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There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of
new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization
model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the
augmented 𝜀-constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection
and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the
location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting
energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect
where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent
solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.

1. Introduction

Finding improvements in the operational conditions of a
power system is an important task because many transmis-
sion networks still run inefficiently. For example, one of the
current problems that most of the transmission systems face
is that a great percentage of the branches are underused. In
addition, for some electrical systems, the capacity to supply
the load is even less than the total generation capability.
Nowadays, this important fact is emphasized in power sys-
tems with high penetration of renewable resources (RR). Due
to the stochastic nature of the RR, they have a significant
share of unused power capacity.There are different options to
increase the energy injection from renewable sources in order
to exploit at a maximum the remaining renewable power
capacity, for example, the addition of new transmission lines
that could help delivering the extra energy, the increased
participation of the consumers on the grid by using demand
response programs [1, 2], the strategic location of energy
storage systems that contribute to absorbing the renewable
energy surpluses [3, 4], and the placement of new distributed
generation that helps maximizing the load supply [5].

In addition, due to environmental concerns, the instal-
lation of distributed generation, especially renewable, is
becoming a priority in many electrical systems. In those
power systems where the massive integration of renewable
resources is starting or planned, it is necessary to have an
efficient strategy to select the best placement and proper
capacity of these resources. The decision can be made based
on an economic point of view (minimization of investment
costs) only. However, it is better to formulate the problem
as a multiobjective optimization problem to evaluate addi-
tional operational conditions of the system. The location of
renewable generation constitutes a decision-making process
that can be designed and influenced by different planning
perspectives. For example, the placement of new wind
farms, in addition to economic factors, can also take into
account the minimization of wind generation intermittency
[6] or the maximization of supplying load to exploit already
existent generation in the grid. Formulating the problem
as a multiobjective one permits placing new generation in
network regions that could benefit from the injection of new
energy resources and, on the other hand, helps the existent
generation to increase the share on the load.Thus, evaluating
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alternative sites for new generation sources is crucial and
determining the optimum level of distribution of generating
capacity in amultiobjective framework ismore advantageous.

Multiobjective methodologies have been applied in dif-
ferent power system applications. Regarding generation
expansion, [7] proposes the implementation of the normal
boundary intersection method applied to a multiobjective
generation and transmission expansion problem. The prob-
lem is modeled as a mixed-integer linear programming
problem suitable for application in large-scale systems. The
optimization problem is aimed at minimizing four objective
functions and minimizes total costs, environmental impact,
and fuel price risk while maximizing the system reliability.
The study performed in [8] presents a mixed-integer linear
programming model for multiyear transmission expansion
planning. The study considers two objectives, the uncertain
capital costs and the electricity demand, competing to occupy
the permissible uncertainty budget. The authors employ the
augmented 𝜖-constraint method to solve the multiobjective
optimization problemmaximizing the robust regions against
the uncertain variables centered on their forecasted values.
Reference [9] represents a distant wind farm integration
using a multiobjective framework. The proposed method
includes two main objectives; the first one embraces the
annual operational and investment costs, whereas the second
oneminimizes the expected not served energy.The expansion
planning method uses a mixed-integer optimization prob-
lem, and a fast elitist multiobjective nondominated sorting
genetic algorithm. The article [10] presents a multiobjective
planning framework for the integration of stochastic and con-
trollable distributed energy resources (DER). Multiobjective
optimization is based on a strength Pareto evolutionary algo-
rithm. The objectives are to minimize annual line losses, the
annualDERdispatched energy for local ancillary services, the
annual DER curtailed energy, CO2 emissions, voltage quality
index, and DER penetration level. A genetic based algorithm
is presented in [11]. The model considers two objectives. The
first objective is the minimization of investment cost and the
second one is the maximization of system reliability. How-
ever, this work does not consider the network constraints. A
linear programming based multiperiod expansion consider-
ing the transmission network is presented in [12]. Based on
a weighting method, the objectives are the minimization of
investment, operation and transmission costs, environmental
impact, imports of fuel, and fuel prices risks. An interactive
mixed-integer linear programming (MILP) approach is pre-
sented in [13]. The model considers three objective functions
which quantify the total expansion cost, the environmental
impact associated with the installed power, and the environ-
mental impact associated with the energy generation. They
do not consider the network. These ideas can be applied
to improve the operational conditions of power systems,
in particular with high penetration of RR, focusing on the
system ability to supply more load. To accomplish this task,
it is necessary to develop new models, evaluate different
operative options, and consider extended planning strategies.

