
Trends
Toxoplasma gondii is parasite of the
phylum Apicomplexa. It resides in a
host cell, enclosed in a parasitophor-
ous vacuole.

Classically, host control of Toxoplasma
proliferation has been studied in mice.
However, recent work has highlighted
striking differences between human
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Toxoplasma and the Host Cell: Living Together Apart
Toxoplasma gondii, the causative agent of toxoplasmosis, is a widespread global infection that
is prevalent chronically in 30–50% of humans [1]. Sexual reproduction occurs in the feline gut,
from where millions of environmentally resistant sporozoite-containing oocysts are shed in the
cat faeces. Transmission to intermediate hosts is through ingestion, whereupon the sporo-
zoites develop into tachyzoite forms. This rapidly replicating form of the parasite is responsible
for the acute stage of the infection. Three classical strains are present throughout North
America and Europe, types I, II, and III, while a dramatic expansion of strain diversity has
been found in South America [2,3]. Under pressure of the host immune system, and depending
on strain type, the tachyzoites localise to the deep tissues and brain where they convert into
slowly replicating bradyzoites in cysts (Figure 1) [4].

Toxoplasma is an obligate intracellular parasite of the phylum Apicomplexa, infecting most
nucleated cells of warm-blooded animals. It resides within a parasitophorous vacuole (PV)
(see Glossary) in its host cell, physically separated from the host cell cytoplasm. The para-
sitophorous vacuole membrane (PVM) forms the boundary between host and parasite and
creates a niche for survival and replication. At the same time, the PV becomes a target for
recognition by the host immune defence mechanisms. Recent progress in elucidating host
defence mechanisms and the responding parasite’s evasion strategies centred at or around
the PV has shed light on significant differences between species and cell type. Here we collate
these findings and provide a perspective on future challenges to unravel the Toxoplasma–host
interaction at the PV.

Key Features and Composition of the Toxoplasma Parasitophorous Vacuole
Formation of the PV
As an apicomplexan parasite, Toxoplasma actively invades the host cell in a process mediated
by the sequential secretion of dedicated proteins from specialised apical organelles (Figure 2,
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Glossary
Autophagy: an intracellular
degradation process used to recycle
damaged or nonfunctioning
components, routing them for
lysosomal destruction. Also extended
to the clearance of intracellular
pathogens (macroautophagy).
ER: endoplasmic reticulum. Reticular
network of cell membranes involved
in protein and lipid synthesis and
transport.
GBP: guanylate-binding proteins.
Large 65–75k Da GTPases
stimulated by interferons and
immune regulators in response to
infection or cell insult. Family of
seven proteins (seven genes and one
pseudogene) in humans residing on
chromosome 1. Family of 11 proteins
(11 genes and 2 pseudogenes) in
mouse cells split between
chromosomes 3 and 5. Proteins
have high identity within and
between species.
GRA: dense granule protein.
Proteins secreted from the parasite
dense granule organelles after
invasion and PV formation.
IRG: immunity-related GTPases, also
known as p47 GTPases. Around
47 kDa, and stimulated by interferon
gamma in response to infection or
cell insult in mouse cells. Only two
present in humans and not
responsive to interferons.
IVN: intravacuolar network. A
network of membranes within the
parasitophorous vacuole.
LC3: microtubule-associated
protein1 light chain3. An Atg8 protein
associated with the forming of
autophagosomal membrane. LC3
interacts with autophagy adaptor
proteins on the cargo that is to be
recycled by autophagy.
MIC: microneme protein. Proteins
secreted from the apically located
parasite microneme organelles on
invasion.
Moving junction: a structure
formed at the contact between the
apex of the invading parasite and the
host membrane. The moving junction
moves over the parasite from the
anterior to the posterior end during
the process of invasion, resulting in
the internalization of the parasite
within a parasitophorous vacuole.
MTOC: microtubule organizing
centre. A structure found in
eukaryotic cells serving as a
nucleation site for the formation of
microtubules.
Invasion, and inset). The PV itself is formed by invagination of the host cell plasma membrane in
a process completed within 25–40 s [5]. Once inside the host cell, the parasite replicates rapidly
within the PVM, ultimately leading to its rupture and egress of the tachyzoites (Figure 2,
Replication and Egress).

The PVM is largely host-derived as evidenced by its lipid composition and capacitance
measurements of patch-clamped host cells, indicating that the host cell membrane contributes
>85% of the PVM [6]. In corroboration, a fluorescent lipid probe inserted into host membranes
internalised with the PVM on invasion [7]. The vacuole is rendered nonfusogenic, thus avoiding
lysosomal acidification, by selectively stripping away transmembrane proteins at the moving
junction between host and parasite, based on their mechanism of membrane association
[7,8]. Rhoptry neck proteins, for example, TgRON2 and 4 proteins as well the microneme
protein AMA1, are involved in the establishment of the moving junction through which the
parasite enters the cell [9,10]. Research by Hakansson et al. implies a two-step process of
rhoptry secretion and fusion to generate the PV [11]. Firstly, after the formation of a moving
junction, part of the parasite rhoptry content is released into the host cell as evacuoles,
characterised as being positive for TgROP1, TgROP2, and negative for TgGRA2. This is
thought to occur via a transient break in host cell membrane, rapidly resealing to prevent lysis.
Secondly, invasion occurs with the formation of the PVM. The evacuoles are able to fuse with
and modify established PVM [11], and secreted proteins from rhoptry and dense granules have
been shown to be involved in its development and maintenance (Table 1).

