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a b s t r a c t

This paper presents a methodology to biological image classification through a Rough-Fuzzy Artificial Neural

Network (RFANN). This approach is used in order to improve the learning process by Rough Sets Theory (RS)

focusing on the feature selection, considering that the RS feature selection allows the use of low dimension

features from the image database. This result could be achieved, once the image features are characterized

using membership functions and reduced it by Fuzzy Sets rules. The RS identifies the attributes relevance

and the Fuzzy relations influence on the Artificial Neural Network (ANN) surface response. Thus, the features

filtered by Rough Sets are used to train a Multilayer Perceptron Neuro Fuzzy Network. The reduction of feature

sets reduces the complexity of the neural network structure therefore improves its runtime. To measure

the performance of the proposed RFANN the runtime and training error were compared to the unreduced

features.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

In complex problems as biological cells image classification, the

capture of the essential features must be carried out without a pri-

ori knowledge of the image. The increased amount of attributes re-

quires computational complexity and runtime even bigger. Moreover,

due to noise in the database caused by excessive image features can

cause a reduction in capacity of representation. According to Shang

and Qiang (2008), the employment of Rough-Fuzzy features selection

mechanism allows the reduction for a low dimensionality features

sets from samples descriptions.

For these complex cases from the real life the use of Rough Sets

(RS) in the pre-processing of the database has been efficient, since

only the most relevant features are used as input parameters for the

neural network. The RS has recently emerged as another major math-

ematical approach for managing uncertainty that arises from inexact,

noisy, or incomplete information. It is found to be particularly effec-

tive in the area of knowledge reduction (Petrosino & Salvi, 2006).

In these cases, Fuzzy Set theory (FS) and RS represent two differ-

ent approaches to vagueness. FS addresses gradualness of knowledge,

expressed by the fuzzy membership, whereas rough set theory ad-

dresses granularity of knowledge, expressed by the indiscernibility

relation (Affonso & Sassi, 2010).
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An option to simplify the structure of the Artificial Neural Network

ANN) and reduce the noise caused by non-significant features is to

se the Rough Set (RS) approach in order to select the most important

eatures. The present paper proposes a new algorithm to realize the

eature selection, with the intention to use RS as a tool for structuring

he ANN. The methodology consisted of generating rules from train-

ng examples by rough-set learning, and mapping the dependency

actors of the rules into the connection weights of a four-layered neu-

al network.

The advantage of the Rough-Fuzzy Artificial Neural Network

RFANN) approach consists in the synergy achieved by combining

wo or more technical capabilities to achieve a more powerful sys-

em regarding to learning and generalization (Gomide, Figueiredo,

Pedrycz, 1998). A sequential architecture is used in this work, in

hich RS and the FS have distinct functions: RS identifies the most

ritical features, while the FS generates the surface response (input,

utput) since the Neuro Fuzzy Network (NFN) has Learnability and

an adapt itself to the real world.

The paper is organized as follows: Section 2 presents the Liter-

ture review, Section 3 presents the Experimental Methodology and

ection 4 presents the Conduct of Experiments. The Conclusion is pre-

ented in Section 5.

. Literature review

Techniques can be combined to obtain a more powerful system

n terms of interpretation, learning, parameter estimation, general-

ization, and less disability as well. Thus, various combinations have

http://dx.doi.org/10.1016/j.eswa.2015.07.075
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een applied in different papers generating systems based on: Fuzzy

in–Max Neural Network, Regression Tree and the Random Forest

odel as a decision support tool for medical data classification (Seera

Lim, 2014), an hybrid evolutionary dynamic Neural Network for

tock market trend analysis and prediction using unscented Kalman

lter (Bisoi & Dash, 2014), credit risk evaluation using Multi-Criteria

ptimization classifier with Kernel, Fuzzification and Penalty Factors

Zhang, Gao, & Shi, 2014), a novel Support Vector Machine model

ombining Kernel Principal Component Analysis with Genetic Al-

orithm is proposed for intrusion detection (Kuang, Xu, & Zhang,

014), two independent hybrid mining algorithms to improve the

lassification accuracy rates of Decision Tree and Naïve Bayes clas-

ifiers for the classification of multi-class problems (Farid, Zhang,

ahman, Hossain, & Strachan, 2014), a novel Fuzzy Hybrid Quantum

rtificial Immune Clustering algorithm based on cloud model (Zhang,

han, Liu, & Zhang, 2014), an optimization approach based on the Or-

inal Optimization Philosophy and Particle Swarm Optimization is

sed to search in the continuous space of the operational variables

Zhang, Chiang, & Wu, 2014) and a Local Least-Squares Support Vector

achines-Based Neuro-Fuzzy Model for Nonlinear and Chaotic Time

eries Prediction (Miranian, & Abdollahzade, 2013).