The aim of the work is to develop a multiobjective
optimization model that permits finding multiple trade-off
solutions for the location of new wind power resources. The

proposed model uses a multiobjective framework based on
the augmented 𝜀-constrained methodology [14, 15]. Three
competitive objectives are considered: the maximization of
preexisting energy injection and the maximization of new
wind energy injection, both embedded in the maximization
of load supply.

The paper is organized as follows: Section 2 describes
and formulates the improvement of the load supplying with
the placement of new wind farms under a multiobjective
perspective. Section 3 presents the numerical results and the
discussion about them; finally, Section 4 resumes the main
conclusions of this work.

2. Load Supplying Improvement with
Wind Farms Placement

The capacity of delivering energy from the generation to the
load demands can be measured solving a well-structured
problem [16].Themain task of this optimization problem is to
stress the network to themaximumwithout causing line over-
loads. Different expansion alternatives can be compared, and
as a result the system operational conditions are improved.
The result of this type of problems seems to be trivial:
including generation where the load is located. However,
under amultiobjective perspective, the results present amore
diverse spectrum of solutions, giving the decision maker
(DM) a broad range of possibilities to take the final decision.
Therefore, the DM can put into consideration different alter-
natives, equally valid, giving the same results. For example,
given an expected level of load supplying, several power
capacities and placements can accomplish the same goal.

2.1. Multiobjective Perspective. The aim of a Multiple-
Objective Optimization Problems (MOOP) is not to find a
solution but a set of solutions.The set of nondominated solu-
tions (Pareto optimal) has the condition that none of them
can be improved without deteriorating at least one of the rest.

According to [14] the methods for solving MOOP can be
classified into three main categories: a priori, interactive, and
generation methods. In a priori method, the DM expresses
preferences before the solution process. The drawback of this
methodology is that the DM needs to know and quantify the
preferences beforehand accurately. In the interactive method,
the DM interchanges information with the algorithm and
progressively drives the search towards the preferred solu-
tion. The drawback is that the entire set of efficient solutions
is never observed; therefore, the preferred solution is biased
to the last solution found. In generation method, the set of
efficient solutions is created before any DM decisions. The
main advantage is that the DM can analyze a diverse universe
of solutions and take a decision based on them.

The disadvantage of the generation method is the high
computational cost that requires getting efficient solutions.
The most widely used generation methods are the weight-
ing and the 𝜀-constrained methods. The weighting method
optimizes the weighted sum of the objective functions. By
varying the weights, it is possible to obtain different efficient
solutions. In the 𝜀-constrained method, one of the objective
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functions is optimized using the other objective functions as
constraints.The efficient solutions are obtained by parametric
variation of the right-hand side of the constrained objective
functions. The augmented 𝜀-constrained method presented
in [15], which is an improved version of the conventional 𝜀-
constrained method, has several advantages over the weight-
ing method. The method can be used with multiobjective
MILPs; the scaling of the objective functions is not necessary;
the number of generated solutions can be user-controlled;
it avoids the generation of weakly Pareto optimal solutions
and accelerates the whole process by avoiding redundant
iterations.