Toxoplasma Proteins Shape the PVM and Host Organelle Recruitment to Enable Parasite
Persistence
Rhoptry and dense granule proteins secreted by Toxoplasma on invasion modify the PVM.
These modifications, in addition to altering the structural environment in and around the PVM
[12], adapting the PVM to access the nutrient-rich host cytosol, and facilitating host organelle
recruitment, also play a role in combating host defence mechanisms (Table 1). The contribu-
tions of these parasite protein-mediated modifications are discussed below in greater detail.

Toxoplasma is auxotrophic for many nutrients, including tryptophan, cholesterol, and iron [13–
15]. The parasite has therefore modified the PVM to function as a molecular sieve to permit
diffusion of small molecules (<1300 Da) [16]. Subsequent research specified two parasite
dense granule proteins, TgGRA17 and TgGRA23, that enable this function. Functionally these
proteins enable passive, nonselective and bidirectional diffusion of nutrients and small mol-
ecules across the PVM [17]. The mechanism for transport of parasite proteins across the PVM
is more complex. A sequence resembling the Plasmodium HT/PEXEL (Host Targeting/Plas-
modium Export ELement) domain was initially described for Toxoplasma dense granule
proteins TgGRA19, 20, and 21 [18], but unlike Plasmodium, this Toxoplasma ‘TEXEL’
(Toxoplasma Export ELement) motif did not permit export across the PVM. TgAsp5 has been
shown to be the protease cleaving this sequence with its deletion blocking translocation of
TgGRA16 and TgGRA24 to the host nucleus [18–21]. However, whereas TgGRA16 contained
an N-terminal ‘TEXEL’ motif, this was absent in TgGRA24, suggesting that TgGRA24 was not
the direct substrate of TgAsp5 [19,21]. A secreted protein, Myr1, cleaved by TgAsp5, was
subsequently found to be essential for export of TgGRA16 and TgGRA24 across the PVM into
the host cytosol [22]. Thus it appears that both TgAsp5 and Myr1 are required for protein export
to host compartments.

Toxoplasma employs a number of strategies to allow the exchange of molecules with the host,
including the diffusion pore described above [16,17]. In addition, the parasite is able to recruit
host cell mitochondria, microtubule organising centre (MTOC) and endoplasmic reticulum (ER)
to its PVM soon after invasion [23–25]. This ability depends partly upon the host microtubule
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PV: parasitophorous vacuole. A
compartment formed on invasion of
a host cell by the parasite which
encapsulates the parasite inside the
host cell and is bounded by the
PVM.
PVM: parasitophorous vacuole
membrane, which bounds the
parasitophorous vacuole (PV)
surrounding the intracellular parasite.
RON: rhoptry neck protein. Proteins
secreted from the neck of the flask-
shaped, apically located parasite
rhoptry organelles on invasion.
ROP: rhoptry body protein. Proteins
secreted from the bulb or body of
the apically located rhoptry
organelles of the parasite on
invasion.
TEXEL: Toxoplasma EXport
ELement. A conserved pentameric
motif (RxLxD/E), similar to the
Plasmodium PEXEL motif, that is
required for transport of proteins to
PVM and some to host cell
compartments.
Ubiquitin: a small protein found
‘ubiquitously’, and conserved from
yeast to mammals, which is added
to a substrate protein to regulate its
activity, degradation, interactions, or
location. Ubiquitination of proteins is
a multistep process requiring an E1
activating enzyme, a conjugation
step mediated by an E2 enzyme,
and a final process of ligation onto
the substrate protein by an E3
enzyme.

Table 1. Rhoptry Proteins (ROPs) and Dense Granule Proteins (GRAs) Associated with the Toxoplasma
Parasitophorous Vacuole

Protein Attributes Refs

TgROP1 Associated with luminal face of PVM, shortly after invasion, but nondetectable
12–24 h postinvasion. TgROP1 is suggested to be glycosylated.

[105–109]

TgROP2 Appears in PVM shortly after invasion. N-terminus exposed to host cell cytosol.
Pseudokinase that associates with TgGRA7. TgROP2 was thought to
recruit mitochondria but this has been disproven. TgROP2 is suggested to be
glycosylated.

[30,105,
109–112]

TgROP4 Appears in PVM shortly after invasion. Phosphorylated in infected cells.
Associates with TgGRA7. TgROP4 is suggested to be glycosylated.

[105,109,
113,114]

TgROP5 Pseudokinase acting as a cofactor for TgROP18 enhancing its activity.
TgROP5 is suggested to be glycosylated. Localises to host cytosolic face
of PVM. Binds directly to host IRGs. Virulence factor in mice.

[79,83,
88,90,109,
110,115]

TgROP7 Appears in PVM shortly after invasion. Exposed to cell cytoplasm. TgROP7
is suggested to be glycosylated.

[105,109,116]

TgROP8 Pseudokinase. Function not known. [117]

TgROP14 Multiple transmembrane domains. [25,118]

TgROP17 Forms a complex and synergises with TgROP5/TgROP18. TgROP17 is
autophosphorylated.

