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Abstract—A linearized model of a self-sensing magnetic 
bearing used in a flywheel energy storage application is 
analyzed, and an intrinsic feedback mechanism is identified. 
Based on the model, a cascaded-loop controller is designed 
using a novel control design technique which actively rejects 
external disturbances, taking advantage of the feedback 
mechanism. Simulation results of force-disturbance rejection 
performance are presented.    
 

 
I. INTRODUCTION 

 
agnetic  bearings have been used to achieve non-
contact suspension of a flywheel rotor, thus eliminat-

ing issues of friction and wear associated with high speed 
applications using mechanical bearings. The suspension is 
achieved through an opposing set of electromagnets between 
which the rotor is positioned. This is shown in Fig. 1 [1]. 

 
Fig. 1. Magnetic bearing model (one-dimensional)  

 
The position of the rotor can be controlled via the mag-

netic forces, and the forces can be regulated by adjusting the 
magnet coil voltage or current.. The magnetic forces exert 
attractive forces on the rotor shaft, and for this reason mag-
netic bearings are inherently unstable and require closed-
loop control, as will be explained in Section III. 
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 Numerous advanced controller design approaches have 
been proposed. A linear-quadratic design is used for the 
pendulous supported flywheel in [2]. An eigenstructure as-
signment is used for the control of suspension systems for 
rotating machinery within a magnetic field [3]. A sliding-
mode control of a rigid motor via magnetic bearings is intro-
duced in [4]. The modal control of a flexible rotor is given in 
[5]. In [6], an integral type servo-controlled design using the 
solution of a linear quadratic regulator problem for a hori-
zontal rotor-magnetic-bearing system is used. And in [7], 
magnetic bearing control using fuzzy logic is considered. 
These proposed controllers are often of such complexity that 
the tuning process is rendered very difficult. The PID con-
troller, however, benefiting from its ease of use, is by far the 
most prevalent controller used for active magnetic bearing 
control in industry. 

 
A self-sensing magnetic bearing is a special type of mag-

netic bearing in that the rotor position information is de-
duced from the electromagnetic interaction between the sta-
tor and rotor [1]. The feedback is based solely on the meas-
ured current in the electromagnets, making it possible to 
design the bearing system without position sensors. This 
results in a significant advantage because of a considerable 
reduction in manufacturing costs and the complexity of the 
system, as well as the elimination of the failure modes asso-
ciated with the sensors. A self-sensing magnetic bearing 
with linear control was first proposed in [8]. A linearized 
model of the self-sensing magnetic bearing was also devel-
oped in [1], but the results suggested that the proposed con-
figuration resulted in poor robustness and disturbance rejec-
tion. Subsequent experiments have confirmed this view ([9], 
[10]).  In particular, disturbance to the system caused by 
rotor imbalance is commonly encountered, since imperfec-
tions in rotor design and manufacture cannot be avoided. Yet 
the authors have not found any studies which propose a fea-
sible solution to the disturbance rejection issue of self-
sensing bearings. 

 
Based on the linearized model in [1], we have designed a 

cascaded-loop control structure for controlling rotor posi-
tion. The primary objective of the present work is to demon-
strate the ability of this control to reject an external step 
force applied to the rotor. Specifically, the control objective 
is to maintain the deviation of the rotor position close to zero 
in the presence of the disturbance. We identify an intrinsic 
feedback in the model in [1], which is then used to deduce 
the rotor position deviation. We apply a novel control strat-
egy first developed in [11] and [12] that actively rejects dis-
turbances in the system.  
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The paper is organized as follows. In Section II of the pa-
per, the physical model in [1] is analyzed, and the intrinsic 
feedback of the system identified. A cascaded-loop control 
structure is designed in Section III. The control strategy in 
[11] and [12], called Active Disturbance Rejection Control 
(ADRC), is introduced in Section IV and integrated into the 
cascaded-loop structure.  Lastly, simulation results are 
shown in Section V.  

