

polynomial for the inputs.

Fig. 2 shows the calculation procedure of the FIS. The first

layer indicates the input nodes that directly transmit the

http://dx.doi.org/10.1016/j.net.2014.12.004
http://dx.doi.org/10.1016/j.net.2014.12.004


Fig. 2 e Fuzzy neural network.
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input values to the next layer. Each output from the first layer is

substituted into the membership function. The second layer

indicates a fuzzification layer, which has the purpose of

converting a crisp input value to a fuzzy value. The third

layer indicates a product operator on the membership

functions that is expressed as Equation 5. The fourth layer

performs a normalization operation that is expressed as

Equation 4. The fifth layer generates the output of each fuzzy

if/then rule. Finally, the sixth layer conducts an aggregation of

all the fuzzy if/then rules and is expressed as Equation 2.

Therefore, the output of the FIS by Equation 2 can be

rewritten as:

byðkÞ ¼ cðkÞTu (8)

Where

u ¼ ½b11/bn1//b1m/bnm b1/bn�T

and

cðkÞ ¼½w1ðkÞx1ðkÞ/wnðkÞx1ðkÞ/w1ðkÞxmðkÞ/wnðkÞxmðkÞ
�w1ðkÞ/xnðkÞ�T

:

For a series of the N input/output data pairs, the following

equation is derived from Equation 8:

by ¼ uא (9)

Where

by ¼ ½byð1Þbyð2Þ/byðNÞ�T

and

א ¼ ½cð1Þcð2Þ/cðNÞ�T:
The vector u is referred to as the consequent parameter

vector and the matrix א consists of input data and member-

ship function values. The output values of the FIS are
expressed in a matrix א of N� ðmþ 1Þn dimensions and a

parameter vector u of ðmþ 1Þn dimensions.

2.2. Training of the FIS

The antecedent parameters related to the membership func-

tions of Equation 6 were optimized using a genetic algorithm

and the consequent parameters included in Equation 7 were

optimized using a least square method. In genetic

algorithms, the variables required to be optimized are

encoded within the chromosome, and the superiority

regarding each chromosome is judged by the fitness function.

In this study, the training data were used to optimize the

parameters of the FNN model. The test data were used to

verify the developed model and is different from the data set

that was used for training. The fitness function in the

following equation is intended to minimize the root mean

square (RMS) error and maximum error:

F ¼ expð � m1E1 � m2E2Þ: (10)

Where

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XNt

k¼1

ðyðkÞ � byðkÞÞ2
vuut ; E2 ¼ max

k
ðyðkÞ � byðkÞÞ; Nt

is the number of training data values; E1 is an RMS error, and

E2 is a maximum error. The variable yðkÞ indicates the actual

target value, whereas byðkÞ is the corresponding value that is

predicted using the FNN model. If the antecedent parameters

were fixed by the genetic algorithm, the matrix א was already

known in the outputs of the proposed FNN model expressed

by Equation 9. Therefore, the least squares method was used

to determine the consequent parameter u of the fuzzy rules.

The consequent parameter u was chosen to minimize the

objective function, which consists of the square error

between the target value yðkÞ and its predicted value byðkÞ,
and it is expressed as follows:

J ¼ 1
2

XNt

k¼1

ðyðkÞ � byðkÞÞ2 ¼ 1
2

XNt

k¼1

�
yðkÞ � cðkÞTu

�2

¼ 1

2

�
yt � byt

�T�
yt � byt

�
(11)

Where

yt ¼ ½yð1Þ yð2Þ/ yðNtÞ�T

and

byt ¼ ½byð1Þ byð2Þ/ byðNtÞ�T:
A solution for minimizing the above objective function can

be obtained using the following equation:

yt ¼ tuא (12)

Where

tא ¼ ½cð1Þcð2Þ/cðNtÞ�T:
Thematrix tא hasNt � ðmþ 1Þn dimensions and to solve the

parameter vectoru, the inverse of thematrix tא has to exist. By

contrast, generally speaking, tא does not have an inverse ma-

trix, because usually the matrix tא is not a square matrix.

http://dx.doi.org/10.1016/j.net.2014.12.004
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Fig. 3 e Prediction of hydrogen concentration using six integrated fuzzy neural network (FNN) models.
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Therefore, the pseudo-inverse of the matrix tא was used. The

parameter vector u is solved easily using the pseudo-inverse

matrix as shown below.

u ¼ �
Ttא tא

��1
Ttא yt (13)

That is, the parameter vector u can be calculated from a

series of input and output data pairs.
3. Data preparation

The proposed FNN model was subsequently applied to pre-

dicting the hydrogen concentration in the containment. Since

hydrogen is accumulated in containment by leakage from the

primary pressure boundary, a variety of LOCA simulations

were conducted. It was assumed that safety systems including

active safety injection systems did not actuate to model the

LOCA that would be progressed into severe accidents to

induce core damage and accelerate the hydrogen generation.

