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Abstract:
In this paper a fractional order transfer function, identified from experimental data, is used to
model IPMC actuators. The IPMC model is parameterized as a function of the actuator length.
Two different control approaches are proposed and compared; the first one is a parameterized
controller designed with a classical frequency domain strategy, while the second is designed by
using a robust control approach.

1. INTRODUCTION

IPMC (Ionic Polymeric Metal Composite) are innovative
materials made of a ionic polymeric membrane covered on
both sides with a noble metal. It is known that IPMC can
exhibit deformations if the metallic electrodes are forced
by a voltage signal. Conversely, dynamic deformation of
the IPMC membranes produces a voltage across their
electrodes. So IPMC membrane can work either as low-
voltage motion actuators or as motion sensor.

The evolution of IPMC technology from its infancy to-
wards its full exploitation for the production of polymeric
transducers, requires the development of applications in
fields such as robotics, aerospace, and medicine, just to
mention a few, with significant advantages with respect
to competing technologies Shahi [2005]. Notwithstanding
the large number of proposed applications, most of them
are actually lab scale prototypes and further efforts are
needed before IPMC based applications can influence real
life quality.

The design of a control system for IPMC actuators requires
adequate models, see classical modeling approaches in
Nemat-Nasser [2009(] and Chen [2008]. Moreover such
models can be scaled as a function of the parameters that
the designer can fix in order to obtain the desired system
performance, see Bonomo [2007].

IPMC are difficult to control because they are nonlin-
ear and time-variant and can exhibit variable mechanical
properties even when produced in the same batch. A num-
ber of control approaches are based on black-box models
and therefore they are often dependent on the experiments
performed for data acquisition. Even if some classical ap-
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proaches have been proposed, like PID or LQG controller,
intelligent, adaptive or robust controller design methodolo-
gies are usually applied to cope with model uncertainties,
nonlinearity, time-variability and non-repeatability of the
IPMC behavior.

One of the first papers in the area of IPMC control, see
Mallavarapu et al. [2001], proposes a classical LQR con-
troller to regulate the deformation of an IPMC actuator in
order to improve the dynamic behavior. A more advanced
approach is given in Lavu et al. [2005]. It proposes a model
reference adaptive control (MRAC) structure for tracking
control, along with a pole-placement approach, using a
genetic optimization strategy to tune the parameters in
order to deal with environmental variations, like humidity.
A robust control designed to overcome uncertainties and
non-repeatability by using the H∞ approach and µ −
syntesis is proposed in Kang et al. [2007]. Shan et al.
[2009] propose a model based frequency-weighted feed-
forward controller designed to enable fast positioning while
avoiding large voltages. A feedback controller is also used
to take into account unmodelled effects. Ahn et al. [2010]
shows a solution for IPMC high precision control based on
the Quantitative Feedback Theory, in order to cope with
the large parameter uncertainties, satisfying both robust
tracking performance and the noise attenuation require-
ment. In Fang et al. [2011] the controller is designed both
for IPMC actuators working in air and underwater on the
basis of a black-box linear model. More recently in Kang
et al. [2012] a time variant black-box model, identified with
a real-time approach, is used to design an adaptive feed-
forward controller. A noise cancelation technique is also
used to alleviate the effects of plant disturbances.

In order to apply an effective control strategy is necessary
to use a model. In their pioneering work, Bao [2002], Bao et
all. proved that IPMC posses a fractal electrode structure.
Starting from this work the authors in Caponetto [2008]
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have derived a fractional order transfer functions able to
describe the dynamic of a IPMC actuator.

This model represents a realistic starting point to design
effective controller. With these in view in the paper two
controllers will be proposed: the first one is a parameter-
ized controller designed with a classical frequency domain
strategy, while the second is designed by using a robust
control approach.

The paper is organized as it follows: a short introduction
of IPMC features and its modeling phase is reported in
section II, the two control approaches are proposed and
described in sections III and IV respectively and some
conclusive remarks are given in section V.

2. DATA ACQUISITION AND MEMBRANE
MODELLING

2.1 Experimental setup for data acquisition

In this section few notes on IPMC manufacturing proce-
dure are followed by the description of the experimental
setup used to acquire the data that will be utilized in the
successive IPMC membrane modeling phase.