[83]

TgROP18 Kinase localises to PVM via Arg repeat regions. Pro-protein cleaved by TgSUB2.
Highly expressed in types I and II, but not expressed in type III due to an insertion in
the promoter. Virulence factor in mice, prevents IRGs and mGBPs binding. TgROP18
is autophosphorylated and suggested to be glycosylated.

[78,81–83,
88,90,109,111]

TgROP19
TgROP21
TgROP25
TgROP39

All predicted to have kinase activity, having catalytic triad and all have signal
sequence for secretion.
Function unknown.

[119]

TgROP20
TgROP22
TgROP23
TgROP24
TgROP40

All predicted to not have kinase activity, lacking catalytic triad and all have
signal sequence for secretion.
Function unknown.

[119]

TgROP38 Kinase differentially expressed between strains, highest in type III. Significantly
alters expression of >1000 host genes. Downregulates MAPK signalling and control
of apoptosis and proliferation in host.

[119]

TgROP54 Pseudokinase localises to cytoplasmic face of PVM. Important in virulence in
mice and mGBP2 loading on PVM.

[120]

TgGRA3 When released into vacuolar space TgGRA3 spontaneously inserts into PVM.
Also associated with the intravacuolar network (IVN). TgGRA3 is suggested
to be glycosylated. Host ER recruitment.

[25,109,121]

TgGRA5 Putative TM domain and localises to PVM. N-terminus exposed to host
cell cytosol. Host ER recruitment.

[25,122]

TgGRA7 Associates with TgROP2, TgROP4, TgGRA1 and TgGRA3. TgGRA7 is
phosphorylated and glycosylated. Forms strands. Also associated with IVN.
Involved in nutrient acquisition. Associates with TgROP5/TgROP18 complex
in preventing recruitment of host GTPases to PVM. Associates with Irga6.

[86,109,
114,123]

TgGRA8 Released into vacuole shortly after invasion and associates with vacuole
periphery. Proline-rich (24%).

[124]

TgGRA14 Type I transmembrane protein, C-terminus faces host cytosol. Localises on PVM
extensions, connecting to neighbouring PVs. Also associated with IVN.

[125]

TgGRA17 With TgGRA23, facilitates diffusion of small molecules across the PVM. [17]

TgGRA23 With TgGRA17, facilitates diffusion of small molecules across the PVM. [17,126]

TgGRA33 Localised to PVM. Function unknown. [127]
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Figure 1. The Life Cycle of Toxoplasma gondii. In Toxoplasma infections, the definitive hosts are felids (members of the cat family). (1) The infected cat sheds many
oocysts in the faeces. (2) Within �5 days in the environment, the oocysts sporulate and become infectious to intermediate hosts, which can be any warm-blooded
animal. Once ingested by the intermediate host, the sporulated oocysts develop into tachyzoites, a rapidly dividing intracellular form of the parasite. (3) Tachyzoites then
migrate to the deep tissues and brain of the infected host. Here they convert into the slower replicating bradyzoite form and persist as cysts in these immune-privileged
sites for the lifetime of the host. (4) The cycle is perpetuated when a cat eats an infected intermediate host, usually a rodent. (5) In humans, infections occur by eating
undercooked meat from infected intermediate hosts or from consumption of food or water contaminated by cat faeces. Other sources of infection include organ
transplant or blood transfusion. (6) Toxoplasma can also be transmitted from mother to foetus during a primary infection.
network, although this appears not to be the case for host ER–PVM association [24]. The
proximity of host organelles to the parasite (12–18 nm) and tight association (resisting dissoci-
ation during subcellular fractionation), suggests the potential for materials/nutrients to be
transferred to the parasite [24]. Host intermediate filaments and microtubules (MT) are reor-
dered around the PVM and may participate in locating the PV close to the host nucleus [26].
Furthermore, the host MTOC is repositioned from the host nuclear membrane to the PVM [12].
Lysosomes and endocytic vesicles also migrate close to the PVM and may facilitate cholesterol
uptake by the parasite [12,14]. Deep infoldings on the PVM into the vacuole caused by host MT
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Figure 2. The Lytic Cycle of Toxoplasma gondii in Its Host Cell. The Toxoplasma lytic cycle comprises the three main stages of invasion, replication and egress.
(1) The Toxoplasma tachyzoite attaches to and actively invades the host cell through a moving junction between parasite and host cell membrane. During this process
the contents of the apical organelles (micronemes and rhoptries) are secreted to help form the host-derived parasitophorous vacuole. Further release of dense granule
proteins shapes the parasite’s environment (see inset). (2) The parasite resides within the PV where it rapidly replicates by endodyogeny, protected from the host
defence machinery, but able to acquire nutrients from the host cytoplasm. (3) After many rounds of replication, the parasites rupture the PV and egress into the
extracellular environment. From here the released tachyzoites are able to invade further host cells and continue to proliferate in the infected host. Inset: Structure of a
Toxoplasma tachyzoite showing parasite organelles. Abbreviatons: PV, parasitophorous vacuole; PVM, parasitophorous vacuolar membrane; MJ, moving junction; EV,
evacuoles; N, nucleus.
and stabilised by TgGRA7 are postulated to deliver host endocytic vesicles to the vacuole
lumen [12,25].