Therefore, the aim of this paper is to apply the augmented
𝜀-constrained method to explore the different placement
alternatives for new wind farm generation that lead to a more
efficient exploitation of the power network and improve the
energy injection of preexisting generation, while maximizing
the energy injection from renewable resources.

2.2. Model Formulation. The proposed model formulation
considers three objective functions: maximization of the load
supplying, maximization of energy injected by preexisting
generation, and maximization of energy provided by the
installation of the new generation. Further details about the
load supplying problem can be found in [16]. The model
considers three different types of constraints: the linearized
representation of the network, the limits of the preexisting
generation and transmission elements, and the relationship
between the wind power injection at each bus of the grid and
the integer nature of the variable that represents the number
of turbines to be installed. The following assumptions are
considered:

(i) There is fixed budget to install new wind generation.
(ii) All the possible wind farm placement locations have

the same capacity factor.
(iii) All the newwind generations are installed at the same

single period.
(iv) The load participation factors are constant.
(v) The reserve requirement for reliability is not consid-

ered.
Based on these assumptions, the proposed model formu-

lation is as follows:
max 𝑧1 = 𝛿, (1)

max 𝑧2 =
B𝐺
∑
𝑏

𝑝𝑏, (2)

max 𝑧3 = 𝑝
𝑤

𝑏
−

B
∑
𝑖 ̸=𝑏

𝑝𝑤
𝑖
∀𝑏, (3)

−𝛾S󸀠Δ𝜃 + 𝑝 + 𝑝𝑤 = 𝛿𝜆, (4)

|SΔ𝜃| ≤
𝑓
𝛾
, (5)

𝑝𝑤
𝑏
≤ 𝜔𝑏TR ∀𝑏, (6)

B
∑
𝑏

𝜔𝑏 ≤ Ω, (7)

𝜔𝑏TR ≤ p
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0 ≤ 𝑝 ≤ p, (9)

𝜔𝑏 ∈ Z. (10)

The description of each equation is as follows.
Equation (1) is first objective function and represents the

maximization of the load supplying in the power system.
Equation (2) is second objective function and represents the
maximization of the energy injection from the preexisting
generation. Equation (3) is third objective function and
represents the maximization of the energy injection from the
new generation to be installed. Equation (4) is linear power
flow. Equation (5) represents branch flow limits. Equation
(6) is maximum bound for wind generation and establishes
the relationship between the wind power injection by bus,
continuous variable, and the integer number of turbines.
Equation (7) is maximum number of turbines to be installed.
Equation (8) is maximum power of wind generation to be
installed. Equation (9) represents power limits of preexist-
ing generation. Equation (10) represents integer nature of
installed turbines.

This set of equations form a MILP problem which
combined with the multiobjective 𝜀-constrained method can
jointly be solved with any general-purpose solver that deals
with MILPmodels. It is important to note that the model can
be easily extended to consider multiperiod planning frame-
work, nonconstant load participation factors, and different
wind capacity factors at each location of the grid.

3. Numerical Results

This section illustrates the proposed methodology using
practical examples. We assume that the decision variables
of the problem become more important than the objective
values, because the objective functions 𝑧2 and 𝑧3 mimic
a competitive electricity market environment. Therefore,
we do not produce graphics representing Pareto frontiers;
instead, we put the emphasis in representative variables of the
problem.

The model represented by (1)–(10) and the algorithm
described by [15] are implemented in GAMS, using GUROBI
as the numerical solver [17]; the stop criteria are based on the
gap which is set to zero.

First, the method is explained using a small example to
illustrate the methodology practically. The system data is
shown in Figure 1. The planned new wind generation is set
to 100 turbines, each one with a 2MW capacity.This power is
allowed to be installed equally in all the buses, except for the
cases indicated with “∗” where only that bus is allowed.

3.1. Base Case. First, the problem formulated in [16] is solved;
this case represents the benchmark for the multiobjective
case.
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Figure 1: Four-bus one-line diagram.

