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model for this integration, the model is defined considering logistic operations at bulk port, however is
generic enough to be adapted to several situations. The integration takes place in a hierarchical scheme
where the problems exchange data and they are solved through a commercial solver and heuristics.
When scheduling is not feasible, capacity information is forwarded to production planning to adjust or
indicate the use of new tasks. The model and algorithms are validated considering data from a real case.
Computational results show the efficiency of the approach, producing strong bounds for large instances.
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1. Introduction

In production systems, production planning and scheduling
problems are critical for profitability of companies, correct use of
resources and to meet deadlines. These problems are applicable
in a broad range of sectors, such as the casting industry
(Camargo, Mattiolli, & Toledo, 2012; de Souza, Jr, Bretas, &
Ravetti, 2015), the food industry (Rocco & Morabito, 2014), and
cargo transportation in port terminals (Robenek, Umang, &
Bierlaire, 2014). Even though planning and scheduling belong to
two different decision levels (from strategic to operational), there
is a strong relation between them and there is extensive literature
on solution models and strategies (Drexl & Kimms, 1997; Meyr &
Mann, 2013; Phanden, Jain, & Verma, 2013; Ramezanian, Saidi-
Mehrabad, & Teimoury, 2013). Published strategies can be divided
into hierarchical and integrated approaches.

In a broad sense the production planning decides when and
how many products must be produced, and the decisions are usu-
ally associated to cost trade-offs. Instead, scheduling problems take
into account shop-floor settings and determine how the produc-
tion must be executed. Their objectives are usually time-related.
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The independent optimization of these problems can clearly lead
to non-optimal solutions, thus the need to combine the decisions
levels. Integrated methods consider both problems simultane-
ously; that brings better solutions in exchange of a greater compu-
tational complexity. Another approach is a heuristic procedure,
where in a hierarchical fashion the production planning and
scheduling problems and solutions exchange data.

The problem motivating this research can be defined as follows:
lets consider a variety of products arriving at a logistics terminal
(supply), they need to be transferred to meet the demand or to a
local storage area. To make this transfer, products need a feasible
route of equipment. On the one hand, the planning problem must
take decisions regarding when to move the material and where to
move it. On the other hand, the scheduling problem deals with
making the planning feasible, that is, determining a route of equip-
ment to be use at each time period. Different routes have different
capacities. They may share equipment creating conflicts when used
during the same time period.

The focus of our work and the main contributions of this article
are related to the integrated solution methodology to deal with a
complex problem with real size instances. In this manuscript, we
propose the use of a hierarchical framework to solve a production
planning and scheduling problem for the delivery of products. The
methodology uses a combination of heuristics and mathematical
formulations; the novelty of the method is on the combination of
this algorithms to deal with the trade-off between medium and
short term decisions. Moreover, based on the scheduling solution
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additional constraints are generated to strengthen the production
planning. To link this problem with two levels of information we
use the capacity of the routes.

In addition, to this contribution, the hierarchical framework,
and a mathematical model are built to address a real storage and
transportation problem, that occurs in a Brazilian bulk terminal.
This problem is also common in iron ore port terminals and has
not been fully investigated in the literature. The experiments are
validated considering data from a real case and the computational
results show the effectiveness of algorithms and model.

The remainder of this article is structured as follows: Section 2
presents the literature review. Section 3 defines the problem on
which a mathematical programming model is based. Section 4 pre-
sents some sets and variables used in the mathematical formula-
tion (the complete model is available in the appendix). Section 5
discusses the solution strategy applied and the main algorithms
developed. Section 6 is dedicated to computational results and
the manuscript ends with conclusions and future research
directions.

2. Literature review

The interaction (integrated or hierarchical form) between Plan-
ning and Scheduling is not a new concept, and various efforts have
been made toward this goal, such as in Ozdamar and Yazgac
(1999), Meyr (2000), Wu and lerapetritou (2007), Gaglioppa,
Miller, and Benjaafar (2008), Mateus, Ravetti, Souza, and
Valeriano (2010), Kis and Kovcs (2012), and, more recently, Meyr
and Mann (2013) and Wolosewicz, Dauzre-Prs, and Aggoune
(2015). You, Grossmann, and Wassick (2011) and Calfa, Agarwal,
Grossmann, and Wassick (2013) also address integrated problems.
In You et al. (2011), it is investigated an integrated production
problem, whose goal is to determine at each period which products
to manufacture, as well as to establish an optimal capacity modifi-
cation plan, such that future demand is satisfied. Calfa et al. (2013)
investigate the integration of Planning and Scheduling of a Net-
work of Batch Plants. The problem is to define the amount of prod-
ucts to be produced in each time period, the allocation of products
to batch units and the detailed timing of operations and sequenc-
ing of products.

The solution strategies adopted by the works were: Bilevel
Decomposition and Lagrangean Decomposition in You et al.
(2011), and Bilevel and Temporal Lagrangean (Calfa et al.,, 2013).
These approaches have succeeded in solving large-scale industrial
problems. Although the problems considered in those two works
are different from the one analyzed in this article, the solution
approach is similar. They deal with real and complex industrial
problems and explore decomposition and communication mecha-
nisms between the subproblems. The strategies proposed (Bilevel
and Lagrangian) can also be seen as hierarchical, since the prob-
lems are decomposed and solved separately.

As previously discussed, the central problem study in this arti-
cle involves the flow of products between supply nodes, storage
areas and demand nodes. In this sense, the primary contributions
from the literature are related to the product flow in bulk cargo ter-
minals (iron ore, coal, grains). The references highlighted below are
related to mathematical models and exact and heuristic algorithms
for problems in this sector.

Bilgen and Ozkarahan (2007), study the problem of blending
and allocating ships for grain transportation. The authors develop
a mixed-integer linear programming model with constraints
involving blending, loading, transportation, and storage of prod-
ucts. Conradie, Morison, and Joubert (2008) address the optimiza-
tion of the flow of products (in this case coal) between mines and
factory. Kim, Koo, and Park (2009) study the allocation of products
in the stockyard. This problem is solved using a mixed-integer

programming model. Barros, Costa, Oliveira, and Lorena (2011)
develop an integer linear programming model for the problem of
allocating berths in conjunction with the storage conditions of
the stockyard. Solutions are obtained using optimization packages
and Simulated Annealing. Boland, Gulezynski, and Savelsbergh
(2012) address the problem of managing coal stockpiles in Australia.
In the study, it is necessary to choose which equipment will be
used for transporting goods to be piled in the stockyard (preferably
near the berth where the ship will be loaded), and how to synchro-
nize the whole process. Singh et al. (2012) present a mixed-integer
programming model for the problem of planning the capacity
expansion of the coal production chain in Australia. The model
seeks alternatives to expand capacity to fulfill the demand while
minimizing infrastructure costs and demurrage. Finally, Robenek
et al. (2014) proposes an integrated model for the integrated berth
allocation and yard assignment problem in bulk ports, with solu-
tions obtained by a branch and price algorithm.

Although these research works address various important
aspects of the challenges found in bulk cargo terminals, we did
not find articles investigating the integration of product flow and
scheduling routes. Such problematic is very usual and must be
solved in several bulk terminals.