Combined techniques can also be applied to the identification,

reatment and processing of images, in generating systems based on:

xtreme Learning Machine and Sparse Representation based classi-

cation method, have attracted significant attention due to their re-

pective performance characteristics in computer vision and pattern

ecognition (Luo & Zhang, 2014), a Neural-AdaBoost based facial ex-

ression recognition system (Owusu, Zhan, & Mao, 2014), Artificial

ee Colony approach to information granulation-based Fuzzy Radial

asis Function Neural Networks for image fusion (Yu & Duan, 2013), a

ovel Multi-Instance Learning algorithm based on Multiple-Kernels

ramework has been proposed for image classification (Li, Wang,

hao, Liu, & Wang, 2014), Fuzzy-Rough feature selection aided Sup-

ort Vector Machines for Mars image classification (Shang & Barnes,

013), Rough Sets and Near Sets in Medical Imaging (Hassanien,

braham, Peters, Schaefer, & Henry, 2009), Implementation and com-

arative analysis of Rough Set, Artificial Neural Network and Fuzzy-

ough classifiers for Satellite image classification (Juneja, Walia,

andhu, & Mohana, 2009) and an Analysis of Clustering Algorithms

or MR Image Segmentation using IQI (Patel & Patnaik, 2012).

Hybrid techniques have been applied to biological images, gen-

rating systems based on: Expert System Approach to the Identi-

cation and Clustering of Features of Biological Images (Jordan &

erkins, 1988), Artificial Neural Networks for Classification and Iden-

ification of Data of Biological Tissue Obtained by Mass-Spectrometry

maging (Xiong et al., 2012), Multi-objective Nature-Inspired Cluster-

ng and Classification Techniques for image segmentation (Bong &

ajeswari, 2011), Evolutionary Artificial Neural Network Design and

raining for wood veneer classification (Castellani & Rowlands, 2009),

mage Segmentation Algorithms applied to wood defect detection

Funck, Zhong, Butler, Brunner, & Forrer, 2003), a new Neuro-Fuzzy

ethod to investigate the characteristics of the facial images (Diago,

itaoka, Hagiwara, & Kambayashi, 2011), Rough Sets combined with

arious other methodologies such as Neural Networks, Wavelets,

athematical Morphology, Fuzzy Sets, Genetic Algorithms, Bayesian

pproaches, Swarm Optimization and Support Vector Machines

n the image processing domain (Hassanien, Abraham, Peters, &

chaefer, 2008); Rough Set frameworks hybridized with other

omputational Intelligence Technologies that include Neural Net-

orks, Particle Swarm Optimization, Support Vector Machines and

uzzy Sets (Hassanien et al., 2009).

.1. Image identification

It takes a long time to train a person to be competent in

ood identification. Furthermore, manual examination of the wood
ample can be very subjective. In addition to the macroscopic fea-

ures of wood, physical features such as weight (different moisture

ontent), color (variation), odour, hardness, texture, and surface ap-

earances are also considered. For unknown specimen, usually di-

hotomous keys are used on a systematic analytical procedure for the

xamination of the wood structure.

The identity of the tree in the forest can be easily known by ex-

mining their flowers, fruits and leaves. However, once the tree is

elled, the identification of the tree becomes very difficult and has to

ely on their physical, macroscopic and microscopic features for iden-

ification. In this research, an intelligent recognition system using

ow cost equipment for the identification of wood species based on

he macroscopic features of wood has been designed (Pham, Soroka,

hanbarzadeh, & Koc, 2006).

