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Abstract

A numerical method is presented for form-finding of tensegrity structures. Eigenvalue analysis and spectral decompo-
sition are carried out iteratively to find the feasible set of force densities that satisfies the requirement on rank deficiency of
the equilibrium matrix with respect to the nodal coordinates. The equilibrium matrix is shown to correspond to the geo-
metrical stiffness matrix in the conventional finite element formulation. A unique and non-degenerate configuration of the
structure can then be obtained by specifying an independent set of nodal coordinates. A simple explanation is given for the
required rank deficiency of the equilibrium matrix that leads to a non-degenerate structure. Several numerical examples are
presented to illustrate the robustness as well as the strong ability of searching new configurations of the proposed method.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Tension structures, such as cable nets, membrane structures and tensegric domes, have significant advan-
tages over the conventional structures, such as steel structures, in view of their light-weight characteristics.
Since the tension structures can transmit only axial forces, the distribution of axial forces is directly related
to the structural shape, and the self-equilibrium shape should be determined by the so-called form-finding
analysis that simultaneously finds the feasible set of internal forces and geometry of the structure.

There have been some different definitions and classifications for the tension structures, e.g. some research-
ers classify them into (1) self-stressed structures, and (2) prestressed structures. Self-stressed structures are free-
standing so that they can maintain their self-equilibrium states without any support. The prestressed structures
such as tensegric domes, cable nets and membrane structures should be attached to supports to retain equi-
librium. However, for the sake of discussion on the availability of the force density method, tension structures
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are classified in view of prestress states of the structural elements in this study as: (1) tensegrity structures, and
(2) tensile structures that consist of tensile members (elements) only.

The terminology of tensegrity, given by Fuller (1975), refers to a prestressed pin-jointed structure that con-
sists of continuous tensile members (cables) and discontinuous compressional members (struts). However,
many of the so-called tensegrity structures developed recently from this basic idea do not satisfy the definition
strictly. Detailed description and classification of tensegrity structures are presented by Motro (1996). In this
study, we regard tensegrity structure as a free-standing prestressed pin-jointed cable-strut system, where con-
tacts are allowed among the struts, e.g. the reciprocal cable prisms proposed by Saitoh et al. (2001) and Wang
(1996).

The process of finding an equilibrium configuration, called form-finding or shape finding, is a key step in the
design of a tensegrity structure. Many researchers have made important contributions for this purpose; e.g.
Hanaor (1988), Pellegrino and Calladine (1986), Sultan et al. (2002), Motro et al. (1986). The methods
extended from the idea of the force density method, which is originally proposed for cable nets by Linkwitz
and Schek (1971), are considered to be very effective, because only linear equations need to be solved in the
form-finding process. Among them, the analytical technique developed by Vassart and Motro (1999) is found
to be particularly suitable for searching new configurations (Tibert and Pellegrino, 2003). They analyzed the
equilibrium matrix to obtain the conditions for force densities in symbolic form so that the equilibrium matrix
has the required rank deficiency. However, for structures with large number of members, the analytical
method may not be efficient enough. In this case, an effective numerical method may be strongly desired,
which is the motivation of this study.

The paper is organized as follows: Section 2 introduces the basic idea and formulation of the force density
method for the form-finding problem of cable nets, and their extensions to tensegrity structures. A simple
explanation on the required rank deficiency of the equilibrium matrix is also presented. Section 3 formulates
the linear and geometrical stiffness matrices and shows that the equilibrium matrix with respect to the nodal
coordinates is equivalent to the geometrical stiffness matrix. Section 4 formulates the force density vector in
terms of the equilibrium matrix and linear constraints on force densities, and presents the adaptive force den-

sity method based on eigenvalue analysis and spectral decomposition of the equilibrium matrix. Some numer-
ical examples are given in Section 5 to illustrate the robustness, as well as ability of searching new
configurations, of the proposed method. Section 6 concludes the study and gives some discussions.

2. Force density method

2.1. Properties of tensegrity structures

The form-finding problem of a tensegrity structure is very similar to that of a cable net, because they use
almost the same assumptions described as follows except (d) and (e), which are adopted only for tensegrity
structures:

(a) Members are connected by pin joints.
(b) Connectivity between the nodes and members, called topology, of the structure is known, and the geo-

metrical configuration of the structure can be described in terms of nodal coordinates only.
(c) No external load is applied and its self-weight is neglected; i.e. the structure is in a self-equilibrium state.
(d) Buckling of the strut is not considered.
(e) The structure is free-standing without any support.