 
II. PLANT MODELING 

 
The nonlinear model of a self-sensing magnetic bearing 

used for our analysis was developed in [1]. It is based on the 
configuration in Fig. 1. Two identical, U-shaped electro-
magnets produce opposing forces, 1F  and 2F , that act on 
the shaft, thus levitating the rotor, which is ideally posi-
tioned midway between the magnets at its unstable equilib-
rium position, 0x . The deviation of the shaft from the equi-
librium position is represented by the displacement x . The 
distances 1x  and 2x  are the air gap distances between the 
shaft and the magnets. 

 
The magnetic forces 1F and 2F  are actuated by the coil 

currents 1i  and 2i , respectively. The currents, in turn, are 
controlled via the corresponding voltage drops, 1u  and 2u , 
across the coils. The main disturbances to the plant consid-
ered in this model are external forces such as would occur to 
a flywheel mounted to a moving vehicle, and rotor imbal-
ance, viewed as an external disturbance. These forces are 
represented in the aggregate by SF . The mathematical 
model of the system is given by the following equations: 
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Here m is the mass of the rotor, R is the coil resistance, SL  is 
the coil self-inductance, 0μ  is the permeability of free space,  
N is the number of turns in the coil, and A is the area of the 
magnetic core.  The Newtonian equation of motion for the 
rotor is given in (1). The equations in (2) describe the mag-
netic forces produced by the bearing as a function of the coil 
current and air gap distance. And the equation in (3) is de-
termined from Kirchhoff’s Voltage Law for the coil circuit. 
The first term on right hand side of (3) represents the voltage 
drop caused by coil resistance. The second term models the 
voltage drop caused by the coil self-inductance, SL . And the 

third term represents the back-Electromotive Force (back-
EMF) created by variations in air gap flux and is determined 
using Ampere’s Law and Faraday’s Law 

 
When the rotor has been levitated to its equilibrium posi-

tion, 0x , the bias or nominal current in the electromagnets 
will be 0i , and the corresponding voltage will be 

 
                                            0 0u Ri=                               (5) 
 
The deviations, i, u, and x, from the nominal equilibrium 

values give rise to the following relations: 
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Noteworthy are the symmetries in the relations, particu-

larly for the coil control voltages. A voltage increase in one 
coil must be accompanied by a voltage decrease of the same 
magnitude in the other coil. This symmetry reduces the task 
of controlling the two inputs, 1u  and 2u , to that of control-
ling only one input u. 

 
Equations (2) and (3) can be linearized about the operat-

ing point ( )0 0 0, ,x i u  according to the conditions in (6). The 
result of linearization is a multiple-input, multiple-output 
(MIMO) plant. The MIMO plant can be divided into two 
single-input, single-output (SISO) plants [1]. The first plant 
is obtained by defining a system state vector x as 

 
                                    [ ] ,Tx v i=x                          (7) 
 

where x is the shaft displacement, v is the shaft velocity, and 
i is the coil current; and by defining the constants Sk , Ik , 
and 0L  as 
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With these definitions, the linearized plant is given by the 

third-order state equation  
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Note that in Equation (9), the disturbance input, SF , is 

not a control input, and therefore the system is a SISO plant. 
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The second plant is a first-order SISO plant given by the 
equation for the equilibrium current, 
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Equation (9) can be represented by the following block 

diagram: 

                
Fig. 2. Block diagram of the linearized system 

 
In Fig. 2, the dynamics of plant P1 is given by the equa-

tion 
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The dynamics of plant P2 is given by 
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In (12) the product of the constant Ik  and the velocity, 

Ik v , is the back-EMF voltage which results from changes in 
the air gap flux. A force disturbance, SF , on the rotor will 
affect its velocity and hence the back-EMF voltage. Thus the 
back-EMF constitutes an intrinsic feedback mechanism, 
which can be used to deduce the deviation of the rotor posi-
tion from the operating point. 