3. Problem description

The port terminal under study possesses several types of equip-
ment for loading iron ore onto ships: car dumpers, conveyor belts,
ore stackers, reclaimers and ship loaders. Iron ore is the main com-
mercialized product, and it is the only product considered in this
work. There are primarily three types of iron ore being handled:
lump, sinter and pellet. Several other products can be derived from
these raw materials and differ in their chemical and physical
characteristics.

To better understand the planning and scheduling problem con-
sider the following scenario. There is a set of supply nodes or
reception subsystem, where products are available for transporta-
tion, storage nodes or stockyards and demand nodes or delivery
subsystem (points of shipping products). Specialized equipment
with predefined capacities is used to transport the products within
the network. An equipment route between nodes has a given
capacity and handle one product at a time. Fig. 1 provides a sche-
matic representation of the problem.

The number of routes is limited and they may share equipment.
Thus, if two different products are assigned to routes sharing
equipment, these routes must be active at non-overlapping inter-
vals. Fig. 2 shows a case where two routes (routes 1 and 2) share
the same equipment.

The stockyard subsystem consists of large areas for storage.
Each storage area is further subdivided into smaller subareas called
storage blocks. The dimensions of each storage block can vary and

RECEPTION STOCKYARDS DELIVERY
SUPPLY STORAGE NODES DEMAND
NODES NODES

Fig. 1. Reception, stockyards and delivery systems.
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Fig. 2. Routes with shared equipments.

depends on the type of product, among other factors. An area
between bordering storage blocks must be kept free to avoid
blending or contamination of a stack by neighboring products. In
the remainder of this article, the terms storage block and subarea
are used interchangeably.

The problem analyzed in this study can be defined as follows:
assume that there is product offer available at supply and storage
nodes, and demands to be met during a time horizon. The problem
consists in defining the amount and destination of each product
from a supply node to a storage node or demand node or from a
storage node to a demand node, and simultaneously establishing
a set of feasible routes (where there is no conflict regarding equip-
ment allocation) to guarantee that the products are transported on
schedule. In addition, it is necessary to minimize the costs associ-
ated with the exchange of products in subareas and to meet the
demand, and select the lowest cost route for cargo transporting.
From now on, this problem will be referred as Product Flow Plan-
ning and Scheduling Problem or PFPSP.

4. PFPSP formulation

The PFPSP mathematical model was initially proposed in
Menezes and Mateus (2013). All production is planned for a given
time horizon, divided into T periods. Product supply nodes are
related to the arrival of products to meet demand nodes. Routes
are classified into three types: routes x that transport products
from the Reception to the Stockyard, routes y from the Reception
to delivery, and routes z from the Stockyard to the delivery.

When there is not enough product p to meet the demand, differ-
ent products p’ of quality close to p could be used instead to guar-
antee that the total demand of the ship is met. In this case, the use
of these products implies a loss of income measured by the param-
eter A,y (Table 2). This alternative is used only if there is not
enough product p available at the reception subsystem or in the
stockyard.

The main challenges are the simultaneous allocation of prod-
ucts into storage areas and the selection of a feasible set of routes.
The main sets and variables used in the hierarchical approach are
described below. The complete formulation, all sets, parameters
and variables are described in the appendix.

Table 1 defines the main sets used for PFPSP modeling.

Table 2 shows the main decision variables used in PFPSP mod-
eling. The next section describes the hierarchical approach to solve
the PFPSP.

5. Solution approach

Solving the PFPSP is a great challenge. The number of variables
and the amount of combinations generated by equipment and
tasks in the scheduling phase make the model unlikely to solve

Table 1
Main sets for the PFPSP model.
Set Description
T Set of periods
P Set of products
S Set of storage sub-areas
R* Set of routes (reception/stockyard)
RY Set of routes (reception/delivery)
R* Set of routes (stockyard/delivery)
Table 2
Main variables and parameters.
Variable Description
f;[ Has unit value when subarea s is allocated for product p in period t
Xt Time taken in period t to transport product p from the reception to

the stockyard using route r € R*
Vit Time taken to transport product p’ to meet the demand of product
Zhe p in period t using route r from sets RY and R?. The replacement of
the product p by p’ is only used if there is not enough product p
available at the reception subsystem or in the stockyard
Amount of product p stored at subarea s in period t

s
ep[

IRyt Represents the amount of product p in the Reception subsystem
that was not delivered at the end of period t

IPype Represents the amount of product p that was not delivered at
mooring berth n at the end of period ¢t

Jppr Cost associated with the loss of income by replacing product p by

product p’ to meet the demand of product p. When p =p’, 4y =0

real-world instances through optimization packages. To work
around this problem, we adopt a hierarchical approach where pro-
duction planning and scheduling are solved separately. Fig. 3 pre-
sents the solution strategy to solve the PFPSP.

In this approach, production planning and scheduling are solved
period by period. In the production phase, a relaxed version of the
PFPSP is solved through a commercial solver. In this version,
scheduling and integrality constraints are relaxed, (constraints
(A.14)-(A31), (A.38), (A.40)-(A.42)), readers are referred to the
appendix. In the remainder of this article, this relaxed problem will
be called relaxed PFPSP. The production variables (x7;,y;,, and z;,,,)
are sent to the scheduling phase to select and schedule the routes
for a given period t. The scheduling phase defines the start time
and the end time for each task, considering the sharing of equip-
ment among the selected routes.

If a feasible schedule is not found, two decisions can be made:
return to the planning phase and reselect the activities or simply
transfer activities to the following period (backlog). We return to
the PFPSP formulation, if during the scheduling phase we are able
to find information to impose capacity constraints in the relaxed
PFPSP, to improve task selection (these algorithms will be dis-
cussed in Section 5.3). In case of finding a feasible schedule, we just
move towards the next period.

Although integrated methods may offer better solutions at a
higher computational cost, in comparison with fully integrated
procedures, the hierarchical approach has some advantages: real
planning situations present a dynamic environment with uncer-
tainties regarding supply, demand and equipment failure. There-
fore, day-to-day operations often require efficient algorithms. In
addition, the proposed method solves the problem period by per-
iod. Thus, rolling horizon strategies, such as those proposed in
Clark (2005) and Li and lerapetritou (2010) can also be applied.
In the following sections details of the methodology are explained
and analyzed.

5.1. Production phase

At this phase, the method solves a capacitated Lot sizing. The
problem allocates products into sub-areas, with the aim of selecting
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l Production
Phase
Product Planning(t)
and
Product Allocation(t)

A

Tasks (Production variables X% Y%pt, Z%pp1,)

Scheduling
Heuristic(t)
l Scheduling
Phase
No Solutionto
periodtis
Feasible?
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Violation(t)
Found?
v
| BackLog(t) |_.| t=t+1 |
Yes No
End t>T?

Fig. 3. Solution strategy.

the best sub-area for each product. While the Lot sizing is easily
solved by a commercial solver, the allocation of products considers
several integer variables, making the problem harder to be solved.
Therefore we use a relax-and-fix strategy to efficiently solve the
allocation problem. Such heuristics are commonly used in various
problems: capacitated lotsizing (Mohammadi, Fatemi Ghomi,
Karimi, & Torabi, 2008); production planning and scheduling
(Ferreira, Morabito, & Rangel, 2010) and multi-level lotsizing prob-
lems (Toledo, Silva Arantes, Hossomi, Franca, & Akartunali, 2015).

