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A- - Real-time monitoring of the laser-based applications 
is becoming a main issue for quality analysis in the steel 
manufacturing industry. The paper suggests a solution 
achieving an automated real-time quality inspection in laser 
welding applications. A composite system composed of soft- 
computing and traditional techniques has been considered for  
itsposifive impact on the reduced computational once compared 
with more traditional approaches. 

1. INTRODUCTION 

Early detection of defects in metal manufacturing 
industries is becoming a main economical issue for its 
impact on quality analysis of the artifact and the industrial 
process. 

Automated laser welding is having an increasing 
growth and diffusion due to the powerful and versatile 
process that allows for joining metals or non-metals at high 
speed with a relatively low heat input [l] .  Lasers can 
produce welds in air, vacuum, controlled atmospheres, and 
pressurized chambers with a high reliable and automated 
process. Moreover, laser light may be focused to very 
small areas [2]. 

In general, the quality analysis of the process is 
assessed by offline inspection of each welded component. 
Such inspection phase is a time-consuming activity that 
rarely provides useful feedback to  the expert user on how 
to improve the process itself (e.g., by tuning some 
parameters). In addition, external inspection of the welded 
artifact requires a costly procedure, most of times carried 
out with ultrasonic devices [3]. A different approach 
envisage an on-line quality analysis implemented directly 
during the process. A set of information is extracted from 
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the sensors observing some critical parametedphenomena 
associated with the process [4]. Following this philosophy 
we address the laser welding quality analysis with a self- 
tuning classification system that detects defects directly 
during the welding process. Moreover, the suggested 
procedure enables the process engineer to assess the 
quality of the process and study it aging effects for a 
subsequent process tuning. The quality analysis system is a 
composite system, namely a synergic composition of 
traditional algorithms for signal processing and sot?- 
computing techniques [ 5 ] .  During development of the 
solution we addressed not solely the performance issue (in 
tenns of detected defects) but also the required 
computational burden in order to satisfy real-time 
requirements. 

In particular, the industrial process under monitoring 
refers to the laser welding of automotive components 
carried out at the CW-FIAT laboratories [17]. The specific 
test bed is a steel gear, a critical part in the gearbox for a 
passenger vehicle (see Figure I). 

Fig. 1. The gear considered in our work. 

Seven types of gear, built joining two rings (i.e., a light 
syncro gear and the principal gear), are actually butt- 
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welded using a CO2 laser. The test-bed is part of the 
Intelligent Manufactory Systems project SLAPS (Self- 
tuning and User-independent Laser Material Processing 
Units) [ 161 a European Union effort to advance the applied 
research on the development of intelligent laser processing 
unit [15]. 

The structure of the paper is as follows. Section 2 
introduces a general background on laser welding and a 
description of the typical defects. Section 3 presents the 
features extracted from our industrial set-up and in section 
4 is described the overall composite algorithm describing 
also the classifier selection, the tuning methodology and 
the experimental results. 

11. LASER WELDING AND INDUSTRIAL SET-UP 
AT CRF LABS 

The welding phenomenon can be defined as the 
localized coalescence of metals or non-metals produced by 
heat andlor pressure. Laser light may be focused to very 
small areas; this remarkable concentration of power can 
permit the welding process to occur. 

Since a laser beam is a beam composed by light 
radiation, the reflective properties of metals tend to 
partially reflect the light and a big part of the incoming 
power can bounce back. This problem is compounded by 
the fact that the major industrial laser types emit infrared 
light, which metals reflect even better than visible light. 
This situation drastically changes when the surface melts. 
Liquid metals absorb much more power from the incoming 
radiation than solids do, so the heat flux absorbed suddenly 
increases, raising the metal's temperature above the boiling 
point and generating metal vapor. The pressure of this 
vapor opens a deep and narrow channel around the laser 
beam, forming what is called a keyhole. The aspect ratio 
(deptwwidth) ofkeyhole laser welds can be as high as 1 O : l  
but is more commonly around 4: I .  Keyhole welding is a 
threshold process: when the irradiant is low, very little 
power is absorbed. Once the irradiant is high enough to 
form a keyhole, most of the power is absorbed by the 
workpiece. Small power changes near the keyhole 
threshold will cause remarkable changes in the weld 
qua I i ty . 