We can learn from the assumptions (a) and (c) that only axial forces, either in compression or tension, are
transmitted by the members.

Since the self-equilibrium state of a cable net should be obtained by considering interaction between forces
and geometry, there exist some difficulties in the form-finding process, and several methods have been devel-
oped to overcome the difficulties. Among these, the force density method that was originally developed by
Linkwitz and Schek (1971) is regarded as one of the most powerful approaches. The key feature of the
force density method is that the nonlinear equilibrium equations for unknown locations of the nodes are
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transformed to a set of linear equations by prescribing the force sk to length lk ratio qk = sk/lk, called force

density, for member k. Note that qk > 0 for all members of a cable net. It seems that the formulation for cable
nets can be easily applied to the form-finding problem of tensegrity structures. However, some difficulties may
arise because tensegrity structures are free-standing and there exist struts with qk < 0.

2.2. Formulation of the equilibrium matrix

We start with the basic formulations of the force density method for cable nets. A typical cable net is
attached to supports called fixed nodes here because they cannot have any displacement, whereas the nodes
that are not constrained are called free nodes. For example, the two-dimensional cable net as shown in
Fig. 1 has two free nodes 1 and 2, and is attached to fixed nodes 3–8. The structural elements connected
by nodes are called members.

For a structure with m members, n free nodes and nf fixed nodes, its topology can be described by an inci-
dence matrix Cs 2 Rm�ðnþnf Þ defined in the field of graph theory (Kaveh, 2004). If member k connects nodes i

and j (i < j), then the ith and jth elements of the kth row of Cs are set to 1 and �1, respectively, as
Cs
ðk;pÞ ¼

1 for p ¼ i

�1 for p ¼ j

0 for other cases

8><
>: ð1Þ
The fixed nodes are preceded by the free nodes in the numbering sequence, for convenience, so that Cs can
be partitioned into two parts as
Cs ¼ ðC;Cf Þ ð2Þ

where C 2 Rm�n and Cf 2 Rm�nf

describe the connectivities of the members to the free and fixed nodes,
respectively.

Let x , y, z ð2 RnÞ and xf, yf, zf ð2 Rnf Þ denote the nodal coordinate vectors of the free and fixed nodes,
respectively, in x-, y- and z-directions. The force density vector is denoted by q ¼ ðq1; q2; . . . ; qmÞ

> 2 Rm.
The force density matrix Q 2 Rm�m is given as
Q ¼ diagðqÞ ð3Þ

The equilibrium equations of the free nodes in each direction of a general pin-jointed structure can be written
as follows (Linkwitz and Schek, 1971; Schek, 1974):
C>QCxþ C>QCf xf ¼ px

C>QCyþ C>QCf yf ¼ py

C>QCzþ C>QCf zf ¼ pz

ð4Þ
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Fig. 1. A two-dimensional cable net.
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where px, py and pz (2 Rn) are the vectors of external loads applied at the free nodes in x-, y- and z-directions,
respectively.

For simplicity, matrices E 2 Rn�n and Ef 2 Rn�nf
are defined as
E ¼ C>QC

Ef ¼ C>QCf
ð5Þ
Note that E and Ef are constant when the force density matrix Q is given. From Eqs. (4) and (5), the self-equi-
librium equations without external loads can be rewritten as
Ex ¼ �Ef xf

Ey ¼ �Ef yf

Ez ¼ �Ef zf

ð6Þ
which are linear with respect to the unknown coordinates x, y and z of the free nodes while the coordinates xf,
yf and zf of the fixed nodes are given. Since E represents the equilibrium of the free nodes, it is called equilib-
rium matrix in this study.

Instead of using C and Q as (5), E can be written directly from the force densities q (Connelly and Terrell,
1995; Vassart and Motro, 1999). Let I denote the set of members connected to free node i. The (i, j)-compo-
nent E(i,j) of E is given as
Eði;jÞ ¼

P
k2I

qk for i ¼ j

�qk if free nodes i and j are connected by member k

0 for other cases

8>><
>>: ð7Þ
For the two-dimensional cable net in Fig. 1, E can be written directly from (7) as
E ¼
q1 þ q2 þ q3 þ q7 �q1

�q1 q1 þ q4 þ q5 þ q6

� �
where E is always square and symmetric, and moreover, positive-definite if all members are in tension; i.e.
qk > 0 (k = 1,2, . . . ,m), without isolated free node (Schek, 1974). Therefore, E is invertible, and coordinates
of the free nodes can be uniquely determined by solving the linear equations (6). This is the original idea
of the force density method for the form-finding problem of cable nets.
2.3. Force density method for tensegrity structures

A similar formulation to the force density method for cable nets may be applied to tensegrity structures,
because they use almost the same assumptions as listed in Section 2.1. However, for a tensegrity structure,
E always has rank deficiency, therefore it is not invertible as discussed below, because it is free-standing
and has compressional members with qk < 0.