5.1.1. Relax-and-fix heuristic

The relax-and-fix heuristic works by fixing decision variables in
a sequence until reaching a feasible solution. In our case, we first
deal with the number of products allocated in each sub-area, vari-
able f;t. selecting the variable with more allocated products. The
relaxed PFPSP is solved again, and the process is repeated until
reaching a feasible set of variables f;t. In a similar fashion, the algo-
rithm works fixing fractional variables. In an iterative procedure,
the variable of the sub-area with the largest fractional value is
set to one. By the end of the production phase, an integer solution
is found (considering the allocation problem and lot sizing) for
each period of the time horizon. After that, the scheduling problem
is solved in the second phase.

5.2. Scheduling phase

The PFPSP production variables (x},,y;,, and z,,,) define the
product type, the quantity and the route used to transport the
products. Therefore, during the planning phase, values for these
variables are defined and they will be the set of tasks for the
scheduling phase. The scheduling problem consists of establishing
the start and end times for these tasks, considering incompatibility

restrictions. Preemption is not allowed and the objective is to

minimize the makespan. Hereafter, this scheduling problem is
called the scheduling problem with incompatibility jobs (SPIJ).

An example is used to clarify the definition of the SPIJ and to
illustrate the tasks and incompatibility restrictions. Assume a solu-
tion for the relaxed PFPSP, as presented in Table 3.

In the first row of the Table 3, the variable x1, indicates that the
product 2 should be carried by Route 1 in period 3, and the total
time to transport this product on Route 1 will be 4 h. The SPIJ
can be modeled using a conflict graph G = (V,E) for each period
t, where each vertex corresponds to a varible x,,y},,, or z;,,, and
an edge is created for each pair of tasks whose routes r and r’ are
conflicting (Fig. 4). Therefore, considering Table 3, the variable
x1; corresponds to task or vertex A in the conflict graph (Fig. 5).
The remaining rows of Table 3 have similar operations.

Fig. 4 illustrates the conflict between routes. The routes 1 and 2
share equipment and therefore cannot operate simultaneously. The
same is true for routes numbered 6 and 9 and three other routes
sharing equipment among themselves (routes 6, 8, and 10). In
the conflict graph G (Fig. 5), the vertices are the tasks and the edges
are created from the conflicts presented in Fig. 4. As previously dis-
cussed, the SPIJ consists of establishing the start and end times for
each task, while guaranteeing that pairs of tasks sharing equip-
ment are not simultaneously executed and minimizing the total
execution time.

Table 3
Solution example of the relaxed PFPSP.
Tasks/vertices Variables Values Routes
A x}s 4 Ry
B X2, 6 R,
C ¥iss 3 Rs
D V333 5 Ro
E z30, 6 Rio
F 2343 3 Rs
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Fig. 5. Conflict graph extracted from the Fig. 4.

The SPIJ is not a new problem, many solutions have been pro-
posed in the literature, such as scheduling with incompatible jobs
(Bodlaender, Jansen, & Woeginger, 1994), scheduling jobs using an
agreement graph (Bendraouche & Boudhar, 2012), and multi-
coloring and job-scheduling (Blchliger & Zufferey, 2013). Previous
works as Bodlaender et al. (1994) and Gandhi, Halldrsson,
Kortsarz, and Shachnai (2005), have shown that the SPIJ and
several variations are NP-Hard.

5.2.1. SPI] heuristic

To efficiently find good solutions, a greedy randomized search
procedure (GRASP) was implemented. GRASP is an iterative algo-
rithm first proposed to solve a set covering problem (Feo &

Resende, 1989) (still without the name GRASP), and subsequently
as already defined as GRASP (Feo & Resende, 1995), that basically
consists of two phases: greedy construction and local search.

At each iteration of the construction phase, the algorithm con-
siders the jobs extracted from planning phase and not yet sched-
uled, as the list of candidate elements. A greedy solution for the
SPIJ is constructed as follows: Select randomly a job i from list of
candidate elements. Next, define the lowest start time for the
job, keeping already scheduled jobs that conflict with i without
overlapping. Once all jobs are scheduled, a non-overlapping solu-
tion is provided. The local search consists in exchanging the order
of jobs found in the greedy construction phase.

Details concerning GRASP adaptation for the SPIJ problem, as
well the local search can be found in Menezes, Mateus, and
Ravetti (2015). GRASP is here considered by its simplicity and abil-
ity to produce good results as those obtained at Binato, Hery,
Loewenstern, and Resende (2000), Rocha, Ravetti, Mateus, and
Pardalos (2008) and Rajkumar, Asokan, Anilkumar, and Page
(2011). However, other heuristics can be evaluated, such as: Inter-
ated greedy (Pan & Ruiz, 2014; Ruiz & Sttzle, 2007), Iterated local
search (Xu, L, & Cheng, 2014), Genetic algorithm (Omara & Arafa,
2010) among many others.

5.3. Communication between planning and scheduling

Allow backlogging in PFPSP is very expensive. At the port termi-
nal in question, delays unloading a ship at the terminal (demur-
rage) or even unloading it before schedule (dispatch) result in a
fine: for the terminal operator in the event of demurrage or for
the shipowner in the event of dispatch. Preliminary results consid-
ering a hierarchical approach without the scheduling feedback,
show poor PFPSP feasible solutions, due to a high backlog cost.
As a capacity or conflict problem is resolved by pushing task for
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the following periods. The capacity information feedback is vital to
ensure that the lot-sizing problem is able to carefully select the
right set of tasks for each period planned. This ensures data consis-
tency in both decision levels. In this section we will investigate two
ways to accomplish this communication: The first based on a route
capacity reduction heuristic, and one more effective approach
based on maximal cliques.

5.3.1. Route Capacity Reduction Heuristic (RCH)

The PFPSP has constraints related to the time each route can
remain active within a period. The objective is to insert a set of
restrictions (similar to constraints A.11, A.12 and A.13 of the PFPSP
in the appendix) to limit the duration of some tasks (only when the
scheduling is not feasible). By reducing this time, planning will be
forced to select other tasks to continue to meet the supply and
demand. This constraint is created in the following way: Let n be
total number of active tasks whose completion time are longer
than the duration of the period t, Conflict(j) represents the number
of tasks that cannot be simultaneously executed with task j and
Length(j) represents the duration of task j.

Task; <= Length(j) — ((Conflict(j)/n) = Length(j)), vj (1)

Constraints (1) limits the duration of a task considering the number
of conflicts. If task i has more conflicts than task j, its maximum
duration in the next iteration will be shorter. The RCH heuristic is
used for a fixed number of iterations in each period where the
scheduling is not feasible. If the number of iterations is reached
and scheduling continues unfeasible, tasks violating the capacity
of the period are transferred to the next (backlog). In the computa-
tional experiments, this number of iterations was set at 10. Several
instances were analyzed by varying the number of iterations.
Through the results obtained, 10 iterations provides a balance
between the quality of solutions and performance.