Lasers machines have the appreciated property to 
produce thin and deep welds, for that reason it is common 
to select the butt joint configuration for laser welding. The 
configuration allows for high speed and requires low heat 
in input because all the metal in the weld is being used to 
hold the assembly together (Figure I).  Regardless of the 
configuration, joint fit-up is critical in laser welding. 
Almost all laser welds are autogenous: no filler metal is 
used. Any gaps in the joint become undercuts in the 
finished weld. Even if undercuts are acceptable, a focused 
beam can pass through a butt joint with a 0.2 mm gap 
without welding it at all; the beam just bounces off the 
walls and out the other side. Moreover, the material being 

welded must be clean. Any non-metallic contaminants get 
ejected from the keyhole, producing spatter, porosity, and 
lens damage as well. 

In our process we are interested in detecting both 
defects in welding and faults in the laser source. Typical 
defects can be classified as 

- Penetration depth 
- Misalignment of coupling in mounted samples 
- Porosity (spontaneous and caused by misalignment 

or power lack) 
- Decrease io laser power level (-10%) of laser source 
- Power lack (-10 ms) in laser source 
The signals acquired during the welding process are: 

Laser Power (grid current) and Infrared radiation from the 
process. The experiments have been carried out by using 
the Rofin Sinar DC035 laser source [IS]. 

The methodology presented to achieve the final quality 
classifier can be decomposed by three phases. The first is 
the Features extraction phase and can be carried out by 
applying traditional techniques from signals. The second 
phase is Feature reduction. It is extremely important since 
it can produce a compression of  the dataset and permit to 
obtain less complex classifiers maintaining satisfied 
constrains on the accuracy ofthe classification system. The 
third phase is the Creation, Training and Validation of the 
classifiers. 

In order to satisfy the real-time constrains, during the 
designing phases it is preferable to select fast and parallel 
processing, working directly on the samples of sensor 
signals in the time domain without a time consuming 
spectral transformation; in the classification phase we 
considered different kind of classifier with linear and non- 
linear components in order to achieve a good accuracy in 
classification by keeping bounded the computational load. 

In this phase, the main characteristics we are interested 
in are accuracy and generalization over new samples, but 
we have some difficulties in achieving this result due to 
different causes: 

- Few samples are available to tune the classifier 
- Not all samples are correctly classified by the 

operator (there is an intrinsic error wit the process) 
- The distribution of samples for the different error 

typologies is unknown. 
To overcome these problems we consider an ad-hoc 

classifier specifically tuned to solve a specific class of 
welding errors. This choice allows to simplify the system 
and to support a parallel execution of the classifiers. 

As we stated also in the previous section we are looking 
for a general automated framework for choosing of the 
optimal classifier, in terms of complexity and parameters, 
after a self-tuning process with few correctly classified 
samples. This process can be effectively solved by 
defining a set of suitable features, by mean of expert 
knowledge, and then automatically selecting the optimal 
classifier using self-tuning techniques. 
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111. DEFECTS AND FEATURE EXTRACTION 

Concerning the detection of the power decrease or 
power lacks, the signal taken from the grid current on the 
laser possesses sufficient information to solve that task. 
Conversely, the signal from the photodiode is used to 
classify penetration, misalignment and porosity formation. 

Due to the industrial environment, high frequency noise 
is present in the signals coming from the process; to 
separate the correct signal from the noise we did a spectral 
analysis in order to select the correct low-pass filter. A 
subsequent down-sampling operation has been done to 
reduce the dataset in order to speed up the feature 
extraction and classification. 

Figure 2 shows the signals after being processed by the 
low-pass filtering. From the power signal (Figure 2.a) we 
extracted features referring to the mean intensity (A), and 
duration (T) of the useful part of the signal. Moreover, in 
order to detect lack in the power source we detect the 
greatest positive and negative deviation of the signal from 
its mean (respectively F, and Ft in the figure) then 
synthesized in the maximum power fluctuation during the 
welding (F,,,,r). 