Since there exists no fixed node for a tensegrity structure, the self-equilibrium equations in each direction
without nodal loads can be written as
Ex ¼ 0 ð8:1Þ
Ey ¼ 0 ð8:2Þ
Ez ¼ 0 ð8:3Þ
For example, the equilibrium matrix E of the two-dimensional tensegrity structure shown in Fig. 2, where thin
and thick lines denote the cables and struts, respectively, can be written as follows from (7):
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Fig. 2. A two-dimensional tensegrity structure.
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E ¼

q1 þ q2 þ q3 þ q4 �q1 �q2 �q3 �q4

�q1 q1 þ q5 þ q7 0 �q5 �q7

�q2 0 q2 þ q6 þ q8 �q6 �q8

�q3 �q5 �q6 q3 þ q5 þ q6 0

�q4 �q7 �q8 0 q4 þ q7 þ q8

0
BBBBBB@

1
CCCCCCA
which is square and symmetric.
Define rank deficiency h of E as
h ¼ n� rankðEÞ ð9Þ

It can be seen from Eqs. (8) and (9) that there are h independent components of x, y and z, respectively, that
can be specified arbitrarily.

It may be easily observed from the definition (7) of E that the sum of the elements of a row or a column of E

is always equal to 0 for a free-standing tensegrity without fixed nodes. Therefore, E is always singular with
rank deficiency of at least 1; i.e. hP1, for any tensegrity structure. Moreover, with the existence of both posi-
tive and negative values of the force densities for cables and struts, respectively, h may be larger if the force
densities satisfy some specific conditions.

2.4. Non-degeneracy condition of tensegrity structures

Let x0, y0 and z0 be defined as
x0 ¼ ax
0
�I ð10:1Þ

y0 ¼ ay
0
�I ð10:2Þ

z0 ¼ az
0
�I ð10:3Þ
where all the elements of the vector �I 2 Rn are equal to 1, and the coefficients az
0, ay

0 and az
0 can have arbitrary

values. Since the sum of the elements of any row of E is always equal to zero for a tensegrity structure, it is
obvious that x0, y0 and z0 are the solutions of Eqs. (8.1)–(8.3), respectively. Accordingly, the solutions of Eqs.
(8.1)–(8.3) can be combined to a general form as
x

y

z

0
B@

1
CA ¼

x0

y0

z0

0
B@

1
CAþXh�1

i¼1

ax
i 0 0

0 ay
i 0

0 0 az
i

0
B@

1
CA

ri

ri

ri

0
B@

1
CA ð11Þ



J.Y. Zhang, M. Ohsaki / International Journal of Solids and Structures 43 (2006) 5658–5673 5663
where ri is in the null-space of E as Eri = 0.
From (11), the following properties hold:

(1) If h = 1, all nodes degenerate into one node ðax
0; a

y
0; a

z
0Þ, which is called base node here.

(2) If h = 2, (11) defines a line that passes through the base node.
(3) Eq. (11) forms a two-dimensional space (plane) in the case of h = 3, and a three-dimensional space if

h = 4. Both of these solution spaces contain the base node.

Therefore, to our problem, which is to obtain a non-degenerate d-dimensional (d = 2 or 3) tensegrity struc-
ture, the rank deficiency h of E should satisfy the following condition:
h ¼ hH ¼ d þ 1 ð12Þ

Hence, the problem of finding a feasible shape for a tensegrity structure turns out to be that of finding a set of
force densities satisfying h = hw.

Vassart and Motro (1999) suggested three practical techniques for finding a feasible set of force densities to
achieve the required rank deficiency: (1) intuitive, (2) iterative, and (3) analytical. The intuitive method is suit-
able for structures with only a few members. The iterative method seems to be based on trial-and-error exper-
iments, or more refined iterative search for a set of force densities that yields the required deficiency. However,
the details of the method were not presented. The analytical method is thought to be most effective among
these methods: the equilibrium matrix E is analyzed based on Gaussian elimination in symbolic form to find
the relation among the force densities to satisfy the non-degeneracy condition (12).