5.3.2. Maximal clique approach

The clique problem refers to the problem of finding complete
subgraphs in a graph. This problem and its variants are widely
studied in computer science and optimization as arises in many
real-world problems. In this work, the maximal clique problem is
exploited to facilitate the generation of a feasible solution for the
PFPSP. In our work, it is used a well-known strategy called clique
cuts, readers are referred to Dijkhuizen and Faigle (1993), Ji and
Mitchell (2007), Mndez-Daz and Zabala (2008), Boland, Bley,
Fricke, Froyland, and Sotirov (2011), among others.

A maximal clique is a clique that is not included in a higher cli-
que. A constraint related to a maximal clique can be inserted into
the production planning phase in order to strengthen the formula-
tion and facilitate the search for a feasible scheduling. Consider the
conflict graph (Fig. 5). In this graph, there are three maximal cli-
ques: one maximal clique with the vertices A and B, another with
F and D and, finally, one clique with C, F and E. Note that the ver-
tices represent the production variables x;,,y;,,, and z,,, and the
value of these variables is associated with the time that a route r
is used for transporting a product p. Thus, the vertices in a clique
represent tasks that cannot be performed simultaneously.

The sum of the task processing times in a maximal clique can-
not exceed the period length (the start and end times of each task
in a clique cannot overlap). After solving the scheduling phase and
if the schedule is not feasible, a maximal clique cut (whose sum of
the duration of its vertices is longer than the period duration), can
be inserted into PFPSP formulation (production planning phase) to
guide the production planning in selecting new routes. Some solu-
tion methods for maximal cliques are those proposed by Bron and
Kerbosch (1973), Stix (2004) and Tomita, Tanaka, and Takahashi
(2006). They are mostly recursive algorithms. Due the complexity,

some pruning strategies are evaluated in the enumeration tree to
improve the algorithm performance. In this article, a variation of
the Bron-Kerbosch algorithm is implemented to generate the cli-
ques. Information about the algorithm and details on implementa-
tion are available in the Appendix.

5.4. Hierarchical approach

As mentioned above, this approach separates the planning and
scheduling problems. The following pseudo-code illustrates the
primary procedures adopted to obtain an upper bound (feasible
solution) for the PFPSP.

1: procedure HIERARCHICAL APPROACH(N) >
2 t=1 > period counter
3: repeat
4: RelaxedSolutionPFPSP(t) > Solve relaxed
PFPSP
5: if CheckAllocationProduct(t) = true then > If
all the variables ff,[ are integer for period t
6: SPIJHeuristic(t) > GRASP Heuristic
7: if SPIJFeasible(t) = true then > all tasks are
scheduled and respect the time period t
8: t=t+1 > If SPI]J is feasible to t, starts
search for feasibility to period t + 1
9: else
10: if CapacityViolation(t) = False then > if
capacity violation is found
11: Backlogging(t) > Transfers supply and
demand for the next period
12: t=t+1
13: else
14: AddCapacityViolation(t) > add
constraints associated with capacity
15: end if
16: end if
17: else
18: Relax-And-FixHeuristic(t) > Relax-and-Fix
to ensure the integrality of the variables ff,t
19: end if
20: until t > TotPeriod
21: return Solution

22: end procedure

On line 4 of the pseudo-code, the relaxed PFPSP planning prob-
lem is solved. Hence, the relaxed PFPSP is an easily solved linear
programming problem (even for large instances). The feasibility
of the PFPSP is guaranteed in every period, i.e., the feasibility of
the period (scheduling and product allocation) t is guaranteed
before initiating the search for the feasibility of period t + 1.

Once the relaxed PFPSP is solved, on line (4), the algorithm
checks if a feasible allocation of products (all variables f;[ are inte-
ger) for the period t can be obtained. If positive, the heuristic to
establish the start and end times for the tasks (scheduling) is initi-
ated on line (6). Otherwise, there are fractional product allocation
variables, a relax-and-fix heuristic is executed to achieve a feasible
allocation of products (line 18), and the relaxed PFPSP is solved
again (line 4). Even though the integrality of the variables f;t and
the task scheduling is solved one period at a time, the relaxed
PFPSP is always solved from the first unfeasible period to the last
one. These steps are repeated until a feasible solution is obtained
for the allocation of products.
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After the execution of the heuristic for the scheduling problem
(line 6), it is necessary to verify that all tasks were scheduled
respecting the duration of the period. If positive, this period is
solved. Then, the solution of the next period is initiated, i.e., the
current period (t) is incremented by 1 (line 8).

In situations where the scheduling heuristic has not found a fea-
sible solution, it is made an attempt to find constraints (line 10) to
assist the activation of new routes and thereby finding a feasible
scheduling. If no capacity violation constraint is found, there is
nothing left to be performed for this period. Supplies and demands
that cannot be met within the limit of duration for this period are
passed to the next period (backlogging) (line 11). Once all periods
are explored (line 20), the hierarchical solution approach ends and
a solution is obtained (line 21). In the following section, the com-
putational results performed to validate the hierarchical approach
are described.

6. Computational experiments

The experiments are performed based on an real product flow
problem in an iron ore port terminal in Brazil, recognized as one
of the largest worldwide. The basic parameters are the number
of periods, the products and the routes. In general, they work with
seven periods of one day or fourteen periods of twelve hours.
Table 4 highlights the main parameters used to create the
instances. The parameters o, iy, V3 1 Ay and " are part of the
PFPSP formulation and are described in the appendix.

In the iron ore port terminal, the demand nodes are those where
the ship moors to receive the products. For the experiments, three
demand nodes are considered: two moored ships in berth 1 and
one ship in berth 2. Likewise, the supply nodes represent the points
where the wagons unload the products. These points are related to
the car dumpers. For the experiments, five car dumpers were con-
sidered. In this system, various products and quantities can arrive
at different periods.

The priority in a port terminal is to meet the demand, so the
penalty of not meeting it f,,, is usually higher than the non-
fulfillment of the supply (o, parameter). Even among the berths,
the penalty is differentiated (8, value in Table 4). In our particular
case, berth 2 meets larger ships so the priority is always to meet
the ships of this berth. In the experiments, the cost of exchange
products in the stockyard y;,, is the same for any pair.

The monetary value of the iron ore unit is determined based on
the percentage of iron in the product. Therefore, products with a

Table 4
Data used to generate the instances.

Parameter  Description

Stockyard  The product storage area is divided into four stockyards. Each
stockyard has 10 subareas, each one capable of storing 100.000
tons of ore. In total, the four stockyards can store 4.000.000 tons
of ore

Delivery Two berths: two ships can be loaded simultaneously at berth 1

Equipment Five car dumpers, four ore reclaimers, three stackers/reclaimers
(equipment that performs both tasks), and eight stackers. At the
terminal in question, there is approximately 50 km of conveyor
belts. Each route uses one or various belt segments. Thus, the
port terminal was considered to have in total 50 equipment,
including conveyor belts

Ope 2 (two monetary units)

Bupt 10 (ten monetary units for the berth number one), 50 (fifty
monetary units for the berth number two)

Vopt 10 (ten monetary units)

Jpp Based on the following formula: 0.01 (monetary unit) x|p — p’|,
where |p — p'| represents the quality deviation between the
product p and p’

a" Based on the following formula: 0.01 (monetary unit) = length

of route r

higher percentage of iron are considered of better quality. Thus,
to generate the /J,, costs must be considered that its value
increases proportionally to the difference of percentage of iron.
Finally, the parameter ¢ is calculated based on the route length
in meters. Regarding the supply/demand to be met in each period,
the values are based on real data extracted from reports obtained
from the company that manages the port terminal.