The image processing techniques are widely used for classifi-

ation and clustering of plant cells. In most cases, the biological

lassification is performed by trained operators, but this solution

uffers significant disadvantages, so the literature contains several

apers in which neural networks are used in image processing plant

ells (He, 1997; Khalid, Lee, Yusof, & Nadaraj, 2008; Marzuki, Eileen,

ubiyah, & Miniappan, 2008; Pham et al., 2006; Topalova & Tzokev,

011), also for prediction of fracture toughness (Dassanayake, 2000;

amarasinghe, Kulasiri, & Jamieson, 2007).

.2. Rough set theory (RS)

RS was proposed by Zdzislaw Pawlak in 1982 (Pawlak, 1982) as

mathematical model to represent knowledge and to treat uncer-

ainty. An important concept in RS is the reduct.

A reduct is a minimal set of attributes that can represent an object

ith the same accuracy as the original set of attributes. Elimination

f redundant attributes can help in the identification of strong, non-

edundant classification rules.

A reduct of B – RED(B) – on information system (IS) is a set of

ttributes B’⊆ B such that all attributes a ∈ (B – B’) are dispensable.

hus, U/INDs(B’) =U/INDs(B), where INDs(B) is called the Indiscerni-

ility Relation.

Computing the reduct is an n-p hard problem, and processing

he reduct for large databases requires high computational process-

ng. The reduct is generated by discernibility from the Discernibility

atrix.

The Discernibility Matrix of information systems S, denoted

M(B), is a symmetric n × n matrix with: mD(i, j) = {a ∈ B | a(Ei) �=
(Ej)} for i,j =1,2,…,n. with 1≤i, j≤n e n=| U / INDs(B)}.

Thus, the elements of the Discernibility Matrix mD(i,j) are a set of

onditional attributes of B that differentiate the elements of classes

n relation to their nominal values.

The reducts of S are generated through the simplification methods

f Boolean functions for the Fs(B) function (1).

This simplification is an algebraic approximation of the logical

unctions, with the goal of reducing the number of attributes.

S(a∗
1, a∗

2, . . . , a∗
m)

= ∧
{
∨m∗

D(i, j)|i, j = 1, 2, . . . , n, mD(i, j) �= 0
}

(1)

With: m∗
D(i, j) = {a∗|a ∈ mD(i, j)}

The discernibility function Fs(B) is obtained as follows: for all

ttributes represented by an element in the Discernibility Matrix

D(B), apply the sum operator (“or” or “∨”) and, for each pair of cells

n this matrix, apply the “product” element (“and” or “∧”), which re-

ults in a Boolean expression of “sum of products”.

Fuzzy Sets concern membership among elements from the same

lass, while RS concerns the relationship between groups of elements

n different classes.

However, the theory of RS does not compete with the Fuzzy

ets Theory but rather complements it. In fact, RS theory and Fuzzy
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Fig. 1. Full process of the Rough-Fuzzy Artificial Neural Network (RFANN).
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Sets theory are two independent approaches for the treatment of

imprecise knowledge.

The knowledge acquisition bottleneck is a significant problem that

hinders the building of intelligent monitoring systems. The gener-

ation of good knowledge bases for this task is notoriously difficult.

This problem is particularly prevalent where experts are not readily

available.

Machine learning techniques (especially rule induction methods)

can be of great benefit to this area by providing strategies to automat-

ically extract useful knowledge, given enough historical data.

2.3. Fuzzy set (FS)

In 1965, Zadeh (1964) assigned a number to every element in the

universe, which indicates the degree (grade) to which the element

belongs to a Fuzzy set. To formulate this concept of Fuzzy set mathe-

matically, we present the following definition. Let X be the universe.

A mapping A: X→ [0,1] is called a Fuzzy set on X. The value μ(x) of

A, at x∈ X stands for the degree of membership of x in A. The set of

all Fuzzy sets on X will be denoted by F(X). μ(x) = 1 means full mem-

bership, μ(x) = 0 means non-membership, and intermediate values

between 0 and 1 mean partial membership. μ(x) is referred to as a

membership function as x varies in X.

Based on the database, membership functions for all the variables

were defined, and the criterion for defining the deviation and center

of each of these functions was developed with support from the in-

jection experts. We considered levels of sensitivity (linguistic labels)

α for each membership function with respective centers cα and stan-

dard deviations σ . Considering the components x ℮ X, to model the

membership functions, we used the Gaussian function (2).