From the original welding signal, before low-pass 
filtering, we extracted features referring to the mean 
intensity and variance; these indexes are used to classify 
penetration depth. After low-pass filtering, we build a local 
reference signal by cubic interpolation of the signal in 
order to extract features referring to porosities and 
misalignment. In Figure 2.b are present two main 
deviations, in terms of intensity, from the reference model; 
in detecting porosities we extract the time duration (Ti) and 
the amplitude (Ai) of the main five of these deviations. 
Moreover, the difference in between coordinates of 
minimum and maximum of the cubic model (D and H) are 
used to detect coupling misalignment (Figure 2.b, 4.h). 

Figures 2, 3 and 4 show respectively signals related to 
correct and non-correct artifacts; it is possible to note, by a 
qualitative point of view, that the selected features can 
permit a sufficient discrimination between the error types. 
The complexity of the algorithms for the features 
extraction has been kept intentionally low in order to 
achieve real-time performances, so no spectral or 
computationally complex analysis has been computed in 
such a phase. -- 

’“I 
-.....- ’’I 

.C 

d..;. . . . i . . . . . . . . .  & A . L ; . ; ~  d ~ . .  .. , ;* < . ~ i . . < ~ i  .. - ~ .  I -- .* . us .._ 
(2) (b) 

Fig. 2. Power (a) and welding (b) signals in a case of correct 
welding with selected features 

(4 (b) 
Fig. 3. 10% power decrease (a) and 

10 ms power breakdown (b) 
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IV. THE ALGORITHM 

The structure of the classification algorithm is given in 
Figure 5 .  The algorithm is based on a hierarchical 
approach to detect as soon as possible welding defects. 
The gray blocks refers to signal processing activities where 
classical techniques are applied to extract features and the 
rounded highlight blocks represent soft computing 
classification modules (the remaining pa~I  of the algorithm 
is simple control logic that can be implemented by very 
low hardware complexity). 

Power classification and penetration depth are classified 
independently from each other, mounting errors detection 
is performed only after their processing. If the sample is 
classified as “mounted correctly”, then we activate the 
subsequent module for monitoring the possible presence of 
porosities. 

To describe the complexity of nowsoft computing part 
of the algorithm, for each signal processing and for the 
blocks used in the features extraction, we can use the big- 
0 notation with respect to the number N of samples in the 
signal: 

- Low-pass filtering: Om) 
- Laser Power Feature Extraction: Om) 
- Laser Penetration Features Extraction: O(N) 
- Polynomial Fitting: O(N3) 
- Mounting Feature Extraction: O( 1) 
- Porosity Feature Extraction: Ow) 
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Fig. 5. The Algorithm 

Once identified the relevant features the next step is to 
develop the classifier that, by processing the features 
implement the final quality analysis. The main problem 
with data classification is to acquire enough data correctly 
classified by human experts in order to design, tune and 
validate the classifier. We focus the attention on two 
families of classifiers: the k-nearest neighbor rule and 
feed-forward neural networks. 

Due to its conceptual simplicity, the nearest neighbor 
rule (NN rule) has been used in a variety of classification 
applications [9].  The philosophy onto which the classifier 
relies is that a pattem is classified according to the 
majority of its nearest neighbor. Instead of considering the 
nearest neighbor only, one may take into account the k- 
nearest neighbors to estimate the class of an unknown 
pattern. An unknown pattem in input to the classifier is 
assigned to a particular class if either all of its k-nearest 
neighbors or at least the majority of its k-nearest neighbors 
belong to that class. In the first case, the classification of 
the unknown pattem can be refused if the k-nearest 
neighbors do not belong to the same class. In the second 
case, the classification can also be refused if the majority 
does not reach a specific quote. Detailed information on 
the nearest neighbor rule and its modifications can be 
found the in [8] and [9]. 

The neural classifier used for the classification is a 
feed-forward neural network with a hidden layer (the 
activation function of the neurons in the hidden layer is a 
hyperbolic tangent sigmoid and the activation function for 
the output layer in linear). The complexity of the 
classifiers depends on their structure; for neural networks, 
it depends on the number of neurons, for the k-nearest 
neighbor classifier, on the number of samples stored and 
the value of k. The number of inputs impacts directly on 
the complexity of both families. 