6.1. Instances

Three set of instances are considered in the experiments. For
the first set (Tables 5 and 6), the quantity of products supplied is
equal to the requested demand. For the second set (Tables 7 and
8), the quantity of products supplied is greater than the demand.
For the third set (Tables 9 and 10), the quantity of products avail-
able in the supply is less than the demand. For each of the three
sets, instances are created considering the following features: ini-
tial empty stock and initial stock with 30% of capacity, products
supplied equal to those demanded and instances where the sup-
plied and demanded products are different (when the product type
is switched to meet the demand) and the cost of the exchange is
calculated based on the parameter 4,y from Table 4.

For the experiments described next, the equipment capacities
varied between 8000 and 12000 t/h, and 110 routes in the terminal
are considered. These values were based on current data of the port
terminal. For all experiments in this section, the duration of each
period is 12 h. The experiments are conducted using a computer
with a 6-core Intel(R) Core(TM) i7 980 processor and 24 GB phys-
ical memory, running version 12.5 of the CPLEX solver. For all
instances, a computational time limit of 3 h is set. In the following
tables, the character (—) represents instances for which the solver
could not obtain a solution for the PFPSP due to insufficient
memory.

The first, second and third columns of the Tables 5 and 6, con-
tain the number of the instance, the type and the name. For exam-
ple, instance 8P5Prod corresponds to a planning horizon of eight
periods and five different products being handled. Column Z;5 pro-
vides the lower limit for the PFPSP obtained by its linear relaxation.
Columns Zyz and Zgz provide the upper and lower bounds
(best bounds) obtained with the branch-and-cut algorithm of the
CPLEX solver. The GAP column provides the gap given by
GAP = 100(Zyp — Zgp)/Zus. Regarding the hierarchical procedure,
columns Zyg, and Zyg, provide the upper bound obtained for the
hierarchical solution considering the use of RCH heuristics and
maximal cliques respectively. The columns GAP; and GAP, provide
the gap: GAP] = 1OO(ZUB1 _ZLB)/ZUBI and GAP2 = 100(ZU82 _ZLB)/
Zyg,. Finally, tip,tys, tyss and tyg, are the elapsed computational
time to obtain the values of Z;,Zys,Zys, and Zyz, respectively,
expressed in seconds.

The results shown in Table 5 indicate that solving the PFPSP in
optimization packages is not feasible. From 18 (eighteen)
instances, the solver was able to produce solutions only for half
(nine) of them. In the rest, because insufficient memory, it was
not possible to obtain even an upper bound.

With the heuristic based on a hierarchical approach (Table 6), it
is possible to obtain solutions for all instances, all supplies and
demands were met, and all tasks are scheduled respecting the
duration of each period. Regarding the strategies adopted to ensure
better exchange of information between the two decision-making
levels (RCH heuristic and cuts based on the maximal clique prob-
lem), for smaller instances (instances 1-12), the two approaches
showed similar results.

However, when considering hard instances, the use of maximal
cliques allowed a considerable gain both as the upper bound as in
performance (instances 13-18). In particular, for instances 13, 14,
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Table 5
110 routes - capacity ranging from 8000 to 12000 t/h - supply equal demand (solver).
Number Type Instance CPLEX
Zig tip Zug tug Zgp GAP (%)
1 4P5Prod 138.16 5 142.14 205 142.126 0.01
2 4P10Prod 1404 34 143.25 785 143.25 0.00
3 Empty stock 8P5Prod 276.32 10 281.62 683 281.62 0.0
4 products 8P10Prod 279.7 1065 - - - -
5 equal 10P5Prod 3454 12 351.96 1159 351.931 0.01
6 10P10Prod 348.67 2089 - - - -
7 4P5Prod 838.16 5 842.14 168 842.14 0.00
8 4P10Prod 2688.16 5674 - - - -
9 Empty stock 8P5Prod 1476.32 13 1481.67 1202 1481.56 0.01
10 different 8P10Prod 6226.32 9871 - - -
11 products 10P5Prod 1945.4 33 1952.96 1977 1952.78 0.01
12 10P10Prod 73454 2381 - - -
13 4P5Prod 197.35 5.00 200.74 289.00 200.74 0.00
14 4P10Prod 204.22 1236.00 206.64 11003.00 206.64 0.00
15 Stock in 30% 8P5Prod 492.56 11.00 - - - -
16 different 8P10Prod 425.94 983.00 - - - -
17 products 10P5Prod 612.46 11.00 - - - -
18 10P10Prod 510.84 1682.00 - - - -
Table 6
110 routes - capacity ranging from 8000 to 12000 t/h - supply equal demand (hierarchical).
Number Type Instance Hierarchical (RCH) Hierarchical (CliqueCuts)
Zus, Tys, GAP; (%) Zug, tus, GAP; (%)
1 4P5Prod 142.24 4 2.87 142.24 7 2.87
2 4P10Prod 145.40 6 3.44 144 9 2.50
3 Empty stock 8P5Prod 323.12 13 14.48 323.12 25 14.48
4 products 8P10Prod 325.34 22 14.03 325.34 29 14.03
5 equal 10P5Prod 412.20 16 16.21 412.2 38 16.21
6 10P10Prod 426.78 31 18.30 413.56 45 15.69
7 4P5Prod 842.24 3 0.48 842.24 8 0.48
8 4P10Prod 2692.37 8 0.16 2692.37 11 0.16
9 Empty stock 8P5Prod 1490.63 14 0.96 1490.63 36 0.96
10 different 8P10Prod 6272.29 32 0.73 6272.29 141 0.73
11 products 10P5Prod 1981.33 24 1.81 1981.33 49 1.81
12 10P10Prod 7442.33 46 1.30 7412.47 81 0.90
13 4P5Prod 252.16 135 21.74 22291 24 11.47
14 4P10Prod 542.94 94 62.39 212.90 32 4.08
15 Stock in 30% 8P5Prod 545.86 81 9.77 512.85 86 3.96
16 different 8P10Prod 1098.56 1032 61.23 543.70 237 21.66
17 products 10P5Prod 698.56 176 12.33 647.83 128 5.46
18 10P10Prod 799.82 2345 36.13 629.16 145 18.81

16 and 18, the use of cliques showed extremely more effective. The
GAP are much smaller. In Tables 7 and 8 the results are analyzed
assuming that the amount of products supplied is greater than
the demand.

In the experiments described in Table 7, it was necessary to
manipulate more products and routes (as excess supply must
remain at the stockyard); therefore, the optimization package
was not able to find a feasible solution for any case. Even the cal-
culation of the lower limit (based on the linear relaxation) is not
always possible, as the solver aborted due to insufficient memory
in three opportunities (30, 32 and 36).