 
 

III. CONTROL STRATEGY  
 
The magnetic bearing plant is open-loop unstable because 

the magnetic bearings exert attractive forces on the rotor 
shaft that depend on the inverse of the square of the air gap 
distances. From Fig. 1, it can be seen that any movement of 
the rotor shaft in a direction away from the equilibrium posi-
tion, and toward one of the magnets, increases the magnetic 
force in that direction, and decreases the magnetic force in 
the opposite direction. Thus the rotor is accelerated away 
from the equilibrium position. The air gap is normally on the 
order of a millimeter, thus a disturbance force can cause the 
rotor to contact the bearing surface and trigger a catastrophic 
failure. The control objective, then, is to maintain the devia-
tion, x, of the rotor from its equilibrium position as close to 

0x =  as possible in the presence of an external disturbance 
without the use of a position sensor. 

 

We will only consider the case in which the rotor is ini-
tially levitated and in equilibrium, and hence a measurement 
of the initial conditions for the state-space gives 

0x v i= = = . Since there is no position sensor, only the coil 
current is available as a feedback signal. The actuator signal 
is the coil control voltage u. The full dynamics of the bear-
ing plant, linearized about the equilibrium operating point, is 
characterized by (9) and (10). The value of the equilibrium 
current is determined by (10). In many magnetic bearing 
applications, the value of the equilibrium current is fixed to 
optimize the power consumption. 

 
The proposed controller has a cascaded-loop structure as 

shown in Fig. 3. The controller C1 is a PD control which 
uses a displacement set-point and the output of a standard 
Luenberger state observer (not shown) designed to control 
the current set-point *i . This type of control structure is 
well-known, so it will not be addressed further in this study. 
Since the rotor displacement is not directly available as a 
measurement, the Luenberger observer is employed to ex-
tract displacement information from the coil current i and the 
control voltage u, and this information is used for an esti-
mate of the current set-point *i . The plant P1 is subjected to 
an external force disturbance, SF , as indicated in Fig. 3. 

 
The controller C2 is specifically designed to control the 

plant P2 using current feedback. Note that P2 also receives 
back-EMF from P1. The control objective of C2 is to regu-
late the coil current to the specified set point value *i . The 
output signal of C2 is the control voltage across the coils . 
The design of the controller C2 will be the focus of the sub-
sequent sections, where ADRC will be applied. 

 
Fig. 3. Illustration of cascaded loop concept  

 
 

IV. DESIGN USING ACTIVE DISTURBANCE REJECTION CON-
TROL (ADRC) 

 
The dynamics of the plant P2 is given by (12), which is a 

first-order system. An external force disturbance will affect 
the back-EMF term. The fundamental idea of ADRC is to 
design an observer that estimates any deviation of the plant 
P2 from a nominal first order plant and compensates for it in 
real time. Such an observer has been termed an Extended 
State Observer (ESO) [11]. After compensation via the ESO, 
the nominal first-order plant can be controlled using a pro-
portional controller. 

 
To design the ESO, (12) is rendered into the following 

standard form: 
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The term f in (13) is referred to as a generalized distur-

bance [12]. It represents the deviation of the plant in Equa-
tion (13) from a nominal first-order plant.  The ESO contains 
two state space variables: 

 
                                    1 2,z i z f= = .                       (16) 

 

Here the first-order state space has been augmented or ex-
tended with an additional state, namely, 2z f= . If we let 

1y z= , then Equation (13) can written as: 
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And if we let h be the time derivative of f, then 2z h=& , 

and the corresponding matrix state space model is 
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The generalized disturbance, 2z f= , can now be esti-

mated by the ESO, which has the following construction: 
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The state of this observer, [ ]1 2ˆ ˆ, Tz z , corresponds to the 

estimated values of the quantities: 
 
                                1 1 2ˆ ˆ,z z z f≈ ≈ .                        (21) 

 
Equation (20) can be simplified using the relation 

ˆ ˆy = Cz , and is rewritten as 
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where the observer gain vector L and the characteristic equa-
tion of the observer matrix are given by 