Table 1 presents the obtained results. To analyze the
behavior of the load considering different wind farm rates
scenarios, the index 𝛿 was iteratively calculated for different
farm rate levels, ranking from 20MW to 200MW, with
a 20MW step. Please note that repeated results were not
included in the table. The first four cases described in the
table were constructed allowing, at each bus and sequentially,
incorporating the total available wind power of each MW
step. The last case allowed the incorporation of the total
available MW at all buses.

From the results presented in Table 1 it can be inferred
that the worst location to install new wind power is Bus 1;
none of the rate levels can change the 𝛿 level (actually, this is
the reference case; i.e., 𝛿 is the same as the case without new
wind farms). At Bus 2, the first rate level improves 2.74% the 𝛿
compared to the reference case; then 𝛿 continues improving
steadily with the increasing of the rate levels reaching a final
improvement of 27.4% in the final level. At Bus 3, the first
rate level produces a slightly higher improvement of 5.5%
on 𝛿 compared to Bus 2 case; then 𝛿 continues improving
linearly with the increasing of the rate levels until it reaches
the highest possible 𝛿 level. Please, note that this value is
the maximum power available. At Bus 4, the behavior is
similar to Bus 2 case, until half of the rate levels; after that,
the network becomes saturated and the maximum possible
improvement is 16.5% compared to the reference case. Finally,
the last simulation with all the buses allowed incorporating
200MW of wind power, which does not show any difference
with respect to Bus 3 case.

3.2. Multiobjective Case. Similar to the previous case, all the
buses are allowed to incorporate up to 200MW of wind
power.

Figure 2 shows the relation between the different wind
farm configurations and the capacity to supply load. The
axis description is as follows; number of turbines represents
the number of wind turbines installed in the corresponding
system bus, and Delta represents the corresponding load
supplying value. Figure 3 shows the relation between the
power injected by the existent generation and the capacity
to supply load. Here the axis is Generation Power which

represents the power injected at the corresponding system
bus. Both figures have a direct relation.

From these figures, it is possible to infer that for the
reference case 𝛿 is 474MW red dot in Figure 2. For this point,
no wind power was incorporated, and the power from the
existent generation was 144, 150, and 180MW, respectively.
For the same value of 𝛿 = 474MW, there are three more
cases which incorporate wind power at Bus 1. For this last
situation, the existent generation necessarily needs to reduce
its injection, as can be confirmed with these powers being 44,
150, and 180MW, respectively.

Among all the length of 𝛿 axis, there were three worst
cases, 𝛿 = 200MW, they were obtained incorporating the
total wind power at Buses 1, 2, and 4, respectively, and
the power injected from the existent generation was set
aside. In the opposite, there were three best cases regarding
𝛿 (730MW); these case were obtained incorporating three
different wind power configurations at Bus 3. These config-
urations are 2 turbines at Bus 2 and 98 turbines at Bus 3;
100 turbines at Bus 3; and 1 turbine at Bus 1 and 99 at Bus
3. It should be noted that the existing generation, for all these
three configurations, is at the maximum level. The zone for
maximumgeneration is shown in Figure 4 as three green bars.

Figure 4 shows the evolution of the frontier of nondom-
inated solutions for 60 grid points. Axis labeled Delta rep-
resents the corresponding load supplying capability, and the
horizontal axis contains the frontier points. The red-colored
areas represent efficient solutions regarding equal capacity to
supply load with different wind farm configurations. These
sets of efficient solutions are defined as isotelos and represent
identical-goal solutions in terms of 𝛿; that is, 𝛿 is constant
within an isotelo. The zones colored in red in Figure 4 are
comprised of 5 ormore equivalent solutions. It is important to
note that every horizontal section of the frontier corresponds
to an isotelo, but only the most representatives were colored.