Similar to the results found in Table 6, with the hierarchical
approach (Table 8), it is possible to obtain solutions for all
instances, and all tasks are scheduled respecting the duration of
each period. The strategy of producing maximal cliques to
strengthen the planning phase also showed better performance.
Especially for the last twelve instances (numbers 25-36).

Finally, the experiments from Table 9 describe instances
where the number of products available in the supply is

smaller than the demanded quantities. In such cases, in the
absence of stock, the penalty of not meeting the demand is
generated (associated with variables IP,, ). Similar to the results
of Table 7, the CPLEX is not able to produce the upper bound
for any case.

In the experiments described in Table 10, the hierarchical
approach generated results for all experiments, but the GAP found
for instances with no initial stock (instances 37-42) is high, once
the penalties are been considered in the upper bound values. As
discussed earlier, in the absence of stock, the penalty of not meet-
ing the demand is generated (associated with variables IP,,). For
the cases with initial stock, all of the demand is met. This is possi-
ble because the initial stock is able to attend the lack of products in
the supply. Additionally, for these cases, the upper bound is stron-
ger, and the gaps found were smaller. For five instancies (num-
bered 43, 44, 45, 50 and 51), all the gaps are smaller than 3%
(hierarchical approach with the use of cliques). Similarly to the
above results, the use of maximal cliques showed to be more effec-
tive than the use of RCH heuristic.
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Table 7
110 routes - capacity ranging from 8000 to 12000 t/h - supply greater than demand (solver).
Number Type Instance CPLEX
Zip tig Zyp tus Zpp GAP (%)
19 4P5Prod 148.3 4 - - - -
20 4P10Prod 1504 34 - - - -
21 Empty stock 8P5Prod 297.495 9 - - - -
22 products 8P10Prod 305.46 879 - - - -
23 equal 10P5Prod 372.825 12 - - - -
24 10P10Prod 380.9 1683 - - - -
25 4P5Prod 651.66 5 - - - -
26 4P10Prod 1876.34 854 - - - -
27 Empty stock 8P5Prod 710.145 10 - - - -
28 different 8P10Prod 2541.04 9422 - - - -
29 products 10P5Prod 860.483 12 - - - -
30 10P10Prod - - - - - -
31 4P5Prod 186.56 13 - - - -
32 4P10Prod - - - - - -
33 Stock in 30% 8P5Prod 419.51 10 - - - -
34 different 8P10Prod 381.74 1195 - - - -
35 products 10P5Prod 499.76 15 - - - -
36 10P10Prod - - - - - -
Table 8
110 routes - capacity ranging from 8000 to 12000 t/h - supply greater than demand (hierarchical).
Number Type Instance Hierarchical (RCH) Hierarchical (CliqueCuts)
Zuyg, Tus, GAP; (%) Zuyg, tus, GAP, (%)
19 4P5Prod 153.27 7 3.24 153.27 21 3.24
20 4P10Prod 175.38 11 14.24 175.38 23 14.24
21 Empty stock 8P5Prod 325.45 58 8.59 323.10 28 7.92
22 products 8P10Prod 343.49 77 11.07 343.49 47 11.07
23 equal 10P5Prod 417.38 147 10.68 414.01 80 9.95
24 10P10Prod 417.89 234 8.85 403.39 112 5.58
25 4P5Prod 671.05 20 2.89 657.25 65 0.85
26 4P10Prod 2074.91 21 9.57 2056.60 41 8.76
27 Empty stock 8P5Prod 795.25 78 10.70 766.91 116 7.40
28 different 8P10Prod 2961.18 379 14.19 2666.33 123 4.70
29 products 10P5Prod 950.01 83 9.42 887.65 178 3.06
30 10P10Prod 3515.61 437 - 3139.15 233 -
31 4P5Prod 347.56 229 46.32 215.06 92 13.25
32 4P10Prod 672.98 249 - 241.04 31 -
33 Stock in 30% 8P5Prod 499.20 131 15.96 486.70 111 13.81
34 different 8P10Prod 1687.93 1568 77.38 568.64 401 32.87
35 products 10P5Prod 596.36 201 16.20 529.80 270 5.67
36 10P10Prod 2262.84 2679 - 746.17 395 -

6.2. Overview about the experiments

Three solution approaches have been used to solve instances:
the use of a compact model with optimization package, the hierar-
chical strategy with RCH heuristic (hierarchical-RCH) and the use
of maximal cliques (hierarchical-CliqueCuts). The optimization
package managed to produce better results in time and GAP only
for smaller instances.

When considering instances with characteristics closer to
the terminal real conditions, the solver is unable to produce
feasible solutions. However, the hierarchical approaches have
produced satisfactory results. For simpler instances the
hierarchical-RCH heuristic is more efficient, however as the
instances get bigger and complex the hierarchical-CliqueCuts
shows a stronger performance in CPU time and gap. Therefore,
considering that the major objective of the terminal operator is
to provide low-cost solutions and optimize their resources, the
hierarchical-CliqueCuts heuristic showed to be more efficient
and effective.

7. Conclusions and final remarks

In this article, a hierarchical approach to solve a production
planning and scheduling problem is proposed. The mathematical
model developed, can be used to represent various problems
related to the transportation of products and stock conditions, par-
ticularly problems that involve the flow of products in bulk cargo
(iron ore, coal and grains) terminals. Although each case has its
own particularities, our methodology is general enough to be easily
adapted. The framework is validate by considering a real case from
a Brazilian port terminal.