The FNNmodel used two input signals, namely, the predicted

value of the LOCAbreak size and the elapsed time after reactor

shutdown. The training and test data for the proposed model

were acquired by simulating severe accident scenarios using

the MAAP4 code for OPR1000. The data used from simulation

results are hydrogen concentration according to time.

In this study, the numerical simulationsusing the codewere

performed for a variety of break positions and break sizes of the
Table 1 e Performance of the fuzzy neural network model [hot

Number of
fuzzy rules

Small LOCA

Training data Test data T

RMS
error (%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

RM
error

5 16.92 118.00 20.81 108.19 0.8

10 8.70 65.04 8.10 36.83 0.8

30 6.97 69.87 5.18 21.85 0.6

50 5.80 62.61 5.87 33.11 0.6

RMS, root mean square.

Values in bold font are data of the most optimized values.
LOCA. The LOCA break position was divided into hot-leg, cold-

leg, and steam generator tube, and the break size steps were

divided into 210 steps. The break sizes range from 1/10,000 of a

double-ended guillotine break to half of a double-ended guil-

lotine break for hot-leg and cold-leg LOCAs, and the break sizes

range from 1 to 210 tube ruptures for SGTR accidents.

Incidents involving LOCAs require the LOCA position and

break size to be identified and predicted, because these values

are not detected. Therefore, the LOCA break size signal, which

is an input signal for the FNN model, was obtained from pre-

vious studies in which algorithms were developed for the

purpose of determining this signal [18e20]. These studies also

established that it was possible to predict the LOCA break size

accurately with an RMS error of about 0.4% [19]. For this

reason, the LOCA break size can be used as an input variable

for predicting the hydrogen concentration in containment.

The simulations resulted in 630 cases of severe accident

scenarios. The data consisted of 210 pieces for each of the hot-

leg LOCA, cold-leg LOCA, and SGTR.
4. Application to predicting the hydrogen
concentration

In the event of a severe accident, it would be necessary to

examine whether the hydrogen concentration in the

containment is excessive. The input variables for the
-leg loss of coolant accident (LOCA)].

Large LOCA All break sizes

raining data Test data Test data

S
(%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

6 17.08 1.18 6.18 11.14 108.19

6 17.82 1.21 7.20 2.68 21.89

6 16.19 0.94 6.67 1.83 13.29

0 14.92 0.82 6.37 3.65 33.11

http://dx.doi.org/10.1016/j.net.2014.12.004
http://dx.doi.org/10.1016/j.net.2014.12.004


Table 2 e Performance of the fuzzy neural network model [cold-leg loss of coolant accident (LOCA)].

Number of
fuzzy rules

Small LOCA Large LOCA All break sizes

Training data Test data Training data Test data Test data

RMS
Error (%)

Max.
Error (%)

RMS
Error (%)

Max.
Error (%)

RMS
Error (%)

Max.
Error (%)

RMS
Error (%)

Max.
Error (%)

RMS
Error (%)

Max.
Error (%)

5 8.51 72.30 12.13 45.36 2.62 28.89 3.42 12.90 7.35 43.31

10 6.29 68.11 9.43 43.24 2.34 20.47 3.00 7.87 5.57 43.24

30 5.19 63.24 7.81 39.30 2.04 19.07 2.73 9.97 4.98 37.59

50 4.56 67.32 8.09 55.07 1.96 18.58 2.71 9.46 6.36 55.07

RMS, root mean square.

Table 3 e Performance of the fuzzy neural network model (steam generator tube rupture).

Number of
fuzzy rules

Small LOCA Large LOCA All break sizes

Training data Test data Training data Test data Test data

RMS
error (%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

RMS
error (%)

Max.
error (%)

5 11.92 70.39 16.62 41.85 14.25 74.58 19.84 61.79 18.66 61.79

10 11.92 62.50 15.83 40.32 13.57 72.42 20.79 67.72 18.19 52.35

30 11.03 70.12 14.27 43.10 11.07 97.44 15.75 46.09 14.93 46.09

50 10.12 77.83 12.58 30.94 10.58 110.27 14.57 50.00 13.41 45.28

LOCA, loss of coolant accident; RMS, root mean square.
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prediction of the hydrogen concentration are the elapsed time

after reactor shutdown and the predicted LOCA break size.

Therefore, FNN models were developed to assess both large

and small break LOCAs as well as the break position. The FNN

models were optimized by both the genetic algorithm and the

least-squares method.

Fig. 3 shows the six integrated FNNmodels (each consisting

of 3 break positions, each of which has been subdivided into 2

break size groups) that were developed in this study to predict
Table 4 e Performance of fuzzy neural networkmodel assumin
(random prediction error < 5%).