Despite the parasite synthesising certain phospholipids, it requires host cell choline for the
synthesis of phosphatidylcholine [27]. Toxoplasma also requires lipoic acid from the host as the
amount produced by the parasite is insufficient for its own needs [28]. Since mitochondria are a
key source for lipoic acid, the parasite may acquire this from host organelles. The recruitment of
host mitochondria was initially attributed to TgROP2 [29]. However, a parasite line lacking the
ROP2 locus (including related genes ROP2a, ROP2b, and ROP8) recruited mitochondria to the
same levels as wild-type parasites, disproving its need [30]. Mitochondrial association with the
PVM is specific for type I and type III parasites and was shown to depend on the parasite protein
MAF1 [31]. The MAF1 locus in Toxoplasma contains MAF1 paralogs that differ in their ability to
bring about mitochondrial association. In type II parasites, the MAF1b protein is lacking and
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correlates with the absence of mitochondrial localisation [32]. Of note, deletion of the parasite
protease TgAsp5 causes mislocalisation of MAF1 and a consequent reduction in host
mitochondria–PVM association [19,20]. Since MAF1 does not appear to have a TEXEL motif,
TgAsp5 may cleave an interacting partner to bring about mitochondrial recruitment to the PVM
[19]. Compared to mitochondria, recruitment of host ER to the PVM is less clear, although
dense granule proteins TgGRA3 and TgGRA5 have been implicated by their ability to bind the
ER protein calcium modulating ligand (CAMLG) [33]. Additionally, the host ER–parasite PVM
interaction has been described to permit antigen cross-presentation in dendritic cells infected
with Toxoplasma [34].

Toxoplasma infection is able to activate the serine/threonine kinase, mammalian-target-of-
rapamycin (mTOR) [35]. This capability has the potential to increase the availability of host cell
nutrients for the rapidly replicating parasite. Accumulation of host mTOR was observed in a
vesicular pattern around the PVM. The PVM is reported to be enriched in phosphatidic acid
(PA), and since PA is a key stimulator of mTOR, this may be the route of mTOR activation [35].

Thus Toxoplasma has established multiple mechanisms to ensure its survival and proliferation
despite being isolated from the host within its vacuole. No doubt this contributes to its
successful parasitism of virtually all nucleated cells in all warm-blooded animals. Nevertheless,
probably the best studied role of the Toxoplasma PV/PVM is in immune defence, which we
cover in the next section of this review.

IFNg-Dependent Murine and Human Host Recognition of the PV
Interferon gamma (IFNg) has long been known to stimulate mechanisms combating Toxo-
plasma replication and infectivity [13,15,36]. A multitude of studies have focused on elucidating
the host defence mechanisms at the PV after stimulation of the host cells with IFNg in vitro [37].

In the absence of immune pressure, Toxoplasma tachyzoites avoid fusion of the PVM with the host
endolysosomal system. However, host immunity can destroy this safe haven, in particular, the
inductionofhigh levels of IFNg on infectioncascades tohundredsof IFNg-stimulatedgenes (ISGs).
Proteins such as ubiquitin, Immunity-Related GTPases (IRGs), guanylate-binding proteins
(GBPs) and autophagy proteins subsequently mediate immune recognition of the parasite.

The mechanism by which the host deals with Toxoplasma invasion is species dependent, with
parasite strain differences added to the mix. Below, we describe contrasting mechanisms of
IFNg-induced host defence between murine and human cells. In murine cells, autophagy
protein and host GTPase-mediated damage of the PVM occurs, while in human cells a
ubiquitin-mediated recognition of the PVM followed by endolysosomal elimination or partial
autophagy takes place, dependent upon cell type.

Murine Host Destruction of the PVM Mediated by IRGs and GBPs
The murine PVM has been known to break and leak after induction of cells with IFNg [38]. Many
reports have employed murine macrophages, fibroblasts, and astrocytes to demonstrate
vacuolar disruption of Toxoplasma PVs harbouring type II and III parasites [38–46]. Disruption
of the PVM induced by stimulation with IFNg is only seen in murine cells and not in human cells
(Figure 3, Key Figure) [38,40,47,48]. IFNg upregulates large GTPases that have been shown to
be involved in Toxoplasma vacuole remodelling: the IRGs and GBPs. In C57BL/6 mice, 23 IRGs
are present in the genome, and a cohort of them recognise the PV in IFNg-stimulated murine
cells [38–43,45,46,49,50]. Most IRG proteins contain a GKS motif in their active nucleotide
binding site, while three IRGs possess a GMS motif at this location (Irgm1, Irgm2, Irgm3) [51].
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Key Figure