3. Stiffness of tensegrity structures

The tangent stiffness matrix of a general prestressed pin-jointed structure is formulated in this section to
show that the equilibrium matrix E corresponds to the geometrical stiffness matrix in general finite element
formulation.

Let ek and Ak denote Young’s modulus and cross-sectional area of member k, respectively. The lengths of
member k in the prestressed and initial unstressed states are denoted by lk and l0

k , respectively. Assuming that
struts and cables consist of linear elastic materials, so the force density qk can be written as
qk ¼
1

lk
ekAk

lk � l0
k

l0
k

 !
¼ ekAk

1

l0
k

� 1

lk

 !
ð13Þ
Let L0, L and �K denote the diagonal matrices of which the kth diagonal elements are l0
k , lk and ekAk, respec-

tively. �K can be considered to be constant since the members are assumed to be linear elastic so that ek is con-
stant and the changes of cross-sectional areas Ak can be neglected while the strains are very small. The force
density matrix Q can be written as
Q ¼ �KðL�1
0 � L�1Þ ð14Þ
The equivalent nodal load vectors in x-, y- and z-directions, which are compatible to the deformation of the
structure, are denoted by fx, fy and fz, respectively. The following relations can be derived from the equilibrium
equations:
fx ¼ Exþ Ef xf

fy ¼ Eyþ Ef yf

fz ¼ Ezþ Ef zf

ð15Þ
Partial differentiation of (15) with respect x results in
ofx

ox
¼ oE

ox1

xþ oEf

ox1

xf ;
oE

ox2

xþ oEf

ox2

xf ; . . . ;
oE

oxn
xþ oEf

oxn
xf

� �
þ E ð16:1Þ
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ofy

ox
¼ oE

ox1

yþ oEf

ox1

yf ;
oE

ox2

yþ oEf

ox2

yf ; . . . ;
oE

oxn
yþ oEf

oxn
yf

� �
ð16:2Þ

ofz

ox
¼ oE

ox1

zþ oEf

ox1

zf ;
oE

ox2

zþ oEf

ox2

zf ; . . . ;
oE

oxn
zþ oEf

oxn
zf

� �
ð16:3Þ
where xi denotes the x-coordinate of free node i. By incorporating the definitions E = C>QC and Ef = C>QCf

in (5), where C and Cf are constant, we obtain the following relations:
oE

oxi
¼ C>

oQ

oxi
C;

oEf

oxi
¼ C>

oQ

oxi
Cf

ð17Þ
Since L0 in (14) is constant,
oQ

oxi
¼ �KðL�1Þ2 oL

oxi
ð18Þ
holds. Let U, V and W denote diagonal matrices, of which the kth diagonal elements are the coordinate dif-
ferences of member k in x-, y- and z-directions, respectively; i. e.
U ¼ diagðCxþ Cf xf Þ
V ¼ diagðCyþ Cf yf Þ
W ¼ diagðCzþ Cf zf Þ

ð19Þ
L in prestressed state satisfies
L2 ¼ U2 þ V2 þW2 ð20Þ

Partial differentiation of (20) with respect to xi leads to
oL

oxi
¼ L�1 U

oU

oxi
þ V

oV

oxi
þW

oW

oxi

� �
ð21Þ
From (19),
oU

oxi
¼ diagðCiÞ ð22:1Þ

oV

oxi
¼ 0 ð22:2Þ

oW

oxi
¼ 0 ð22:3Þ
where Ci is the ith column of C. Hence, from Eqs. (17)–(19), (21), and (22.1)–(22.3), we obtain
oE

oxi
xþ oEf

oxi
xf ¼ C> �KðL�1Þ3UdiagðCiÞðCxþ Cf xf Þ ¼ C> �KðL�1Þ3UdiagðCxþ Cf xf ÞCi

¼ C> �KðL�1Þ3U2Ci ð23Þ

Using (23) and letting Dx = C>UL�1, (16.1) can be written as
ofx

ox
¼ C> �KðL�1Þ3U2Cþ E ¼ Dx �KL�1Dx> þ E ð24Þ
Similarly, Eqs. (16.2) and (16.3) can be written as
ofy

ox
¼ Dy �KL�1Dx> ð25Þ

ofz

ox
¼ Dz �KL�1Dx> ð26Þ
where Dy = C>VL�1 and Dz = C>WL�1.
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The tangent stiffness matrix K 2 R3n�3n of a structure is defined by partial differentiation of the equivalent
nodal load vector F ¼ ðfx>; fy>; fz>Þ> 2 R3n with respect to nodal coordinate vector X ¼ ðx>; y>; z>Þ> 2 R3n,
which can be written as
K ¼ oF