Number of fuzzy rules Hot-leg LOCA

Training data

RMS error (%) Max. error (%) RMS

5 11.70 113.88

10 2.62 20.89

30 1.78 12.76

50 3.93 35.99

RMS, root mean square; SGTR, steam generator tube rupture.

Table 5 e Performance of fuzzy neural networkmodel assumin
(5% over-prediction).

Number of fuzzy rules Hot-leg LOCA

Training data

RMS error (%) Max. error (%) RMS

5 10.16 98.14

10 2.88 23.13

30 2.53 14.00

50 6.97 53.72

RMS, root mean square; SGTR, steam generator tube rupture.
the hydrogen concentration. Furthermore, three different

types of FNN models were developed according to the LOCA

position, namely, hot-leg, cold-leg, and SGTR. In addition, two

different types of FNN models were developed depending on

whether the LOCA break size is small or large. In the case of

hot-leg and cold-leg LOCAs, the break sizes in each of these

were further divided into two groups, with the 30 smaller

break sizes forming one group and the remaining 180 larger

break sizes forming the other group. Similarly, in the case of
g loss of coolant accident (LOCA) break size prediction error

Cold-leg LOCA SGTR

Training data Test data

error (%) Max. error (%) RMS error (%) Max. error (%)

7.36 43.21 19.01 61.06

5.48 41.90 18.75 51.20

4.96 36.23 17.45 71.88

6.33 54.21 15.50 56.67

g loss of coolant accident (LOCA) break size prediction error

Cold-leg LOCA SGTR

Training data Test data

error (%) Max. error (%) RMS error (%) Max. error (%)

7.56 43.48 19.49 58.79

5.87 44.79 23.20 96.53

5.26 39.24 24.71 99.15

6.46 56.04 435.05 4.34 � 103

http://dx.doi.org/10.1016/j.net.2014.12.004
http://dx.doi.org/10.1016/j.net.2014.12.004
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SGTR, the break sizes were also divided into two groups: the

100 smaller break sizes were grouped together while the

remaining 110 larger break sizes formed the second group.

The reason that two groups were used was that this grouping

provided better results than that of using only one group.

The test data were different from the data used to develop

the FNNmodel, and consisted of the elapsed time after reactor

shutdown, the predicted LOCA break size, and the hydrogen
Fig. 4 e Prediction performance of fuzzy neural network model

prediction error of hydrogen concentration versus elapsed time

prediction error histogram of hydrogen concentration. (C) Relat

elapsed time. (D) Relative prediction error of hydrogen concentr

versus time. (F) Hydrogen concentration versus time at a specifi
concentration. For this study, 100 data points in each of the

LOCA break positions, namely, hot-leg and cold-leg LOCA, and

SGTR, were selected as test data points.

The parameter values that are concerned with the genetic

algorithm and the FIS are as follows: the crossover probability is

100%, themutationprobability is5%,andthepopulationsize is20.

Tables1e3 show theperformance results thatwere obtained

with the developed FNN model for the three break positions of
in hot-leg small loss of coolant accident (LOCA). (A) Relative

and loss of coolant accident break size. (B) Relative

ive prediction error of hydrogen concentration versus

ation versus LOCA break size. (E) Hydrogen concentration

c LOCA break size.

http://dx.doi.org/10.1016/j.net.2014.12.004
http://dx.doi.org/10.1016/j.net.2014.12.004


Nu c l E n g T e c h n o l 4 7 ( 2 0 1 5 ) 1 3 9e1 4 7 145
hot-leg, cold-leg, and SGTR, respectively. For the test data of the

hot-leg LOCA, the RMS errors were approximately 11.14%,

2.68%, 1.83%, and 3.65% for the FNNmodel with five, 10, 30, and

50 fuzzy rules, respectively. For the test data of the cold-leg

LOCA, the RMS errors were approximately 7.35%, 5.57%, 4.98%,

and6.36% for theFNNmodelwithfive, 10, 30, and50 fuzzy rules,

respectively. Further, for the test data of the SGTR, the RMS
Fig. 5 e Prediction performance of fuzzy neural network model

prediction error of hydrogen concentration versus elapsed time

prediction error histogram of hydrogen concentration. (C) Relat

elapsed time. (D) Relative prediction error of hydrogen concentr

versus time. (F) Hydrogen concentration versus time at a specifi
errors were approximately 18.66%, 18.19%, 14.93%, and 13.41%

for the FNN model with five, 10, 30, and 50 fuzzy rules, respec-

tively. Therefore, the FNN model with 30 fuzzy rules proved to

be themost accurate for predicting the hydrogen concentration

in both hot-leg and cold-leg LOCA,while the FNNmodelwith 50

fuzzy ruleswasshowntobe themost accurate forpredicting the

hydrogen concentration in SGTR.
in hot-leg large loss of coolant accident (LOCA). (A) Relative

and loss of coolant accident break size. (B) Relative

ive prediction error of hydrogen concentration versus

ation versus LOCA break size. (E) Hydrogen concentration

c LOCA break size.

http://dx.doi.org/10.1016/j.net.2014.12.004
http://dx.doi.org/10.1016/j.net.2014.12.004


Table 6 e Performance of the optimized fuzzy neural network models.