IFNg-Dependent Mechanisms of Toxoplasma Control in Mouse and Human Cells
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Figure 3. (A) In laboratory murine cells, host GTPases (GKS IRGs) are recruited initially to the PVM of type II and III parasites aided by ATGs. Subsequent recruitment of
ubiquitin, mGBPs, TRIM21, TRAF6, and p62 occurs, with TRAF6 and possibly other E3 ligases, mediating further ubiquitination of p62. The resulting disruption of the
PVM exposes the parasite’s plasma membrane to further attack by mGBP2. Once destroyed, the remains of parasite and PVM are targeted by autophagy. (B) In human
cells, no evidence for PVM destruction is reported. Here, type II and III Toxoplasma are targeted for elimination by ubiquitination of the PVM, whereupon ubiquitin-
binding proteins, p62 and NDP52, interact with ubiquitin at the PVM. The parasites are then routed either for endolysosomal fusion in HUVEC, the PVM becoming
LAMP1-positive with some Rab7 accumulation, or are recognised by LC3 and the autophagy machinery in HeLa cells, stopping short of lysosomal fusion. A small
proportion of invaded parasites escape from the host cell, which dies in the process. Abbreviations: GTP, guanosine triphosphate; IRG, immunity-related GTPases;
PVM, parasitophorous vacuolar membrane; ATG, autophagy protein; GBP, guanylate-binding protein; TRIM, tripartite motif-containing protein; TRAF, TNF receptor-
associated factor; E3, E3 ubiquitin ligase; HUVEC, human umbilical vein endothelial cells; ER, endoplasmic reticulum; N, nucleus; IFNg, interferon gamma; Ub, ubiquitin.
In the murine IFNg-dependent host defence, theToxoplasma PV is targeted first by the GKS
IRGs Irgb6 and Irgb10 [39]. GKS IRGs are rendered inactive by GMS IRGs, both associating
with each other on endomembranes in the GDP-bound form. Once released from the mem-
branes and the GMS IRG complex, GKS IRGs can load GTP and recruit to the Toxoplasma
PVM (Figure 3A) [49,52]. It is by virtue of this that IRGM proteins guard ‘self' organelles such as
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lipid droplets and prevent the association of GKS IRGs and mGBPs [53,54]. Toxoplasma PVs
display a ‘missing self' phenotype without GMS IRGs and are thus prone to GKS IRG and
mGBP targeting [53]. Further details by which mechanism mGBPs are recruited to the PV are
unclear. In line with these findings, it was unequivocally shown that in the absence of GMS
IRGs, mGBP2 is not found on the vacuole [53]. Thus, one could speculate that IRG recruitment
precedes mGBP recruitment to the PV. However, when deleting mGBPs on chromosome 3 in
mice, less IRG recruitment was observed [43], and deletion of mGBP1 leads to less Irgb6 2 h
postinfection despite initial loading of Irgb6 at the PVM [44]. While IRGMs seem to be the
seeding IRGs for the whole pathway [53], it is conceivable that the GKS IRGs and mGBPs
operate in feedback loops with each other to coat the PV for ultimate destruction. Knocking out
either leads to the PV staying intact in murine cells [41,43]. The interdependence of IRGs and
mGBPs for vacuolar recruitment is partially supported by the observation that the negative
regulator of mGBP2, RabGDIa, controls Irga6 recruitment to the PVM via mGBP2 [55].

The mechanism by which IRGs and mGBPs lead to the disruption of the murine PVM to expose
Toxoplasma to the cytoplasm in murine cells is not clear. An elegant study has recently shown
that mGBPs are present in two discrete subcellular reservoirs and attack the PVM as large
multimers comprised of various combinations of mGBPs 1, 2, 3, 5, and 6. Subsequently,
mGBP2 was visualised to localise directly to the plasma membrane of the parasite, presumably
disrupting its integrity as well [56]. A newly discovered parasite effector, TgIST, inhibits STAT1-
dependent responsiveness of the host cell to IFNg [57,58], thus blocking IRGs potentially
saving the first tachyzoites from destruction [57]. IRGs and mGBPs are therefore essential host
defence proteins that target the murine PV for destruction, while hGBPs exert an anti-Toxo-
plasma effect not necessarily dependent on PV targeting [59,60].

Autophagy Proteins and Ubiquitin Control Toxoplasma in Murine Cells
Autophagy is a catabolic pathway for cell content recycling that is extended to the clearance of
pathogens or macroautophagy, herein called autophagy. In canonical autophagy, the ubiquitin-
like machinery of autophagy, including Atg7 (E1-like), Atg3 (E2-like), and the Atg12-Atg5-
Atg16L1 (E3-like) complex, bring Atg8 proteins such as LC3 to the autophagosome isolation
membrane [61]. Membrane-bound LC3 associates with the pathogen cargo via autophagy
adaptor proteins such as NDP52 and p62 that bind ubiquitinated proteins on the pathogen
[62,63]. Autophagosome membranes surround and finally deliver their cargo to lysosomes for
destruction. Autophagy proteins are essential in clearance of Toxoplasma in murine cells in two
distinct ways. Firstly, they recruit host GTPases to the PVM in a nonautophagic capacity.
Secondly, after PVM destruction, the observation of autophagic membranes around the
exposed parasite implies their participation in a classical autophagic role.

The factors governing the initial recruitment of Atg proteins to the PVM are unclear. It has been
postulated that phosphorylated products of phosphatidylinositol on the PVM may bring the
Atg12-Atg5-Atg16L1 complex to the membrane using effector proteins that link phosphoino-
sitides to the Atg complex [64]. Alternatively, the PVM may be recognised by ‘missing self' in a
manner similar to that described for GMS IRGs above [53,54,64]. This early involvement of Atgs
does not lead to canonical autophagy since the Atg proteins do not promote the formation of an
isolation membrane at the PVM prior to breakage, shown in activated macrophages and
astrocytes [38,41]. Instead, a core set of autophagy proteins has been implicated in the
recruitment of IRGs and mGBPs to the PVM described above.