oX
¼

ofx

ox

ofx

oy

ofx

oz

ofy

ox

ofy

oy

ofy

oz

ofz

ox

ofz

oy

ofz

oz

0
BBBBBBB@

1
CCCCCCCA

ð27Þ
Let I 2 R3�3 denote an identity matrix, and D> = (Dx>, Dy>, Dz>). From Eqs. (24)–(26) and the similar equa-
tions for partial differentiation with respect to y and z, K is written as
K ¼ KE þ KG ð28Þ

where
KE ¼ D�KL�1D>

KG ¼ I� E
ð29Þ
KE is the linear stiffness matrix, and KG is the geometrical stiffness matrix corresponding to the prestress, where
the stressed equilibrium state is considered as the reference state. It can be easily observed that KE, KG and K

are all symmetric, because �K, L�1 and E are symmetric.
It can also be easily observed that the linear stiffness matrix is independent of the initial lengths l0

k of the
members but dependent on the current lengths lk after deformation by prestress. In the case that the structure
has no prestress, the geometrical stiffness matrix will vanish, and we will have lk ¼ l0

k since no prestress is intro-
duced so that there is no extension in any member.

The tangent stiffness matrix presented above can be used for any pin-jointed structure, including prestressed
structures. Note that the rigid-body motions should be appropriately constrained for analysis of tensegrity
structures without fixed nodes. The final form of the tangent stiffness matrix derived above is equivalent to
those by Guest (2006), Masic et al. (2005) and Murakami (2001).

We can also see that if all the eigenvalues of the geometrical stiffness matrix are non-negative, which may
lead to super stability described by Connelly (1999), it will surely increase the possibility of achieving a super
stable structure. This is the basic idea of the adaptive force density method presented in the next section, which
sets the negative eigenvalues of the equilibrium matrix to 0 for satisfying the requirement on rank deficiency.

4. Adaptive force density method

The analytical approach presented by Vassart and Motro (1999) may not be effective enough for a structure
with moderately large number of members, because the force densities are analyzed in symbolic form. This
motivates us to propose a new numerical method to achieve the required rank deficiency of the equilibrium
matrix E with less human effort. The proposed method is called adaptive force density method because (a) it
is an extension of the basic formulation and initial idea of the force density method proposed for the form-
finding problem of cable nets, and (b) the method is based on eigenvalue analysis of E, and can automatically
adjust the values of the force densities to adapt to the requirement on rank deficiency.

4.1. Formulation of force density vector

Let I denote the set of members connected to node i. From the direct definition of E in (7), the ith column
Ei of E can be written in terms of the force density vector q by a matrix Bi 2 Rn�m as
Biq ¼ Ei ð30Þ

where (j,k)-component Bi

ðj;kÞ (k = 1,2,. . .,m) of Bi is defined as
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Bi
ðj;kÞ ¼

1 if i ¼ j and k 2 I

�1 if nodes i and j are connected by member k

0 for other cases

8><
>: ð31Þ
For the tensegrity structure shown in Fig. 2, e.g., the matrix B1 can be written as
B1 ¼

1 1 1 1 0 0 0 0

�1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

0 0 0 �1 0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
Letting B> ¼ ðB1>; . . . ;Bi>; . . . ;Bn>Þ and g> ¼ ðE>1 ; . . . ;E>i ; . . . ;E>n Þ, the following relation holds for q:
Bq ¼ g ð32Þ

From the definition of B, we can see that there exists a row of which the kth component (k = 1,2, . . . ,m) is �1
while the others are zero. So the rank of B is m; i.e. B is full-rank.

Linear constraints on some specific force densities, e.g. relation between two values, and direct assignment
of the components, can be formulated using constant matrix Be and vector ge as
Beq ¼ ge ð33Þ

Letting �B> ¼ ðB>;Be>Þ and �g> ¼ ðg>; ge>Þ, Eqs. (32) and (33) are combined as
�Bq ¼ �g ð34Þ

where �B is constant and full-rank. The least square solution of (34) is obtained as (Borse, 1997)
q ¼ �B��g ð35Þ

where �B� is the generalized inverse matrix of �B.

4.2. Eigenvalue analysis and spectral decomposition of the equilibrium matrix

A symmetric matrix E 2 Rn�n can be written as follows by applying spectral decomposition:
E ¼ UKU> ð36Þ

where diagonal elements {k1,k2, . . . ,kn} of the diagonal matrix K are the eigenvalues of E, and they are num-
bered in non-decreasing order as
k1 6 k2 6 � � � 6 kn ð37Þ

The ith column Ui of U is the eigenvector corresponding to ki. It is clear that the number of non-zero eigen-
values of E is equal to its rank. Let r denote the number of non-positive eigenvalues of E, we then have the
following two cases:

Case 1: r6hw.
Case 2: r > hw.