μα(x) = e− 1
σ (x−cα)

2

(2)

The premises of all rules are compared with controlled entries to

determine which rules apply to a situation; the outputs are compared

with the established rules that have been determined. In this paper,

we used the T-norm applied to x = (x1, x2,..,xq) as suggested by Jensen,

2005 , where the value of �j,j=1,...,p rules of inference is calculated (3):

� j(x) = μα1
x1 (x1) ∨ μα2

x2 (x2) ∨ ... ∨ μαp
xp (xp) (3)

2.4. Artificial neural network (ANN)

The ANN architecture Multilayer Perceptron (MLP) typically con-

sists of a specification of the number of layers, the type of activation

function of each unit, and the weights of connections between the

different units, and should be established for the construction of the

neural architecture (Haykin, 2001). This paper presents a supervised

feedback ANN architecture in three layers: the input layer represents
he values of the reduced rule base. The neurons of the network hid-

en layer are trained from the set of inference rules (reduced). The

lgorithm used in training the MLP is the error back propagation that

orks as follows: first, a standard is presented. In this work, a stan-

ard will be a prototype vector and its label - the input layer of the

etwork. This pattern is processed layer by layer until the output

ayer provides the response rendered, fMLP, as calculated in Eq. (4):

fMLP(x) = ϕ
(∑n

i=1
νlϕ

(∑m

j=1
wl jxl + bl0

)
+ b0

)
(4)

where wlj are synaptic weights; bl and b0 are the biases; ϕ is the

ctivation function, usually specified as the sigmoid function.

ANN has the ability to solve problems in complex systems such as

mage classification, due to its ability to generalize, however, has dif-

culty working with redundant information, or with very large data

et.

.5. Rough-fuzzy artificial neural network (RFANN)

In this paper the pre-processing through RS serves to identify

hich attributes are most relevant for the classification of image.

ough selection provides a means by which discrete or real-valued

oisy data (or a mixture of both) can be effectively reduced with-

ut the need for user-supplied information. In addition, this tech-

ique can be applied to data with continuous or nominal decision

ttributes, and, as such, can be applied to regression as well as classi-

cation datasets. The only additional information required is in the

orm of Fuzzy partitions for each feature, which can be automati-

ally derived from the data (Jensen, 2005). The attributes selection

or problems such as image classification is a complex problem, and

ts complexity grows exponentially in the number of attributes to be

iscretized. In this paper a new algorithm was proposed to do the

iscretization.

. Experimental methodology

This work should be viewed as an application of Artificial Intelli-

ence techniques, in particular, ANN to determine a surface response.

he hardware platform used in the experiments was a Core i5-4200 U

.6 GHz, 8 G RAM and 500GB hard drive.

.1. Establishment of new algorithm

The images processing and the RFANN routines were written on

Program Language. Fig. 1 illustrates the full process of the Rough-

uzzy Artificial Neural Network (RFANN). The RS pre-processes the

uzzy rules and generates the input vectors with most critical at-

ributes. This reduced rule base is used to train the MLP ANN.
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Fig. 2. Image from tree radial cuts.

Fig. 3. Mesh representing the image topography.
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The image processing system operates as follows: The features

re extracted from colour images by treating each channel of colour

mage (Red–Yellow–Green) as a monochrome imageand transform-

ng its shape information in pixels surfaces through a C-language

rogram. In the second step, a matrix is created with the numeric

alues of color intensity corresponding to each pixel (between 0

nd 255).

Later it performs normalization into the numerical matrix, where

t is assigned a unit value for pixels maximum intensity and zero to

inimal intensity.

The images were collected from axial cut of trees, each one with

756 × 1326 pixels size. The following is presented in Fig. 2, a dataset

f images composed of radial cuts in different samples.

From this normalized basis, vectors are created to identify pat-

erns for each image. These standards will be used as the basis of

raining data for RFNAN, which after its training; will be able to iden-

ify the specimen, even if it exactly feature vector does not belong to

he database training.

The computer program converts the images into a 3D mesh

hrough his monochromatic image. At this stage the algorithm creates

mesh representing the topography of the image, where the point is

ssociated to a set of spatial coordinates as shown in Fig. 3.