Regarding the hierarchical approach, the method is more effi-
cient in producing a feasible solution than the solver. Furthermore,
it is possible to solve medium and large instances, that with opti-
mization packages is computationally unfeasible. The exchange of
information between the two decision levels, guarantee good fea-
sible solutions. The use of constraints based on maximal cliques,
strengthened the PFPSP relaxed formulation and considerably
improved the upper bound.
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Table 9
110 routes - capacity ranging from 8000 to 12000 t/h - supply lower than demand (solver).
Number Type Instance CPLEX
Zip tig Zuys tug Zgp GAP (%)
37 4P5Prod 4.00E+06 5 - - - -
38 4P10Prod 4.50E+06 36 - - - -
39 Empty stock 8P5Prod 9.00E+06 10 - - - -
40 products 8P10Prod 1.05E+07 973 - - - -
41 equal 10P5Prod 1.20E+07 16 - - - -
42 10P10Prod 1.50E+07 1585 - - - -
43 4P5Prod 181.25 5 - - N -
44 4P10Prod 158.63 35 - - - -
45 Stock in 30% 8P5Prod 346.66 13 - - - -
46 products 8P10Prod 321.51 1139 - - - -
47 equal 10P5Prod 441.06 33 - - - -
48 10P10Prod 416.03 2096 - - - -
49 4P5Prod 213.29 5 - - - -
50 4P10Prod 214.52 2875 - - - -
51 Stock in 30% 8P5Prod 606.76 9 - - - -
52 different 8P10Prod 479.76 1314 - - - -
53 products 10P5Prod 928.87 16 - - - -
54 10P10Prod 725.03 2300 - - - -
Table 10
110 routes - capacity ranging from 8000 to 12000 t/h - supply lower than demand (hierarchical).
Number Type Instance Hierarchical (RCH) Hierarchical (CliqueCuts)
Zuys, Tus, GAP; (%) Zuys, tus, GAP, (%)
37 4P5Prod 5.00E+06 14 20.00 5.00E+06 4 20.00
38 4P10Prod 5.00E+06 16 10.00 5.00E+06 6 10.00
39 Empty stock 8P5Prod 1.80E+07 23 50.00 1.80E+07 13 50.00
40 products 8P10Prod 1.80E+07 67 41.66 1.80E+07 40 41.66
41 equal 10P5Prod 2.75E+07 39 56.36 2.75E+07 19 56.36
42 10P10Prod 2.75E+07 64 4545 2.75E+07 58 45.45
43 4P5Prod 184.99 17 2.02 183.42 141 1.18
44 4P10Prod 163.30 19 2.86 163.34 48 2.28
45 Stock in 30% 8P5Prod 352.63 22 1.69 351.99 56 1.51
46 products 8P10Prod 369.36 46 12.95 357.76 67 10.13
47 equal 10P5Prod 457.32 38 3.55 456.39 93 3.36
48 10P10Prod 499.07 99 16.64 448.33 110 7.20
49 4P5Prod 243.07 54 12.25 232.72 32 8.35
50 4P10Prod 256.45 73 16.35 215.45 33 0.43
51 Stock in 30% 8P5Prod 613 124 1.02 610.34 36 0.59
52 different 8P10Prod 597.67 456 19.73 585.66 36 18.08
53 products 10P5Prod 994.27 234 6.58 965.10 141 3.75
54 10P10Prod 980.70 823 26.07 967.53 313 25.06

[s important to point out that the algorithms here presented, do
not deal with idle capacity. This case happens when the SPIJ solu-
tion produces makespan values lower that the duration of a period.
Future works are planned to overcome these limitations, together
new methods to efficiently solve the SPIJ, and integrate the
solutions.
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Appendix A. PFPSP formulation

The mathematical model described next integrates the plan-
ning and scheduling decisions. All production is planned for a

given time horizon, divided into T periods. Product supply is
related to the arrival of a train, and demand is related to the
arrival of a ship. Routes are classified into three types: routes
x that transport products from the Reception to the Stockyard,
routes y from the Reception to the Ships, and routes z from
the Stockyard to the Ships. The main challenges are the alloca-
tion of products in the stockyard and the allocation and schedul-
ing of routes that fulfill demands and supplies. The sets,
parameters, variables, and equations of the model are described
next.

Table A.1 defines the sets used for PFPSP modeling. Table A.2
gives the input parameters of the model, which define the capacity
limits for periods, storage subareas, equipment, routes, and costs
associated with the objective function.

Table A.3 shows all decision variables used in PFPSP modeling.
These variables are associated with the allocation of storage subar-
eas and the allocation and scheduling of routes and for returning
which demands were not met in each period.
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Table A.1 Table A3
Set definition for the PFPSP model. Variable definition.
Set Description Variable Description
T Set of periods f;[ Has unit value when subarea s is allocated for product p in period t
P Set of products sf;p, . Has a value of 1 when product p has been replaced with product p’
S Set of storage 5“b‘3feas at period t. This replacement can occur only when the amount of
R* Set of routes (reception/stockyard) product p in subarea s has been exhausted in the preceding period
R Subset of routes x that reach subarea s t—1
RY Set of routes (reception/piers) Xt Time taken in period t to transport product p from the reception to
R? Set of routes (stockyard/pier) the stockyard using route r € R*
R? Subset of routes z from subarea s Viper Time taken to transport product p’ to meet the demand of product
M Set of equipment Zpt p in period t using route r from sets R¥ and R*. When p’ is equal to
RY Subset of routes x that use equipment m p, the product delivered is the same as was requested
RY, Subset of routes y that use equipment m ey Amount of product p stored at subarea s in period t
R% Subset of routes z that use equipment m IRy Represents the amount of product p in the Reception subsystem
R=RXURYUR? Set of all available routes that was not delivered at the end of period t
N Set of available mooring berths IPppe Represents the amount of product p that was not delivered at
E Pairs of routes that share at least one piece of equipment to mooring berth n at the end of period t
transport products e Start time for the processing operation using route r € R in period
t. For each variable xj,, v, and z;,, there is one start time (t}, ).
Table A2 When ty,,, is associated with x};, p and p’ are the same product
Input parameters Uppt Binary varlable. It has a value of 1 if the product p’ used to meet the
) demand of product p uses the route r from set R in period t. For all
Parameter Description reR¥p=p
, : . . ]
e Supply of product p at the beginning of period ¢ 0 o Binary variable. It has a value ?f 1 1Af the product p 0}’}? (used to
. meet p) precedes the product p or p’ (used to meet p) in the
dnpe Demand of product p at a ship moored at berth n at the L g . .
- . conflicting routes r,r’ € E in period t
beginning of period t
K High-value constant
lf7t Storage capacity of subarea s for product p in period t
p" Capacity of equipment m (in ton/hour)
i Available time (in hours) for the use of equipment m in period t end of period t, and Olpe is its unit cost (penalty). The next term rep-
NumMax;  Total time in period f (in hours) resents the penalty of not meeting the demand at the Pier subsys-
c Capacity (in tons/hour) of route r € R* g
o Capacity (in tons/hour) of route R” tem. I[P, represents the demand for product p at the Pier
o Capacity (in tons/hour) of route r € R? subsystem that was not met by the end of period ¢, and g, is its
Brpt Penalty for not meeting the demand of a ship moored at berth n unit cost (penalty). The next term represents the cost of exchang-
with product p in period t ) ing products in a subarea. For some product pairs, e.g., manganese
Ope f:r;lr?; dfotr not meeting the supply at the reception of product p and iron ore, it is necessary to clean the subarea before replacing
Yot Preparation cost associated with replacing product p by product one product with another to prevent contamination. The cleaning
p’ in subarea s at period t cost is represented by 73, and the variable szp,[ indicates whether
Jppr Cost associated with the loss of income by replacing product p by pl‘OdUCt p has been replaced with pl‘OdUCt p'in subarea s at period
product p’ to meet the demand of product p. When . .
P\ ipy =0 t. When there is not enough product p to meet the demand, differ-
o Maintenance cost of using route r € R ent products p’ of quality close to p could be used instead to guar-

o Objective function

The objective function seeks to minimize the penalty of not meet-
ing the supply of products at the Reception subsystem, the penalty of
not meeting the demand of ships, the cost of product allocation in the
stockyard and the cost of using routes to transport products.

min Y ~> “oplRye

peP teT

+ZZZﬁnpt’an

neN peP teT

+ZZ Z Zypp’tsfpp’t

seS pePp'e(PU0) teT

+ZZZ)W’ ZC ypp/r+zc -

peP p'eP teT reRrY reR?