For Case 1, we can simply assign 0 to the first hw eigenvalues of E to zero as
ki ¼ 0; ði ¼ 1; 2; . . . ; hHÞ ð38Þ

to obtain �K with modified eigenvalues. The equilibrium matrix is modified using �K as
�E ¼ U�KU> ð39Þ

This way, �E will have the required rank deficiency hw without any negative eigenvalue.
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However, for Case 2 where r > hw, the rank deficiency will be larger than required, if the same operation as
Case 1 is applied. For this case, we may have several alternatives; e.g., (a) assign positive values to some of the
negative eigenvalues, or (b) specify more than hw independent coordinates in the form-finding process pre-
sented in the next section, etc. Since arbitrary chosen initial force densities usually result in r 6 hw, we will
focus on only Case 1 in this study.

Instead of assigning 0 to hw smallest eigenvalues zero, we can also assign 0 to eigenvalues with the hw small-
est absolute values. In some cases, the latter strategy may show stronger ability of searching new self-equilib-
rium configurations, which will be shown in the last example in Section 5.
4.3. Form-finding process

The adaptive force density method is first presented to obtain a feasible set of force densities, by carrying
out eigenvalue analysis of E and assigning 0 to its hw smallest eigenvalues so as to obtain �E from (39). An
independent set of nodal coordinates is then specified to determine a unique and non-degenerate geometrical
configuration of the structure.
4.3.1. Feasible force densities

From Eqs. (38) and (39), we can easily obtain �E that has the required rank deficiency. A new set of force
densities is then found from (35) with the updated E ð¼ �EÞ. However, the final feasible set of force densities
has to be obtained by iterative process, because (35) gives an approximate solution of q. Let q̂ denote the fea-
sible force density vector that ensures the required rank deficiency of E. The algorithm can be summarized as
follows, where the superscript indicates the iteration counter:

Algorithm 1. Feasible force densities

Step 0: Specify an initial force density vector q0 to obtain E0 by (5). Formulate �B and �g0 with the specified
linear constraints. Set i :¼ 0.

Step 1: Assign 0 to the hw smallest (absolute) eigenvalues of Ei to reconstruct �Ei by (39).
Step 2: Obtain �giþ1, calculate qi+1 from (35) and update Ei+1 by (5).
Step 3: If n � rank(Ei+1) = hw holds, then let q̂ ¼ qiþ1 and terminate the process; otherwise, set i i + 1 and

return to Step 1.

This way, we can find the feasible force density vector q̂ and its corresponding equilibrium matrix Ê which
has the required rank deficiency hw.

4.3.2. Determination of nodal coordinates

Let H 2 Rdn�dn (d = 2 or 3) denote the tensor product of the identity matrix I 2 Rd�d and E ¼ Ê as
H ¼ I� E ð40Þ

The equilibrium equations in all directions can be combined to
HX ¼ 0 ð41Þ

It should be noticed that there are hw components of nodal coordinates in each direction that can be specified,
because the rank deficiency of E is equal to hw. Therefore, the rank deficiency of H is dhw, and dhw indepen-
dent nodal coordinates can be specified. Hence, the solution of (41) can be written as
X ¼ Gb ð42Þ

where G 2 Rdn�dhH

satisfies HG = 0, and b 2 RdhH

is the coefficient vector. If we specify an independent set of
nodal coordinates �X 2 RdhH

and obtain the corresponding components �G 2 RdhH�dhH

in G, where
rankð�GÞ ¼ dhH, the configuration of the structure in terms of nodal coordinates X can be determined by
X ¼ G �G�1 �X ð43Þ
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�G can be obtained by using the algorithm presented by Zhang et al. (2006), where the Reduced Row-Echelon
Form (RREF) of G> is extensively used to specify the independent set of nodal coordinates consecutively.