IPMCs consist of a layer of ionic polymer, whose thickness
is generally of the order of 100µm, interposed between two
conductive layers, to realize the electrodes. Noble metals,
such as platinum and gold, are used to this purpose.
Electrodes are used both to impose the electrical stimulus
when an IPMC is used as an electromechanical transducer,
and to collect electrical signals, when the IPMC is used as
a sensor.

The most used polymer is Nafion, a perfluorinated
alkene produced by Dupont. Since Nafion shares with
Teflon its antiadherent property, electrodes cannot be
simply applied to the polymer and a chemical plan-
tation procedure needs to be used. More specifically,
the standard impregnation reduction process, proposed
by Dr. Oguro at http : //ndeaa.jpl.nasa.gov/nasa −
nde/lommas/eap/IPMCPrepProcedure.htm was used.

Following this procedure, a sheet of Nafion 117, whose
thickness is about 180µm is first allowed to soak in a
platimun salt solution, typically PtNH3Cl2.

As the second step the membrane is soaked in a reducing
agent, allowing metallic dendritic structures to build into
the ion exchange membrane and to realize the electrodes
at the membrane surface. It is generally accepted that such
dentritic structure plays a main role in the electromechan-
ical coupling behavior of the IPMC transducer since it
contributes to a large increase in the effective area of the
electrodes.

As a result of the production steps, a sample, soaked in
water and whose thickness is abot 200µm, is obtained.
This has been further cut to obtain the transducers with
the desired shape, i.e. rectangular strips with different
length and width.

Different theories have been proposed to explain the elec-
tromechanical transduction properties of IPMCs. More
specifically, Tadokoro et al. proposed that the actuation

mechanism is due to the migration of mobile ions under
the effect of the external electric field, see Takadoro [2000].

When a voltage signal is applied across the thickness of
the IPMC, mobile cations will move toward the cathode.
Moreover the cations will carry solvent molecules with
them with a resulting bending of the membrane, see figure
1(a).

Considering the beam parameters, the length Lfree and
the cross-sectional dimensions, thickness t and width w,
it will be assumed that the beam vibrates in the vertical
plane, see figure 1(b).

The experimental setup is composed of a circuit to impose
the voltage input signal to the membrane and a distance
laser sensor to measure the tip deflection. The photo of
the experimental setup is shown in figure 1(c).

Fig. 1. (a) Chemical process of IPMC, (b) IPMC beam,
(c) photo of experimental setup.

The deflection of the cantilever tip was measured by using
the laser sensor Baumer Electrics OADM12U6430. Light
from the laser diode was focused onto the end of the
cantilever. The absorbed current is transduced by using
a shunt resistor.

As an example the voltage input imposed to the membrane
andthe deflection of the cantilever tip are shown in figure
2(a) and 2(b), respectively.

Fig. 2. Voltage input applied to the membrane (a), De-
flection of the cantilever tip measured with the laser
sensor (b).

The voltage input signal is a chirp signal spanning from
500mHz to 100Hz. Using a sampling frequency equal to
1000samples/s, 10000 samples are obtained for a data
acquisition campaign lasting 10 s. The output signal ac-
quired, i.e. the deflection of the cantilever tip, shows clearly
that the IPMC reaches the maximum deflection in the
resonance condition.

By the inspection of Bode diagrams, see figure , it can
be obseerved that the systems present a non integer
order behavior, Caponetto [2010]: the module of the Bode
diagrams presents a slope equal to m ∗ 20db/decade, and
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Fig. 3. Module and phase of three IPMC samples with
different length. Continuous 15mm, dotted 25mm and
dashed 30mm.

the phase Bode diagrams present a phase lag equal to
m∗90o, where m is a suitable real number. The system can
therefore identified by fractional order model which allows
to obtain good modeling performance by using a small set
of parameters, see Bonomo [2007] and Caponetto [2008].

2.2 Fractional Order System

The subject of fractional order calculus or non integer
order systems, i.e., the calculus of integrals and derivatives
of any arbitrary real or complex order, has gained consid-
erable popularity and importance during the last three
decades with applications in numerous seemingly diverse
and widespread fields of science and engineering Oldham
[2006], Podlubny [1999] and Caponetto [2010].

Transmission lines, electrical noises, power-law, dielectric
polarization, heat transfer phenomena, systems with long-
range interaction, Ionic Polymer Metal Composites mod-
eling and biomedical engineering, are some examples of
systems described by using non integer order physical laws.

Fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various
materials and processes. This is the main advantage of
fractional derivatives in comparison with classical integer-
order models, in which such effects are in fact neglected.
The advantages of fractional derivatives become apparent
in modeling mechanical and electrical properties of real
materials.

The most frequently used definition for the general frac-
tional differintegral is the Caputo one, see Caponetto
[2010]:

aD
r
t f(t) =

1

Γ(r − n)

∫ t

a

f (n)(τ)

(t− τ)r−n+1
dτ, (1)

for (n−1 < r < n). The initial conditions for the fractional
order differential equations with the Caputo derivatives
are in the same form as for the integer-order differential
equations.

In the above definition, Γ(m) is the factorial function,
defined for positive real m, by the following expression:

[mm] Hz α β

15 53.86 26 330
18 41.5 25 262
20 35.36 20 223
25 24.31 10 153
27 21 10 133
30 16.36 7 103

Table 1. Model parameters according to the
sample length.

Γ(m) =

∫

∞

0

e−uum−1du (2)

Also for fractional order systems it is possible to apply the
Laplace transformation. It assumes the form:

L

{

dqf(t)

dtq

}

= sqL{f(t)} −

n−1
∑

k=0

sk
[

dq−1−kf(t)

dtq−k−1

]

t=0

(3)

and allow to easily manage fractional differential equation
as non integer order transfer function.

In the following non integer order model of IPMCs will be
considered. Since in this case the values of fractional expo-
nents need to be estimated along with the corresponding
transfer function zeros and poles values, the identification
problem is nonlinear and an adequate optimization proce-
dure needs to be used.

2.3 Membrane modeling

The fractional order models has been determined by using
the Marquardt algorithm, see Marquardt [1963], with the
available experimental data. The Levenberg-Marquardt
method is commonly used to solve nonlinear least squares
problems. The Levenberg-Marquardt curve-fitting method
is actually a combination of two minimization meth-
ods: the gradient descent method and the Gauss-Newton
method. It is similar to a gradient-descent method when
the parameters are far from their optimal value, and acts
more like the Gauss-Newton method when the parameters
are close to their optimal value. The models obtained
for the voltage-deflection transfer function, have be de-
termined according to the following relation:

G(s) =
k

sn(s2 + 2sα+ α2 + β2)m
(4)

with n = 0.62 and m = 1.15. Parameter α and β depends
of the IPMC membranes length as reported in table 1.
In order to perform the IPMC control system design the
resonance frequency as been parameterized as a function
of the membrane length, so that the parametric controller
can be designed.

fr = 0.09L2 − 6.4L+ 130 (5)

Starting from the fractional order IPMC model (4), in
the following two different type of controllers are proposed
The first one is a parametric controller designed using a
a classical frequency domain procedure while the second
one is designed using robust control theory.
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3. PARAMETERIZED CONTROL OF THE
MEMBRANE

The goal of this approach is to determine a parameterized
controller that depends on the values of α and β in
equation (4). System performance aims to enlarge the
bandwidth and to ensure a good tracking error of the
IPMC membrane actuator.

In the parameterized control approach the open loop
system is characterized by the presence of a three blocks
controller: C(s) = Ca(s)Cb(s)Cc(s). The roles of each
block is defined as it follows. Ca(s) has been added in
order to guarantee a finite error to the step input. In fact
it consists in a zero with slope 0.62 and in a gain that
has been fixed with a trail and error procedure. The Cb(s)
is the parameterized block and has been added to obtain
a good phase margin at the desired crossover frequency.
Cs(s) has been designed to guarantee a good tracking error
inside the desired band width. The controller is therefore
defined as it follows.

Ca(s) = 33s0.62 (6)

Cb(s) =
(1 + sτ)3

(1 + s τ
m
)3

(7)

where

τ =
0.5

(2πfr ∗ 3.5)
(8)

m = 10 and

Cc(s) =
(1 + s

16π )

(1 + s
2π )

; (9)

The obtained open loop and closed loop transfer functions
are reported in figures 4 and 5 respectively.

Fig. 4. Module and phase of the open loop transfer function
with C(s) = Ca(s)Cb(s)Cc(s).