Autophagy proteins, including the E3-like autophagy complex, localise and recruit host IRGs
and mGBPs to the PVM, leading to its disruption [39,42,64,65]. Specifically, Atg5 was shown to
be essential for recruitment of Irga6 and Irgb6 to the PV in mouse macrophages, fibroblasts,
and granulocytes [39,42]. Without Atg5, Irga6, Irgb6, and Irgd formed aggregates in the host
480 Trends in Parasitology, June 2017, Vol. 33, No. 6



cytoplasm [39,42], thus exhibiting diminished soluble cytoplasmic protein leading to diminished
recruitment to the PVM [39]. Similarly, Atg3 expression was required for loading of IRGs and
mGBP2 (and possibly other GBPs) on the PVM and control of Toxoplasma infection [65,66].
These Atg proteins appear to activate the GTPases, since a GTP-locked, constitutively active,
IRG protein mutant was able to overcome the targeting defect in Atg3- and Atg5-deficient cells
[66]. A role for Atg7 and Atg16L1 in promoting recruitment of Irgb6 and mGBPs to the vacuole
has also been described, with Atg9a and Atg14 being dispensable [67]. Depletion of all LC3
homologues, including GABARAP, GABARAPL1, and GABARAPL2, led to a decrease in the
targeting of IFNg-stimulated GTPases to the PVM [64]. Furthermore, if the Atg12-Atg5-
Atg16L1 complex that marks the LC3 conjugation site, was relocated onto alternate target
membranes, the host GTPases accumulated at the new target membranes rather than the
PVM [64]. A later clearance of Toxoplasma by autophagy was shown to occur after PVM
disruption and removal of the PVM and parasite plasma membrane, in primed macrophages
[41]. Here, a dependence on the IRG Irgm3 was observed, which localises to the autopha-
gosomal membranes enveloping the naked parasite [41].

The E3 ubiquitin ligases TRAF6 and TRIM21 in part mediate the ubiquitination of type II and III
PVMs in mouse cells, with other E3 ligases likely involved [68,69]. Following this, the recruitment
of p62 and mGBPs leads to PVM disruption [68]. IRGM proteins are critical for targeting of PVM
by TRAF6, p62, and ubiquitin, and the autophagy proteins Atg3/5/7 and 16L1 are needed for
ubiquitin and p62 recruitment to the murine PVM [68,69]. However, in this instance, p62 does
not play a role as an autophagy adaptor, but is key in activation of vacuolar-antigen-specific
CD8+ T cells [69]. Of note, macrophages lacking p62 had no impact on IRG or GBP recruitment
or on parasite clearance and replication [69]. The substrates of ubiquitination at the PVM have
remained elusive, with only one report demonstrating Irga6 itself being ubiquitinated [70].

Human Host-Dependent Recognition of the PVM and Parasite Restriction
In humans, no role for the IFN-stimulated IRGs has been documented. Only one full-length IRG
(IRGC) is present and it is non-interferon-inducible and testis specific. Another truncated IRG
protein can be found in the human genome (IRGM) [71]. Polymorphisms in IRGM are associ-
ated with Crohn’s disease, and although it is currently not clear what the link is to intracellular
pathogen inclusions or vacuoles, IRGM has been reported as a risk locus for tuberculosis
[51,72,73]. In the absence of a full-length IFNg-inducible human IRG, they are highly unlikely to
serve the same function as in mice. Both mice and humans possess IFNg-inducible GBPs �
eleven in mice and seven in humans. In mice, mGBPs recognise type II and III PVs
[43,44,74,75]. In humans, hGBP1-5 and hGBP1 were shown to recruit to Toxoplasma in
HAP1 and mesenchymal stromal cells respectively [60,67]. This is at odds with our own study
demonstrating no recruitment of hGBP1 to the Toxoplasma PVM in A549 cells [59]. The data
may reflect cell-type-specific differences; however, the images documenting localization to the
PVM show the entire parasite stained, which is not consistent with murine-like PVM-only
localization [60,67]. Of note, the antibody used in the A549 study was confirmed to be hGBP1-
specific, whereas the antibodies used in the other studies are commercial hGBP antibodies that
have pan-hGBP or unvalidated specificity and could potentially be reactive to other hGBPs.