As a simple example for demonstrating how to determine the independent set of nodal coordinates to be
specified based on the RREF of the transpose form G> of G, the two-dimensional tensegrity structure consist-
ing of (n =) 5 nodes and (m =) 8 members as shown in Fig. 2 is considered. The force densities of members 1–4
and 5–8 can be 1.0 and �0.5, respectively, so that the structure is in a state of self-equilibrium. The equilibrium
matrix E is written as follows by using (7):
E ¼

4:0 �1:0 �1:0 �1:0 �1:0

�1:0 0:0 0:0 0:5 0:5

�1:0 0:0 0:0 0:5 0:5

�1:0 0:5 0:5 0:0 0:0

�1:0 0:5 0:5 0:0 0:0

0
BBBBBB@

1
CCCCCCA

ð44Þ
Since H is defined by E as (40), it is sufficient to investigate only the null-space G of E, which can be written as
G ¼

0:0 1:0 0:0

1:0 1:0 0:0

�1:0 1:0 0:0

0:0 1:0 �1:0

0:0 1:0 1:0

0
BBBBBB@

1
CCCCCCA

ð45Þ
It can be seen from (45) that the rank of G is 3. Therefore, the rank deficiency h of E is 3, which satisfies the
non-degeneracy condition (12) for a two-dimensional structure. The RREF of G> is
RREFðG>Þ ¼
1:0 0:0 2:0 0:0 2:0

0:0 1:0 �1:0 0:0 0:0

0:0 0:0 0:0 1:0 �1:0

0
B@

1
CA ð46Þ
It can be observed from (46) that the columns corresponding to the node groups {1,2,4}, {1, 2,5}, {1,3,4} and
{1,3,5} are linearly independent, respectively. Therefore, we can specify the coordinates of three nodes in one
of these four node groups to obtain a unique and non-degenerate configuration.

Since tensegrity structure should satisfy the self-equilibrium conditions, the vector of unbalanced loads
� 2 Rdn defined as follows can be used for evaluating the accuracy of the results:
� ¼ HX ð47Þ

The Euclidean norm of � is used to define the design error n as
n ¼
ffiffiffiffiffiffiffiffi
�>�
p

ð48Þ

The form-finding procedure by the proposed adaptive force density method can be summarized as follows:

Algorithm 2. Adaptive Force Density Method

Step 0: Define topology of the structure.
Step 1: Specify linear constraints and an initial set of force densities.
Step 2: Obtain a feasible set of force densities by implementation of Algorithm 1.
Step 3: Specify an independent set of nodal coordinates to obtain a unique and non-degenerate configuration

of the structure.
5. Numerical examples

In order to investigate the robustness and ability of searching new configurations of the proposed adaptive
force density method, numerical examples are presented for several tensegrity structures using MATLAB Ver.
6.5.1 (Borse, 1997).
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5.1. Two-stage tensegrity structures

The proposed adaptive force density method is first applied to a two-stage tensegrity structure as shown in
Fig. 3. The structure is composed of 12 nodes and 30 members; i.e. n = 12, m = 30. Its six struts are divided
into two groups: (1) struts of the upper stage, and (2) struts of the lower stage. The 24 cables are divided into:
(3) top and bottom bases, (4) saddle, (5) vertical, and (6) diagonal (Sultan et al., 2002), as indicated in Fig. 3(c).

Example 1. By specifying an initial set of force densities as {�1.5,�1.5,1.0, 2.0,1.0,1.0} for the six groups,
Algorithm 1 finds the feasible set of force densities {�1.8376,�1.8376,0.9281,1.9918,1.1737,0.9958} with 158
iterations.

The relative error of force density vector at each iteration, defined as the Euclidean norm of the difference of
qi from the final value q̂, is plotted in Fig. 4. Termination condition of Algorithm 1 is that the equilibrium
matrix Ê has the required rank deficiency hH ð¼ n� rankðÊÞ ¼ 4Þ where jkhH j < 10�5 and jkhHþ1j > 10�5. A
very good convergence of Algorithm 1 can be seen from Fig. 4, where the relative error comes very close
to zero with only 20 iterations.

If we specify the coordinates of nodes a, b and c, which are defined in Fig. 3(a), as {(�2.6667,0.0, 0.0),
(1.3333,�2.3094,0.0), (1.3334, 2.3094,0.0)} to make the bottom base located on the xy-plane, and node d in
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Fig. 3. Example 1: A two-stage tensegrity structure (type 1). (a) Top view, (b) side view, and (c) perspective view.
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Fig. 4. Convergence of the algorithm for feasible force densities.
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the lower stage as (�1.8867,1.6666,3.3333), we can then achieve the final configuration of the structure as
shown in Fig. 3.

Example 2. Since the initial force densities and independent nodal coordinates can be arbitrarily given by the
designers, we can have some control over the geometrical and mechanical properties of the structure.
Furthermore, new configurations can be easily found by changing the values of initial force densities and
nodal coordinates.