As it can be observed from the Bode diagram of the con-
trolled systems a crossover frequency greater than 50Hz
has been obtained for any membrane length, correspond-
ing to a bandwidth greater than 80Hz. Regarding the
phase margin the worst case, Mφ = 20◦ and the best
Mφ = 80◦, have been obtained for the 15mm and 30mm
length respectively, see Caponetto [2012] .

Fig. 5. Module and phase of the closed loop transfer
function with C(s) = Ca(s)Cb(s)Cc(s).

4. SINGULAR VALUE LOOP SHAPING FOR
MEMBRANE CONTROL

The second control approach proposed in the paper is
based on the singular value loop shaping, see Doyle [1979]
and Safonoc [1980]. Let take into account the closed loop
control system depicted in figure 6.

Fig. 6. Closed loop scheme for the singular value loop
shaping approach.

In order to quantify the stability margins and performance
of the systems, it is possible to use the singular values of
the closed loop transfer function matrices from the input
to each of the three outputs; error, control and system
output given by:

S(s) = (I + L(s))−1

R(s) = C(s) ∗ (I + L(s))−1

T (s) = L(s) ∗ (I + L(s))−1 (10)

The two matrices S(s) and T (s) are the sensitivity and
complementary sensitivity, respectively. The singular val-
ues of S(s) determine the disturbance attenuation since
S(s) is the closed loop transfer function from disturbance
d to plant output y. Thus a disturbance attenuation per-
formance specification cab be written as:

σ̄(S(jw)) ≤ |W−1
1 (jw)| (11)

The singular value Bode plots of R(s) and of T (s) are
used to measure the stability margins the system in face
of additive plant perturbations and multiplicative plant
perturbations respectively.

Therefore it is common to specify the stability margins of
control systems via singular value inequalities such as:

σ̄(R(jw)) ≤ |W−1
2 (jw)| (12)

and
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σ̄(T (jw)) ≤ |W−1
3 (jw)| (13)

where |W−1
2 (jw)| and |W−1

3 (jw)| are the respective sizes
of the largest anticipated additive and multiplicative plant
perturbations.

In the proposed approach the different length of the IPMC
membrane are treated as multiplicative plant perturbation
and the singular values shaping has been applied to deter-
mine a controller robust versus different IPMC lengths.

In order to determine the controller the Matlab Robust
control toolbox has been used with the following shaping
functions:

W1(s) =
(s+ 10000)

(0.01 + s)
(14)

W2(s) = 0 (15)

and

W3 =
0.56(1 + 0.22s)(1 + 0.0006s)2

(1 + 0.002s)3
(16)

The obtained controller has the following transfer function,
(17), and the Bode diagram of the closed loop responses
for the three membranes are shown in figure 7.

As it can be noted, system performances are guaranteed
both for the magnitude and phase in useful frequency
range and the resonance picks for all the membrane are
almost all canceled.

C(s) =
1.651e011s6 + 2.51e014s5 + 1.327e017s4+

s7 + 3.938e004s6 + 6.899e008s5 + 6.992e012s4+

2.894e019s3 + 3.324e021s2 + 4.852e023s+ 2.018e016

5.72e015s3 + 1.201e018s2 + 9.712e020s+ 5.964e018
(17)
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Fig. 7. Bode diagram of the closed loop robust controller
for the three membranes. Continuous 15mm, dotted
25mm and dashed 30mm.

5. CONCLUDING REMARKS

In the paper a non integer order model and two control
strategies for IPMC actuators have been presented. The
first controller, designed using a trial and error approach
is scaled as a function of the device length. The design

procedure is simple and the results, showed in figure 6, are
encouraging. The resonance peaks are out from the desired
band, 80HZ but still remain present. On the other end the
robust control approach is more effective, see figure 7 even
the controller realization could more difficult due to the
order of the controller and to the values of its coefficients.

Studies under development are planned in order to first
reduce the robust controller order using model order
reduction techniques and successively to implement and
compare both controllers on an hardware in the loop
system.

The obtained controllers, at present Matalb routines,
will be implemented comparing three digital approaches;
the Grunwald-Letnikov one, the direct method based on
mixed operator, and the continued-fractions delta-domain
approach.

Furthermore a new set of measurements, with variable
sampling period, are going to be performed in order to
model IPMC membranes produced with different fabrica-
tion parameters.
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