An image = {y(s)} is assumed to be a Gaussian random field on a

× N lattice � where y(s) denotes the gray level of a pixel at location

(i,j), where y(s) ℮ [0;ymax] The space will be subdivided into q-parts
s follows (5) (Stepaniuk, 2008).

i
down = i · ymax

q i=1,2,...,q

yi
up = yi

down + i · ymax

q
(5)

Considering the b samples in the image dataset, given a non-

mpty set Y, a possible partition � is a collection of non-empty sub-

ets of Y,such that (6):

=
{

y(s) ∈ ψ, ψ ⊂ Y/y(s) < yi
up and y(s) > yi

down

}
(6)

For the finite set � i, cardinality, denoted by card(� i), is the num-

er of set elements, as shown in Eq. (7):

i = card(ψi) (7)

The feature vectors as defined above will be used as the basis of

raining data for a RFANN, which after its training; will be able to

lassify the image.

It is possible to establish a dataset with respective feature vec-

ors for all images pattern, the values obtained are displayed below

n Table 1.

.2. Approximation spaces

To obtain the network output value at the generalization phase, it

s necessary to classify the values from inference rules. Approxima-

ion spaces can be treated as granules used for concept approxima-

ion. They are some special parameterized relational structures.
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Table 1

Datasets: All set features for each sample.

Feature Sample 0 Sample 1 Sample 2 Sample 3 Sample 5 Sample 6

×1 3636 8 29 11 15 119

×2 3284 0 108 0 6 444

×3 1842 1 186 0 25 932

×4 1160 11 286 1 59 1254

×5 796 80 413 0 137 1759

×6 655 433 574 4 248 1937

×7 681 1390 749 67 319 2050

×8 549 3144 998 370 443 2311

×9 677 5431 1278 1276 482 2472

×10 775 7383 1585 3012 610 2509

×11 1051 4516 2176 5006 1039 2409

×12 1484 1110 2653 5916 1806 1950

×13 1999 235 2779 4196 2878 1583

×14 2214 61 2978 2580 3971 871

×15 1757 14 3344 1140 5046 468

×16 967 2 2786 341 4646 149

×17 320 3 1052 106 1950 40

×18 87 5 300 22 421 7

×19 16 0 29 2 56 0

Table 2

Rough inclusion function - ν(i,j) .

feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 


1 1,00 0,50 0,33 0,25 0,25 0,17 0,17 0,14 0,14 0,14 0,14 0,14 0,14 0,17 0,17 0,20 0,20 0,25 0,50 5,01

2 0,50 1,00 0,50 0,33 0,25 0,17 0,17 0,14 0,14 0,14 0,14 0,14 0,14 0,20 0,20 0,17 0,20 0,20 0,33 5,07

3 0,33 0,50 1,00 0,33 0,25 0,17 0,17 0,14 0,14 0,14 0,14 0,17 0,17 0,25 0,25 0,17 0,20 0,20 0,33 5,05

4 0,25 0,33 0,33 1,00 0,50 0,25 0,25 0,20 0,20 0,17 0,17 0,14 0,14 0,20 0,20 0,20 0,33 0,25 0,25 5,37

5 0,25 0,25 0,25 0,50 1,00 0,33 0,33 0,25 0,25 0,20 0,20 0,17 0,17 0,17 0,17 0,20 0,50 0,25 0,25 5,68

6 0,17 0,17 0,17 0,25 0,33 1,00 0,50 0,33 0,33 0,25 0,25 0,20 0,20 0,14 0,14 0,17 0,33 0,25 0,17 5,35

7 0,17 0,17 0,17 0,25 0,33 0,50 1,00 0,33 0,33 0,25 0,25 0,17 0,17 0,14 0,14 0,17 0,33 0,25 0,17 5,29

8 0,14 0,14 0,14 0,20 0,25 0,33 0,33 1,00 0,50 0,25 0,33 0,17 0,17 0,14 0,17 0,20 0,25 0,20 0,14 5,06

9 0,14 0,14 0,14 0,20 0,25 0,33 0,33 0,50 1,00 0,25 0,25 0,17 0,17 0,14 0,17 0,20 0,25 0,20 0,14 4,98

10 0,14 0,14 0,14 0,17 0,20 0,25 0,25 0,25 0,25 1,00 0,33 0,20 0,25 0,17 0,14 0,20 0,20 0,17 0,14 4,60