Graphics like Figure 4 are very useful to easily detect
constant zones of equivalent solutions that provide different
alternatives for the decision-making process. Regarding the
first isotelo, the first red-colored zone tells that this is the
biggest set of 20 equivalent solutions. Depending on the
aimed goal for the 𝛿 value, it could be worth analyzing more
deeply this isotelo in particular.

Figures 5 and 6 describe with more detail the set of 20
equivalent solutions. Figure 5 illustrates the different wind
turbine configurations at each bus and for each equivalent
solution. Note that 𝛿 remains constant. Figure 6 illustrates the
behavior for the power injected from the existing generation.

Analyzing and comparing these two figures the DM can
opt for different alternatives depending on the particular
placement scenario for new generation. For example, if the
placement scenario consists of the installation of the total 100
turbines, then the DM can select the first two solutions, with
configurations formed by 58 turbines at Bus 1, 17 at Bus 3, and
25 at Bus 4 or 58 turbines at Bus 1, 25 at Bus 2, and 17 at Bus 3,
respectively. As another example, if the placement scenario
consists of obtaining the same 𝛿 value but with minimum
investment cost, the DM can opt for the last two solutions,
with configurations formed by 8 turbines in Bus 1, 25 in Bus 2,
and 17 in Bus 3 or 8 turbines in Bus 1, 17 in Bus 3, and 25 in Bus
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Table 1: Base Case load supplying results: wind farm at each bus (∗).

Bus 1∗ 2 3 4 𝛿
MW available P1 W1 P2 W2 P3 W3 W4 [MW]
20 144 0 150 — 180 — — 474
200 144 0 150 — 180 — — 474
Bus 1 2∗ 3 4 𝛿
MW available P1 W1 P2 W2 P3 W3 W4 [MW]
20 137 — 150 20 180 — — 487
40 130 — 150 40 180 — — 500
60 123 — 150 60 180 — — 513
80 116 — 150 80 180 — — 526
100 109 — 150 100 180 — — 539
120 102 — 150 120 180 — — 552
140 95 — 150 140 180 — — 565
160 88 — 150 160 180 — — 578
180 81 — 150 180 180 — — 591
200 74 — 150 200 180 — — 604
Bus 1 2 3∗ 4 𝛿
MW available P1 W1 P2 W2 P3 W3 W4 [MW]
20 150 — 150 — 180 20 — 500
40 156 — 150 — 180 40 — 526
60 162 — 150 — 180 60 — 552
80 168 — 150 — 180 80 — 578
100 174 — 150 — 180 100 — 604
120 180 — 150 — 180 120 — 630
140 186 — 150 — 180 140 — 656
160 192 — 150 — 180 160 — 682
180 198 — 150 — 180 180 — 708
200 200 — 150 — 180 200 — 730
Bus 1 2 3 4∗ 𝛿
MW available P1 W1 P2 W2 P3 W3 W4 [MW]
Idem Bus 2
120 102 — 150 — 180 — 120 552
...
200 102 — 150 — 180 — 120 552
Bus 1∗ 2∗ 3∗ 4∗ 𝛿
MW available P1 W1 P2 W2 P3 W3 W4 [MW]
20 150 0 150 0 180 20 0 500
40 156 0 150 0 180 40 0 526
60 162 0 150 0 180 60 0 552
80 168 0 150 0 180 80 0 578
100 174 0 150 0 180 100 0 604
120 180 0 150 0 180 120 0 630
140 186 0 150 0 180 140 0 656
160 192 0 150 0 180 160 0 682
180 198 0 150 0 180 180 0 708
200 200 0 150 0 180 200 0 730