Ubiquitin also recognises type II and III PVs in human cells [47,48]. The PVM is ubiquitinated by
an unknown E3 ligase, followed by p62 and NDP52 binding but no obvious PVM disruption
(Figure 3B) [47,48]. Minimal recognition by galectin 8 was found in an IFNg– and type II parasite-
specific manner, potentially indicating permeability of the PVM [47]. A role for autophagy
proteins in Toxoplasma infection of the human epithelial HeLa cell line has been described
[47,48]. Besides ubiquitin, p62, and NDP52, these cells recruited LC3B and membranes to the
type II and III PV [48]. Knockouts of autophagy proteins Atg16L1 and Atg7 resulted in increased
parasite replication with no membrane encapsulation in this cell line. In addition, the process of
Trends in Parasitology, June 2017, Vol. 33, No. 6 481



autophagy did not lead to lysosomal fusion, with no evidence for LAMP1 staining, but instead
led to parasite growth-restriction by an unknown mechanism [48]. This report contrasted with
the IFNg-dependent parasite clearance in primary-like human endothelial cells (HUVEC). Here,
despite an initially similar IFNg- and type II-specific accumulation of ubiquitin, p62 and NDP52
proteins at the PVM, only low levels of LC3 and GABARAP were recruited for both type I and II
parasites with no evidence of autophagosome membranes [47]. Furthermore, knockdown of
ATG16L1 did not impact parasite replication or clearance, whereas knockdown of p62 led to a
loss of IFNg-dependent restriction of type II Toxoplasma. The parasites were trafficked to the
host endolysosomal system for destruction without the involvement of autophagy (Figure 3B).
Whether this is a difference in parasite clearance by endothelial versus epithelial cells or whether
this is due to the high endogenous autophagic flux previously reported in HeLa cells remains to
be determined. However, other studies have shown that the key autophagy mediator Atg5 is
not important in restriction of the parasite in human foreskin fibroblast (HFF) cells [76].

Toxoplasma Virulence Factors Defend the PV from the IFNg–Mediated Attack in Murine
Cells
Toxoplasma ROPs and GRAs defend the parasite against the murine host (Figure 4). Several
ROP proteins have been identified as key virulence factors that hijack host cellular functions.
These proteins belong to a family of rhoptry kinases that have an active kinase or pseudokinase
domain [77–80]. TgROP17 and TgROP18 phosphorylate IRG proteins, causing them to fall off
the PVM [81–83]. While TgROP18 seems to have a preference for Irga6 over Irgb6 and Irgb10
[81,82,84,85], TgROP17 was shown to target Irgb6 over Irga6 [83]. TgGRA7 regulates
TgROP18 acting on Irga6 [85,86]. TgROP18 and TgROP17 are polymorphic, with TgROP18
highly expressed by virulent type I and avirulent type II parasites, and TgROP17 sharing an allele
in type II/III that is distinct from type I parasites [83,87]. In order for TgROP18 to efficiently
phosphorylate Irga6, it binds to TgROP5, a pseudokinase, and its interaction with Irga6 keeps
this GTPase in the inactive GDP-bound form [85,86,88–90]. TgGRA7 is an additional player in
this parasite kinase complex [85,86]. Deletion of TgROP5 in RH type I Toxoplasma renders this
virulent strain completely avirulent in C57BL/6 mice [79,91], while only a double deletion of
TgGRA7/TgROP18 lead to an attenuated parasite strain [86]. Interestingly, it is the allelic
combination of TgROP5 and TgROP18 in nonclassical Toxoplasma strains that determines IRG
coating of the PVs and the strain’s virulence, not only during primary but also secondary
infection [90,92]. In wild-derived mice, the TgROP5/TgROP18 virulence machinery is taken out
of commission by highly polymorphic IRG proteins leading to dephosphorylated and thus active
Irga6 [50].

These parasite proteins combine to engage in a battle of arms with the murine host’s IRG
system (Figure 4). In IFNg-stimulated human cells, parasite virulence factors await discovery,
since virulent TgROP5 and TgROP18 have been shown to exert only a minimal effect on
parasite survival [90]. Ubiquitin recruitment is also not altered in mutant parasite strains
possessing virulence exchanged rhoptry proteins [47,48]. Thus striking differences exist
between murine and human hosts in their strategy to control Toxoplasma, although, as in
mouse cells, in human cells, type I parasites do appear to grow more vigorously than type II or
III.

IFNg-Independent Murine and Human Host-Mediated Destruction of the PV
CD40 Ligation-Dependent Autophagy of the PV
Early reports in vivo identified an IFNg-independent, but tumour necrosis factor (TNFa)-
dependent control mechanism of Toxoplasma involving the adaptive immune system. Hereby,
CD40 ligation on macrophages by CD154 on activated CD4 T cells impacts in vivo replication of
Toxoplasma in the brain [93], restricting parasite growth in peripheral tissues during the acute
phase of infection [94]. Subsequently it was found that CD40 ligation induces a pathway for
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Figure 4. Toxoplasma Mechanisms of Defence against IFNg-Dependent Host Control. In murine cells, rhoptry
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avoidance of PVM rupture. Abbreviations: IRG, immunity-related GTPases; ROP, rhoptry protein; PV, parasitophorous
vacuole; PVM, parasitophorous vacuolar membrane; N, nucleus; P, phosphate.
control of Toxoplasma by inducing its autophagic clearance (Figure 5) [95]. The autophagic
machinery localises around the PV within 6 h and is comprised of late endolysosomal markers
[95]. These findings suggested that CD40 ligation directs the PV to fuse with endolysosomal
compartments. It is currently believed that the PVM stays intact throughout; however, more
detailed microscopy is required for confirmation. CD40 ligation to kill Toxoplasma requires
synergy with TNFa [96]. To achieve this, CD40 recruits TRAF6 to an intracellular binding site
serving two purposes: it enhances autocrine production of TNFa [97], and TRAF6 signaling
downstream of CD40 synergises with TNFa to activate autophagy [98]. While the former uses
Beclin1 to induce autophagy, the latter signals through ULK1 to synergistically achieve the
same [99]. This mechanism is mostly studied in murine macrophages, with additional evidence
of its existence in human macrophages [95] and nonhaematopoietic murine cells [100].