11 0,14 0,14 0,14 0,17 0,20 0,25 0,25 0,33 0,25 0,33 1,00 0,25 0,20 0,17 0,14 0,20 0,20 0,17 0,14 4,68

12 0,14 0,14 0,17 0,14 0,17 0,20 0,17 0,17 0,17 0,20 0,25 1,00 0,50 0,20 0,17 0,17 0,20 0,14 0,14 4,43

13 0,14 0,14 0,17 0,14 0,17 0,20 0,17 0,17 0,17 0,25 0,20 0,50 1,00 0,20 0,17 0,17 0,20 0,14 0,14 4,43

14 0,17 0,20 0,25 0,20 0,17 0,14 0,14 0,14 0,14 0,17 0,17 0,20 0,20 1,00 0,25 0,25 0,17 0,17 0,17 4,29

15 0,17 0,20 0,25 0,20 0,17 0,14 0,14 0,17 0,17 0,14 0,14 0,17 0,17 0,25 1,00 0,20 0,17 0,17 0,17 4,17

16 0,20 0,17 0,17 0,20 0,20 0,17 0,17 0,20 0,20 0,20 0,20 0,17 0,17 0,25 0,20 1,00 0,20 0,20 0,20 4,45

17 0,20 0,20 0,20 0,33 0,50 0,33 0,33 0,25 0,25 0,20 0,20 0,20 0,20 0,17 0,17 0,20 1,00 0,25 0,20 5,38

18 0,25 0,20 0,20 0,25 0,25 0,25 0,25 0,20 0,20 0,17 0,17 0,14 0,14 0,17 0,17 0,20 0,25 1,00 0,33 4,79

19 0,50 0,33 0,33 0,25 0,25 0,17 0,17 0,14 0,14 0,14 0,14 0,14 0,14 0,17 0,17 0,20 0,20 0,33 1,00 4,92
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Tuning of parameters makes it possible to search for rele-

vant approximation spaces relative to given concepts (Komorowski,

Polkowski, & Skowron, 2002). The Rough inclusion function P (U)×P

(U) →[0, 1] defines the degree of inclusion of �I in �j, where �i, �j⊆
U. In the simplest case the standard rough inclusion function can be

defined by (8):

ν i j =
{

card(� j ∩ �i)

card(� j)
i f � j �= 0

1 i f � j = 0

(8)

The Rough inclusion function ν(i,j) algorithm is given as follows:

ν[]: Rough inclusion function

�[]: Fuzzy rules of inference

(1) k,i,j,ν[]:←0

(2) do

(3) if (� [i,k] �= � [j,k]) ν [i,j]= ν [i,j]+1

(4) until k < p

(5) until i<q and j<q

(6) return ν []←1/(ν [] +1)

This measure is widely used by the data mining and RS communi-

ties. It is possible to use this idea to estimate the probability of impli-

cations.

The Table 2 presents the values of the Rough inclusion function.
. Conduct of experiments

.1. RFANN applied to image identification

The experiment compares the knowledge generated by the RFANN

ith the data obtained from an Image dataset in two cases: the unre-

uced dataset and the reduced one by the RS.

Since the processing times were near to zero, the criterion for se-

ection was the simplicity of the architecture of the network.

The choice of MLP parameters of the reduced dataset were: num-

er of input neurons: 4, initial learning rate η = 0.7; Initial momen-

um μ = 0.7; the stop criterion was maximum 1000 epochs.

The configuration of the number of neurons and layers are accom-

lished by choosing the architecture that has the lowest permissible

rror.

The choice of parameters for the MLP of the full dataset were:

nput neurons 19, number of hidden neurons 12, and learning con-

tant η = 0.7, momentum μ = 0.7; the stop criterion was maximum

000 epochs.

The rule bases reduced by the RFANN exhibit good behavior dur-

ng the generalization phase, indicating a promising way for to asso-

iate RS with FS to replace the human expert in the construction of

nference rules.

The RFANN returns four features as the most significant ones, x10,

11, x12, x13, out of the original full set of features. We can check that
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Fig. 4. Error comparison: RFANN vs. randomly selected features.

Table 3

RFANN error: comparing fuzzy-rough selection versus full

features.