4, respectively. These two equivalent solutions are cheaper,
regarding investment costs, because these two options consist
of 50 turbines. Besides, these last two options can be preferred
among the others because the existing generation P1 is less

impaired. In this regard, in Figure 6 it can be observed that the
existing generations P2 and P3 are not affected by the diverse
set of equivalent solutions. In contrast, the influence over P1
generation is evident in the graphics.
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It is also interesting to analyze what happened with the
existing generation increasing 𝛿 from the reference case
(474MW) and wind power incorporation. From Figure 3, it
can be inferred that visible changes of the energy injected by
P2 and P3 with 𝛿 changes do not exist. These patterns are
nearly identical to the ones reflected in Table 1. On the other
hand, the changes of energy injected by P1 with respect to
the changes of 𝛿 are very noisy, reinforcing the best feature
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Figure 5: Wind turbines versus Delta 551MW.

of multiobjective optimization, which is the “diversity.” The
pattern for P1 in Table 1 shows a similar but smoother
behavior, that is, less diversity of solutions.
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To Summarize, in general, it can be stated that the load
supplying capability can be highly influenced by the place-
ment of new generation. For some cases, the load supply is
deteriorated compared to the casewithout the inclusion of the
new generation, and for some cases, the existing generation is
benefited by the incorporation of new generation, increasing
their load shares. A remarkable feature of the multiobjective
analysis is the universe of solutions that offers, giving some
space to find clusters of solutions with the same load supply
value but with different power configurations.

Specifically for this system it is important to remark
some interesting results.The installation of the total available
wind power at Bus 1, 2, or 4 drastically deteriorated the
initial load supply value from 474MW to 200MW, which
represents a decrease of 57.8%. The first case where the load
supply level was improved is related to the installation of
50 turbines at Bus 4, an increase of 13.7%. In the base case,
the total available generation could only be dispatched to a
90% of its total capacity. However, with the inclusion of new
wind power in specific places the total existing generation
capacity can be exploited. This case can be seen in the
three last cases illustrated by Figures 2 and 3. In these
cases the load supply value was improved from 474MW to
730MW, representing an increase of 54%. Perhaps the most
important conclusion is that this solution does not rely on
the trivial solution “generation where the load is” because
the multiobjective methodology offers the opportunity to
find different equivalent solutions. The variety of solutions
for the best load supply value (730MW) is not as much as
could be expected for large real-case power systems. Besides,
depending on the aimed goals for the load supply, it is very
valuable to have sets of equivalent solutions like the constant
patterns showed in Figure 4 because they permit evaluating
different trade-offs between cases.Therewere two of these big
groups of equivalent solutions, red-colored in Figure 4, with
20 and 7 solutions, respectively.

3.3. Further Results. In this section, we present the multi-
objective results for a real-case power system. The system
diagram and data are described in Figure 7. The corre-
sponding demand participations are given in Table 2. Due to
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Table 2: Large system: demand participation data.

Bus 2 3 5 6 10 11 12 13
[%] 2.56 2.56 7.93 15.34 15.34 17.90 25.57 12.79

environmental constraints, the new wind capacity cannot be
located at a load bus, but one bus further. Therefore, Buses 1,
4, 7, 8, and 9 are allowed to incorporate up to 50MW of wind
capacity, which can be arranged with 25 turbines of 2MW
each.

Figure 8 presents the evolution of 𝛿 with the frontier
points. Frontier point number 16 is the base value for 𝛿 =
64.3MW(red dot in Figure 9, nowind power). It is important
to remark that all the combinations of wind turbines instal-
lations, as shown in Figure 9, were formed by the total of 25
turbines available. Therefore, there were 15 combinations of
turbine installations that decrease the capacity of the network
to supply the load. Only after point 16, 𝛿 increased, reaching
its maximum at 114.1MW, representing a 77.4% increment. In
Figure 8 the three most important isotelos are colored. They
were formed by 5 or more equivalent solutions. Note that for
the best 𝛿 value there are 8 different combinations of turbine
installation that are equivalent, confirming that the number
of equivalent solutions increases with the size of the power
system.

Figures 9 and 10 show the patterns for turbines installa-
tion and wind generation with increasing 𝛿, respectively. For
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Figure 9: Turbines versus Delta.
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Figure 10: Wind generation versus Delta.