If x-coordinate of node d is modified to �2.8867 from �1.8867 in Example 2 without changing any other
parameter, a new configuration of the two-stage tensegrity structure as shown in Fig. 5 is obtained. We can
also change the initial force densities at the first step of Algorithm 1 to search for new configurations.

The design errors n defined in (48) are less than 10�13 for Examples 1 and 2. Both the structures obtained in
Examples 1 and 2 have only one infinitesimal mechanism and one self-stress mode; i.e. they are kinematically
and statically indeterminate (Pellegrino and Calladine, 1986). In the meantime, the geometrical stiffness matri-
ces for both cases are positive semi-definite, and the structures are super stable. So, it is clear in these examples
that introduction of prestress stiffens the infinitesimal mechanism to make the structures stable.

5.2. Three-stage tensegrity structure

The adaptive force density method is applicable to the structures with much more members. A rather com-
plicated three-stage structure, which has upper, center and lower stages, is considered. The struts are classified
into two groups: (1) six struts in the upper and lower stages, and (2) three struts in the center stage. The cables
are classified into the same groups as the two-stage tensegrity structure. Therefore, there are six groups in
total.
b

a

d
c

(a) (b) (c)

Fig. 5. Example 2: A two-stage tensegrity structure (type 2). (a) Top view, (b) side view and (c) perspective view.
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Fig. 6. Example 3: A three-stage tensegrity structure (type 1). (a) Top view, (b) side view and (c) perspective view.
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Example 3. By specifying an initial set of force densities for these six groups as {�0.8,�1.0,0.871, 0.3,
0.7244,0.5}, and specifying the coordinates of the nodes in the bottom base and a lower node in the center
stage as {(�2.6667,0.0,0.0), (1.3333,�2.3094,0.0), (1.3334, 2.3094,0.0)} and (�1.8867,1.6666,3.3333), respec-
tively, we obtain the configuration of the three-stage tensegrity structure as shown in Fig. 6. It can be observed
that the structure is asymmetric although we have specified symmetric force densities for the members by
dividing them into six groups.

Example 4. Instead of assigning 0 to the hw smallest eigenvalues of E, we can also assign 0 to its hw smallest
absolute values. The initial force densities and independent nodal coordinates are same as in Example 3. The
configuration of the structure in this case is obtained as shown in Fig. 7.
(a) (b) (c)

Fig. 7. Example 4: A three-stage tensegrity structure (type 2). (a) Top view, (b) side view and (c) perspective view.
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Both of the three-stage tensegrity structures in Examples 3 and 4 have one infinitesimal mechanism and one
self-stress mode. Therefore, they are kinematically and statically indeterminate.

Note that extensive numerical experiments have been done to confirm that new configurations can be sys-
tematically found by changing the initial force densities and nodal coordinates, although not all of the results
have been shown here.

6. Discussions and conclusions

The adaptive force density method has been presented for form-finding problem of tensegrity structures
based on eigenvalue analysis and spectral decomposition of the equilibrium matrix with respect to the nodal
coordinates. Linear constraints on some specific force densities can be included in the formulation, and the
prestress state of each member can be specified as expected; i.e. tension for cables and compression for struts.
The force density vector is updated as a least-square solution of the equation defined by the equilibrium matrix
and the given linear constraints. After obtaining the feasible set of force densities of which the corresponding
equilibrium matrix has the required rank deficiency, an independent set of nodal coordinates can be specified
to generate a unique and non-degenerate configuration of the structure. The requirement on rank deficiency of
the equilibrium matrix for the purpose of obtaining a non-degenerate tensegrity structure has been discussed.

Formulations of the tangent, linear and geometrical stiffness matrices have been given. These formulations
can be easily applied to any kind of pin-jointed structures. The equilibrium matrix is shown to correspond to
the geometrical stiffness matrix in the conventional finite element formulation.

In the numerical examples, a very good convergence of the proposed algorithm has been demonstrated. It
has also been shown that the proposed approach has a very strong ability of searching new and non-degen-
erate configurations by changing the values of the initial set of force densities at the first step and the nodal
coordinates at the last step of the form-finding procedure.

However, the proposed method cannot have direct and exact control over the geometrical and mechanical
properties of the structure, because the parameters in the method are neither forces nor lengths but the force-
to-length ratios. As discussed by Tibert and Pellegrino (2003), asymmetric configurations may be found for a
given set of symmetric force densities by the proposed method, because the member lengths cannot be
described explicitly and linearly in the formulation.
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