Features Dim. Topology Error

Training Testing

RF selection 4 4-12-1 0.00307 0.00435

x1–x7 7 7-12-1 0.01786 0.01299

x1–x10 10 10-12-1 0.00519 0.00724

x1–x13 13 13-12-1 0.00212 0.00301

x1–x16 16 16-12-1 0.00176 0.00250

Full features 19 19-12-1 0.00208 0.00295

Table 4

RFANN versus randomly selected features.

Features Dim. Topology Error

Training Testing

RF selection 4 4-12-1 0.00307 0.00435

7,10,11,19 4 4-12-1 0.00394 0.00557

2,8,14,19 4 4-12-1 0.00501 0.00706

3,6,9,18 4 4-12-1 0.00556 0.00715

1,5,8,12 4 4-12-1 0.00670 0.00899

4,6,7,17 4 4-12-1 0.00685 0.00978

1,2,3,4 4 4-12-1 0.09206 0.03213

2,10,16,17 4 4-12-1 0.02783 0.03885

16,17,18,19 4 4-12-1 0.11604 0.11777
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sing the features selection does not significantly reduce the accuracy

f the classification compared to the use of the full set of features.

able 3 shows the error produced for the RFANN.

It is very interesting to note that the error rate when using four

elected features is very near the error when using the full feature

et. Furthermore, this performance improvement is obtained via a

etwork structurally much simpler. This is indicative of the power

esource selection to help reduce redundant feature, not only the

easures but also the noise associated with this measurement.

.2. Comparison with the randomly selected features

The above comparison ensured that no information loss is in-

urred due to RFANN feature reduction. It is possible to compare the

erformance of different attributes, reduced according to RFANN cri-

eria and randomly selected features, as shown in Table 4 and Fig. 4.

The average error classifiers, using four randomly selected char-

cteristics, higher than that achieved by the classifier that uses the

esources selected by RFANN, considering the same dimensionality.

his implies that on these features randomly selected occur losses of

nformation during reduction.

The technique proposed in this paper uses a histogram analysis as

eature selection criteria, on this way, there is a computational gain

onsidering the model’s simplicity.
This approach presents advantages comparing to the traditional

NN ones, since the running time is considerably reduced, and the

NN processed only 21% (4/19) of the original dataset. The figures

hown that with a simple neural network topology, namely, one hid-

en layer containing 12 neurons, and a sensitive layer (4 neurons),

he network was capable to classify biological images. However, this

ethod was applied to a restricted dataset, therefore we suggest its

nlargement to another databases.

. Conclusions

In this paper, an automatic visual inspection system for the recog-

ition of tropical Wood species based on artificial intelligence tech-

iques has been proposed. The system was objectively designed to

e cost-effective and as a means to replace wood inspectors due to

ifficulty in recruiting them as the job is rather laborious.

ANN has the ability to solve problems in complex systems such

s image classification, due to its ability to generalize. However, has

ifficulty working with redundant information, or with very large

ataset.

Therefore, the technique proposed in this paper uses a histogram

nalysis as criteria to feature selection, on this way, there is a com-

utation gain considering the model simplicity. The figures shown on

ection 4.2 demonstrates this hypothesis, once with a simple neu-

al network topology, was capable to classify biological images. Ad-

itionally, one possible weakness of the method, may be the re-

tricted dataset and the fact the method was been used only as

lassification.

The application of RFANN showed a great ability to generalize, to

dentify behavior patterns, and to allow the creation of an inference

echanism in high complex systems.

When applied to a real world dataset, the RFANN was able to iden-

ify the significant features as defined by a human expert. The main

dvantage of using the RFANN is the reduction of dependence on a

uman expert for the choice and construction of the rules of infer-

nce mechanism. This gain is important, considering that one of the

eaknesses of the approach using the Fuzzy Sets is its dependence on

he human expert. If there is a reasonable number of attributes and

structured database, it may be even possible to eliminate the need

or support from the human expert for the construction of inference

ules, instead using his support only in the construction of member-

hip functions.

We suggest the RFANN in modeling other problems, such as dy-

amic routing or business datasets, in order to assess the impact of

his approach on the dependence of the human expert in building

he inference mechanism.

upplementary Materials

Supplementary material associated with this article can be found,

n the online version, at doi:10.1016/j.eswa.2015.07.075.
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