 
                                     [ ]1 2, Tβ β=L                          (23) 

and 
                2
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It can be shown that the system in Equations (18) and (19) 

is observable, so the observer gain L can be chosen so that 
(24) has multiple real roots at oω− . Under this constraint,  
we have 

 
         ( )22 2 2

1 2 2o o os s s s sβ β ω ω ω+ + = + = + + ,       (25) 
and so  

                          2
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Because the eigenvalues in (24) are all located in the left-

half plane, the stability of the observer in (22) is guaranteed. 
The quantity, oω , is referred to as the observer bandwidth 
[12]. This parameterization reduces the number of observer 
tuning parameters to one.

 

With the ESO properly designed, 
the ADRC control law is given by 
 

                             2 1
1 ˆ ˆ[ ( * )].pu z k i z
b

= − + −                (27) 

 
In (27), the first term 2ẑ  compensates for the generalized 

disturbance f. This term effectively reduces (13) to a single 
integrator. The second term of (27) represents the propor-
tional controller with gain pk . 

 
Tuning of the ADRC controller involves two parameters: 

the observer bandwidth, oω , which adjusts the performance 
of the disturbance compensation, and the proportional con-
troller gain kp, which affects set-point tracking. The observer 
and controller can be tuned separately by adjusting their 
respective bandwidths. It is recommended that the observer 
bandwidth be three times higher than the controller gain, if 
possible [12]. By keeping this relationship between the ob-
server bandwidth and the controller gain, the number of tun-
ing parameters is effectively reduced to one. This constitutes 
a major simplification in the tuning effort of controller C2. 

 
 

V.  SIMULATION 
 
The effectiveness of the cascaded control structure (Fig. 

3) under a constant force disturbance was assessed in simu-
lation. The linearized plant was constructed according to (9). 
The controller C2 was constructed according to the ADRC 
control law in (27), while for the controller C1, a simple PD 
controller was used on the output of the Luenberger ob-
server. The plant parameters were selected according to the 
physical model described in [1]. The bias current is 0 1Ai = . 
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The controller gains of the PD are 100Pk = , and 
1000Dk = . The ADRC controller has the gains 300oω =  

and 100cω = , in keeping with the rule of thumb suggested 
by [12], where cω  is the gain Pk  in (27). The simulation 
was run for 20 seconds. A constant disturbance force of a 
magnitude of 10 NSF = −  was applied to the plant at 2t =  
seconds. A saturation block for the actuator voltage was in-
cluded and to keep the voltage between 5+ and 5−  volts. 
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Fig. 4. Rotor Position Deviation 
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Fig. 5. Actuator Voltage Deviation 

 
Fig. 4 and Fig. 5 show that the disturbance force causes 

the rotor to deviate from its equilibrium position by about 
65 10−− ×  meter and return to the equilibrium position in 

about 4 seconds. The actuator voltage exhibits some over-
shoot, settling to about 0.4 volts in amplitude in about 4 sec-
onds. 

 
VI.  CONCLUSIONS 

 
Self-sensing magnetic bearings have the benefit of low 

manufacturing costs, but suffer seriously from poor distur-
bance force rejection capabilities. By analyzing the lin-
earized model of the self-sensing bearing provided in [1], we 
have identified the back-EMF as a direct effect caused by 
the external disturbance force. Our cascaded control loop 
structure effectively rejects the external disturbance force 
completely through the incorporation of ADRC, which com-
pensates for the disturbance based on the back-EMF. 

Our initial simulation results demonstrate that the pro-
posed cascaded loop structure is a viable solution to the 
long-standing disturbance rejection issue of self-sensing 
magnetic bearings. Future work on the control of a self-
sensing magnetic bearing will be aimed at reducing the set-
tling time in the recovery from the disturbance force and 
minimizing the overshoot in the actuator voltage.  Additional 
test with a sinusoidal disturbance are also needed. 
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