Toxoplasma-Mediated EGFR Activation to Prevent Autophagy of the PV
To ensure tachyzoite survival, Toxoplasma has to maintain the nonfusogenic property of the
PV. To this end, infection with Toxoplasma leads to the activation of epidermal growth factor
receptor (EGFR) Akt signalling in host cells, preventing the targeting of the PVM by the
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and TNFa signaling via JNK and Beclin1, triggers autophagy. The destruction of the parasite is completed by the Rab7-
dependent deployment of lysosomes to the autophagosome. Toxoplasma is able to modulate this autophagy-mediated
parasite destruction by activation of host EGFR. On invasion, the parasite secretes microneme proteins, MIC3 and 6,
which promote EGFR activation leading to activation of host AKT by PI3K-dependent phosphorylation. Activated AKT is
then able to prevent recruitment of LC3 and autophagy membranes to the parasite. Abbreviations: CD40, cluster of
differentiation 40; CD154, CD40 ligand; TNFa, tumour necrosis factor alpha; TNFR2, tumour necrosis factor receptor 2;
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autophagy protein LC3 and thus avoiding Beclin1- and Atg7-dependent autophagic clearance
(Figure 5) [101]. Phosphorylation of Akt increased in response to parasite infection, requiring
viable parasites, and was IFNg-independent. This occurs in many cell types, including human
brain endothelial cells and retinal cells as well as mouse endothelial cells, microglial cells, and
macrophages [101]. Avoidance of autophagy was observed for both type I and type II parasites.
When Akt or EGFR were depleted by siRNA or chemical inhibition, LC3 was found to
accumulate around the PVM and a decrease in tachyzoites per 100 cells recorded 24 h
postinfection [101]. It is important to note that, in this pathway, overall autophagy was not
inhibited by Toxoplasma infection, but rather a targeted recruitment of LC3 to the PVM was
blocked by activation of EGFR. It was found that the two parasite microneme (MIC) proteins
containing EGF domains, MIC3 and MIC6, were important contributors to this process [101].
Another study confirmed that Gefitinib, an EGFR inhibitor, halted parasite replication in HeLa
cells, as measured by the number of type I tachyzoites per PV [102]. It is noteworthy that the
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Outstanding Questions
Is transport through the newly identi-
fied pore (TgGRA23/TgGRA17) in the
PVM regulated?

How are exported proteins not con-
taining a conserved TEXEL motif trans-
located to the host?

What is the function of organelle
recruitment to the PVM, and why is it
parasite-strain-specific for
mitochondria?

Is IFNg the most important cytokine
mediating immune protection of
acute-phase Toxoplasma infection in
humans?

What are the Toxoplasma virulence
factors that control evasion of immune
destruction of the PVM in human cells?

What are the substrates of ubiquitina-
tion at the PVM in human cells?

Do any hGBPs recruit to the PVM in
human infections?

Does the difference in parasite control
in HUVEC and HeLa cells reflect a
difference in mechanism between
endothelial and epithelial cells?

What are the defence mechanisms
occurring at the PVM in human
macrophages?

What is the pathway of vacuolar acidi-
fication in IFNg-stimulated human
cells? At what stage does the PVM
become committed to the endolyso-
somal pathway?

How are growth-stunted Toxoplasma
inhibitor was added 1 h postinfection and thus may have exerted its effect on related parasite
tyrosine kinases.

Although, as we discuss in earlier sections of this review, the predominant murine mechanism
for parasite clearance is IFNg-dependent, the CD40-dependent pathway serves as an
alternative way to eliminate Toxoplasma and operates in mouse and human cell types of
different origin. The parasite response appears similarly universal, with both type I and II
Toxoplasma activating EGFR-Akt to avoid autophagic elimination.

Conclusion and Future Perspectives
The PVM is an essential barrier between Toxoplasma and host. Communication across the
PVM provides the parasite with the means to survive and replicate by being able to access
nutrients and larger molecules. On the flipside, the host can attack and kill the parasite, with the
PVM being the recognition surface in murine cells. This leads to an arms race between host and
parasite, with different molecules interacting across the border.

Other apicomplexans avoid host recognition by alternative means. Theileria, for example,
passively enters the host cell by endocytosis, zippering its way in through ligand–receptor
interactions with the cell membrane. Once inside, the parasite dispenses with its endocytic
vacuolar membrane within minutes accompanied by microneme secretion, to avoid fusion with
the host endolysosomal apparatus [103].

Of interest, patients with partial IFNgR1 deficiency do not suffer from toxoplasmosis, even
though being Toxoplasma seropositive [104]. TNFa stimulation of these patient’s macrophages
could compensate for the absent IFNg-dependent Toxoplasma killing. It remains to be
investigated what the mechanism of TNFa-dependent Toxoplasma control at the PV are in
primary human macrophages. Equally, the parasite’s strategy for circumventing host attack in
immune-stimulated human cells remains unknown and will be important to address (see
Outstanding Questions).
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