Table 3: Combination of turbine placements for 𝛿 = 114.1MW.

W1 W4 W7 W8 W9
25 — — — —
1 24 — — —
— 25 — — —
— 21 — 4 —
21 4 — — —
21 — — — 4
15 10 — — —
9 16 — — —

the maximum 𝛿 = 114.1MW there are 8 different possible
combinations of turbines; this is described in Table 3. These
combinations are mainly formed by turbine placement at
Buses 1 and 4. For the maximum 𝛿, the first and fourth com-
binations illustrated in Figure 10 presented maximum wind
generation; however, the impact on preexisting generation
can be seen in Figure 11. There are also two more important
trade-off zones, red-colored, with 7 and 11 equivalent combi-
nations of turbine placements.

From Figure 11, it can be observed that the total power
injected by preexisting generation is improved from the base
point (red dot) to the best 𝛿. Generations labeled P5, P11, and
P13 generate constant injections. Generation P6 generates in

average more power compared to the base point. Therefore,
the wind generation never reduces the injected MWs from
preexisting power resources. Nevertheless, generation P6
never reaches its technical maximum power of 100MW;
the maximum generation was 67.9MW, representing a 16.1%
increment compared to the base point. Note that, due to
scaling, P6 is divided by 10.

For this particular example, there are 15 combinations
of turbine placements that decrease the capacity of the
system to supply load. On the opposite, 31 combinations
increase the capacity. There are three important trade-off
zones with 7, 11, and 8 equivalent turbine placement solutions.
Regarding load supply, Buses 1 and 4 seem to be the best
placement locations for turbines and Bus 9 is the worst. For
themaximum 𝛿, there exist 8 different turbine configurations,
these alternatives being very valuable for a DM that has the
option to decide among different locations, maximum wind
generation, minimum impact on preexisting generation, or
diversification of wind patterns. This variety of solutions
is what strongly support the utilization of multiobjective
methodologies for a decision-making process.

4. Conclusion

In this work a MILP model has been proposed that permits
evaluating different goals for the placement of new wind
generation resources. It can help any DM to design a proper
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Figure 11: Preexisting generation versus Delta.

policy about the incorporation of renewable but also dis-
tributed resources.

Results demonstrate that exists a diverse range of equiv-
alent solutions. These solutions contribute to a decision-
making process because they expand the horizon of options.
Also it was found that the load supplying capability can
be highly influenced by the placement of new generation.
Results show that there are cases where the load supply is
deteriorated with the inclusion of the new generation and
cases where it is improved.Moreover, there are situations that
benefit the preexisting generation.

The methodology presented in this work opens a diverse
range of possibilities for further improvements, for exam-
ple, to evaluate further objective functions like investment
costs, wind capacity factors, wind intermittency, environment
impact, reliability goals, or ancillary services. One the most
remarkable features of the multiobjective methodology pre-
sented in this paper is the fact that the competing objectives
should not necessarily need to be in monetary terms.

Nomenclature

B: Set of buses
B𝐺: Set of buses with preexisting generation
𝑏: Bus index
𝛿: Load supplying capability
𝑧1: Maximization of 𝛿
𝑧2: Maximization of energy injection from

preexisting generation
𝑧3: Maximization of wind energy injection in bus 𝑏
𝑝𝑏: MW bus injection
𝜔𝑏: Integer number of wind turbines by bus
𝑝𝑤
𝑏
: Wind power bus injection
𝑝: Generation vector
𝑝𝑤: Wind generation vector
𝑓: Branch flow vector
Δ𝜃: Bus voltage angle difference vector
𝜆: Load participation factors vector
𝑓: Max flow limits vector
p: Generation max bounds vector
p𝑤: Max wind generation to be installed
Ω: Max number of turbines to be installed
𝛾: Branch susceptances matrix

S: Branch-bus incidence matrix (󸀠 is transpose)
TR: Turbine rates.
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