Exploiting the physical knowledge of the process we 
extracted, from each signal, about six features to be 

classified. It is important to note that not all the selected 
features can contain the same amount of information with 
respect to the classification problem. We use an a-priori 
heuristic reduction to achieve the goal to keep low the 
computational load but maintaining a satisfactory 
accuracy. We try to detect, by means of classical K N N  
classification method, the relevance of each feature with 
respect the classification problem. In this way, we reduce 
the redundancy of the acquired information to reduce the 
complexity of the neural classifier. Using the k-nearest 
neighbor method with different k values and using the 
leave one out method [lo] to estimate the performance of 
the classifier we identified the most relevant features for 
each error cause. 

The topology of the neural network is designed by 
applying the cascade correlation algorithm [ l  11 to the 
different error type classifiers. Both feed-forward neural 
network classifiers and k-nearest neighbor classifiers have 
been trained in Figure 6 we plot the results obtained with 
the reduced set of features in terms of classification error 
on the validation set (mean and deviation over 100 
different trials). The neural classifier has been created and 
tuned with a variable number of hidden neurons (from 1 to 
10) selecting the most accurate one in validation. The plot 
shows that the classical and the neural classifier are 
comparable in performance, once the correct subset of 
feature is selected. In particular the best neural network is 
more accurate than the k-nearest neighbor classifier in the 
in the mounting error case. Moreover the best neural 
classifier has a maximal complexity of 4 neurons, 
noticeably lower with respect to the complexity of the 
corresponding classical classifier. 
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Fig. 6. Classification error and deviation of classifiers with feature 
reduction (horizontal axis: number of selected features). 

To investigate the validity of feature reduction we 
reproduced the same classification experiments using the 
whole set of features for each error type leaving the 
cascade correlation method to investigate also more 



complex topologies. The results of this test reveal no 
noticeable difference in the classification error thus 
confirming the a-priori choice of relevant features made by 
the off-line test. 

In the training phase we uses part of the available data 
to train the network and the rest for cross-validation and 
topology selection. The training is performed using the 
Levenberg-Marquardt algorithm [I21 and the data are 
preprocessed by normalization and rescaling in order to 
speed-up the leaming phase [13]. 

Due to small amount of samples available, it is also 
possible to use the majority of sample for the training 
phase and obtain a statistical bound (by confidence 
intervals) for the estimated accuracy of the best classifiers 
performance. By applying the Bayesian approach we 
estimate the probability of error and it confidence 
intervals. The S%-level confidence interval bounds are 
plotted as function of N. Using the plot in Figure 7 we 
implicitly assume the hypothesis that the cross-validation 
subset is independent from the training set and the N 
pattems effectively are an i.i.d sample. 

. n e  final results of the training phase for our tests are 
presented in table I .  The table shows for each error type 
(depth, power, mount and porosity) the composition of the 
training and validation subsets, the best result in accuracy 
for the two families (k-nn and neural classifiers) and the 
corresponding intervals of confidence. 

Porosity 

In the case of feed-forward neural networks, the most 
accurate network in cross-validation has been selected over 
100 different experiment with different initial weights 
initialization 

Theoretically, when a classifier is given, we must 
achieve the maximum likelihood estimator for the 
probability of error E ^ ,  by drawing a random sample of 
size N from the data distribution, and applying the 
classifier to it: 

KNN 215 samples 214 samples 0.35 % - 0-4  % K= 1 

FF-NN 199 samples 86 samples 0 %  - 0 - 4 %  Neurons= 4 
(100%) (-100%) 

(70%) (30%) (Best over 100) 

where r is the number of misclassified samples. Given 
it is possible to compute the confidence intervals 

between the real error and the estimated error 
E^ (numerically tabulated for the level of confidence 
y = 0.95 in Figure 7). In the horizontal axis there is the 

hue error E, and the vertical axis is the estimated error E^ . 
In this paper we present the preliminary evaluation of 

the system for quality measurement (experiments have 
been performed by using Matlab on a Pentium I11 
monoprocessor system). Since the complexity and memory 
occupation for feed-forward neural networks is lower with 
respect of KNN classifiers we choose for all the error type 
detection the best neural classifier obtained. With such a 
system the quality evaluation of a standard welding took 
about 3 seconds. 
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Fig. 7. Confidence interval for y = 0.95 

V. CONCLUSIONS 

An automatic quality analysis self-tuning measurement 
approach for laser welding is presented. The combination 
of neural networks and traditional algorithms allows the 
system to achieve good accuracy keeping bounded the 
whole computational load. 
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