Break position No LOCA break size
prediction error

Random LOCA break size
prediction error under 5%

5% LOCA break size
over-prediction error

RMS error (%) Max. error (%) RMS error (%) Max. error (%) RMS error (%) Max. error (%)

Hot-leg LOCA 1.83 13.29 1.78 12.76 2.53 14.00

Cold-leg LOCA 4.98 37.59 4.96 36.23 5.26 39.24

SGTR 18.66 61.79 19.01 61.06 19.49 58.79

LOCA, loss of coolant accident; RMS, root mean square; SGTR, steam generator tube rupture.
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Previously, the LOCA break size could be predicted accu-

rately within 60 seconds after reactor shutdown with an RMS

error of about 0.4% [19]. However, it is necessary to investigate

the effect of error propagation, which is caused by errors in

the input signals, even if they are small. Table 4 shows the

performance of the FNN models in the case in which the

LOCA break size was assumed to be predicted with a

random error of < 5%. In this case, the performance

degradation of the FNN models resulting from the existence

of input errors is not visible. Table 5 shows the performance

of the FNN models in the case in which the LOCA break size

was assumed to have a 5% over-prediction error. In the case

of SGTR, the FNN model with 50 fuzzy rules was determined

to have an over-fitting characteristic, whereas the FNN

model with five fuzzy rules was found to perform the best.

Figs. 4 and 5 show the hydrogen concentration predicted by

the optimized FNN models, together with their prediction er-

rors, for the test data of the hot-leg small and hot-leg large

LOCAs, respectively. Figs. 4A and 5A show the prediction er-

rors of the hydrogen concentration versus the elapsed time

and the LOCAbreak size for the hot-leg small and large LOCAs,

respectively. Fig. 4B, 5B show the prediction error histogram

that was used to verify the error distribution of the hydrogen

concentration. Figs. 4C and 5C show the prediction errors of

the hydrogen concentration versus the elapsed time. Figs. 4D

and 5D show the prediction errors of the hydrogen concen-

tration versus the break size. Figs. 4E and 5E show the

hydrogen concentration versus the elapsed time. The

hydrogen concentration data are scattered due to the different

LOCA break sizes involved. Figs. 4F and 5F show the hydrogen

concentration versus the elapsed time at a specific LOCA

break size. The corresponding plots relating to cold-leg LOCA

and SGTR showed similar trends and were omitted from this

paper to save space.

Table 6 shows the performance of the optimized FNN

models, i.e., those with 30 fuzzy rules for the hot-leg and

cold-leg LOCAs, and five fuzzy rules for the SGTRs. This

table shows that the RMS errors for the test data were

approximately 1.83%, 4.98%, and 18.66% for the hot-leg and

cold-leg LOCAs, and the SGTR, respectively. In cases in

which the break size of the LOCAs was assumed to be

predicted with a random error of < 5%, the RMS errors for

the test data were approximately 1.78%, 4.96%, and 19.01%

for the hot-leg and cold-leg LOCAs, and the SGTR,

respectively. Moreover, in cases in which the LOCA break

size is assumed to have a 5% over-prediction error, the RMS

errors for the test data were approximately 2.53%, 5.26%,

and 19.49% for the hot-leg and cold-leg LOCAs, and the

SGTR, respectively. Therefore, the FNN models have been
shown to be capable of accurately predicting the hydrogen

concentration under severe accident circumstances.
5. Conclusion

Within reactor containment, it is necessary to prevent the

local hydrogen concentration from exceeding 4% to prevent

the hydrogen from exploding. This paper proposes an FNN

model, which was developed to predict the hydrogen con-

centration in containment under severe accident circum-

stances. As its input, the model uses variables for the time

that has elapsed after reactor shutdown and the predicted

LOCA break size. The FNN model was developed and verified

using the simulation data of theMAAP4 code for OPR1000. The

developed FNN model is able to predict the hydrogen con-

centration in containment at a specific time using the pre-

dicted LOCA break size and the changing trend in the

hydrogen concentration in containment after a LOCA.

The RMS errors of the FNN model were approximately

1.83%, 4.98%, and 18.66% for the hot-leg and cold-leg LOCAs,

and the SGTR, respectively. The prediction results show the

FNN model is capable of accurately predicting the hydrogen

concentration for hot-leg and cold-leg LOCAs. The developed

FNN model is expected to be helpful for providing effective

information for operators in severe accident situations.
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