DTN o (exn)

peP teT rer*

05D 0 (Y

peP p'eP teT reRY

D> 02y

peP p'eP teT reR*

(A1)

The first term represents the penalty of not meeting the supply
of products at the Reception subsystem. IR, represents the supply
of product p at the Reception subsystem that was not met by the

antee that the total demand of the ship is met. In this case, the use
of these products implies a loss of income measured by the param-
eter Apy. This alternative is used only if there is not enough product
p available at the reception subsystem or in the stockyard. When
p =D, 4y = 0. Finally, ¢" represents the cost of using route r to
transport a product. This cost is associated with the amount of
products transported by a route and its distance (measured in
meters from the point of origin to the final destination), whether
the route is of the x type (distance from a given car dumper to a
given subarea), y type (distance from the car dumper to a berth/
ship) or z type (distance from a subarea in the stockyard to a
berth).

o Supply and demand constraints

Constraints associated with meeting the product supply at the
Reception subsystem and demand at the Piers are presented below.

Zcmxll;f + Zcry (Zy;’pt> — IRp(t—]) -+ IRP[ = Qpt,

reR¥ reRY peP

VpeP, vteT. (A2)

Constraints (A.2) formulate the meeting of the supply at the Recep-
tion subsystem. As previously stated, meeting the supply at this
subsystem consists of unloading the trains, and therefore, these
constraints guarantee that unmet supplies are updated. The unmet
supplies IRy, at period zero are an input data of the problem.
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ZC <Z PP/f) + ZCW <Zypp’t> Prpe—1) + IPape = dnpe,

rer? p'eP reR” p'eP

vYneN,VpeP, VteT. (A3)

Meeting the demand at the Pier subsystem, i.e., loading cargo onto
the ships, is imposed by constraints (A.3). The unmet demands
(IP,p0) at period zero are an input data of the problem.

o Stock control at subareas

Constraints (A.4) guarantee that stocks are kept up-to-date at
each subarea. Initially, the stocked amounts for product p in sub-
area s at period one (e;,;) are input data for the problem. Con-
straints (A.5) define the storage capacity of each subarea. Routes
belonging to set R* can be divided into subsets R}, which contain
all routes x that reach subarea s. The same process is performed
for routes belonging to R*.

reR¥ reRZ? S
VseS, VpeP, VteT. (A4)
<P.VseSWpeP, VteT. (A5)

« Equipment capacity constraints

An piece of equipment may be used in more than one route.
Constraints (A.6) ensure that no equipment will have its capacity
exceeded. The time available for using equipment m in period t is
represented by ji, and the equipment capacity is represented by
b".

5 (S 2 2 ()

peP \ reR}; reRy, p'ep rery; p'eP

<jib", vmeM, VteT. (A.6)

These constraints allow two routes that share the same equip-
ment to be used simultaneously as long as they do not exceed its
capacity. However, these constraints do not prevent routes that
transport different products and share equipment from being used
simultaneously. To enforce this condition, scheduling constraints
are added.

o Constraints for stockyard allocation

Constraints (A.7) control the stockyard allocation. Once a sub-
area is allocated for a product, it cannot be used for any other pro-
duct in the same period. When a subarea is empty, the product O is
allocated to it, i.e., f, = 1.

S fu=1 VseS VteT

De(PUO)

(A7)

Constraints (A.8) control the replacement of products in a sub-
area. If Sf5 ope = 1, then product p has been replaced with p’ at period
t. This replacement may occur when a subarea becomes empty at
the end of a given period and another product is stored in the
subarea during the subsequent period. As previously stated, this
constraint is associated with a subarea’s maintenance/cleaning
cost and is represented as a term in the model’s objective
function.

Sfope = Foeny +fe—1, VseS, VteT, VpeP, Vp'

€ (PU0), p#p. (A.8)

The requirement that there can be only one product p stock-
piled at a subarea s in period t if the stockyard allocation decision
variable is valued 1 is enforced by constraints (A.9) and (A.10),
where K is a high-value constant.

Kf, — e >0, VseS, VpeP, vteT.
Kfye = ¢, >0 VseS, VpeP, VteT

reR¥

(A.9)
(A.10)

« Route allocation constraints

If a route r at period ¢ is used (uy,,, = 1) to carry a product p or p,
constraints A.11, A.12 and A.13 guarantee that its availability and
capacity (measured in hours) are met.

X, < NumMax, u;p,t. Vp,p'€P, p=p, VteT, Vr ¢ R* (A.11)
ypp,r < NumMax; u pp,t, vp,p' €P, VteT, VreR’ (A.12)
Zyye < NumMax, up,,, Vp,p' €P, Vt €T, Vr ¢ R* (A.13)

o Product scheduling constraints

Eqs. (A.14) and (A.15) define disjunctive constraints for each
pair of conflicting routes (r,r" ¢ E) and (r, 1) € R*. They also estab-
lish the order of products p and p sharing equipment. If 07, pp,pp[ =1,
(A.15) is redundant, and (A.14) ensures that product p or (p’) pre-
cedes p or (p') and that the start time of p is greater than the start
time of p; if 0;; spc = 0,p precedes p. The same is true for all the
other pairs of conflicting routes (r, € E) such that r € R* and
" € R¥ constraints (A.16, A.17); r € R* and r' € R* constraints
(A.18), (A.19); r,r" € RY constraints (A.20), (A.21); r,r € R* con-
straints (A.22), (A.23), and r € R* and ' € RY constraints (A.24),
(A.25).

K(1 = upy,) + K(1 =) + K(1 = 0500 + thy =ty + X5, (A14)
K1 =l ) + K=l + K(0000) + thye = th +x5 (A15)
Y(r,r")€E, (r;r)eRY, Vp=p cP, Vp=p' cP, VtecT
K(1—ubhy,) + K(1 =) +K(1 = 00,00,) + thy, >, + X0, (A.16)
K(1 = tpy) + K(1 = Upye) + K(Oppppe) + thope = thye + Ve (A17)
V(r,rYcE, rcR, r cRY, Vp=p P, Vp,p' cP, VteT

K(1 = upy) + K(1 =) + K(1 = 0000 + thy = thy + X5, (A18)
K(1 =) + K(1 =) + K(Ope) + thpe = thye + 2y (A19)

V(r,r'YcE, rcRY, r ¢cR*, V\p=p' € P, Vp,p' €P, ¥t T

K= ) +K(1—ub ) +K(1 =000+t =t +Yh  (A20)
K=t ) + K (1=t )+ KO o) + e = o+ Yo A21)
V(r,r)€E, (r,r') R, Vp,p'.p,p' P, VteT

K=, ) +K(1—uby )+ K1 =0+t >t +20, (A22
K1 =) + K (1= )+ K (O o) + e = o+ 2t (A23)

Y(r,r')€E, (r,r')eR*, Vp,p,p,p' €P,VteT
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K1t ) +K(1 =y ) +K(1 =000 )+t > th, +2h, (A24)
K (1 =)+ K (1=l )+ K (00 spe) + oy = o e (A.25)

V(r,r')eE reR* ' eRY,Vp,p',p,p' €P,VteT

Constraints (A.26)-(A.29), (A.31) ensure that a product cannot
be introduced before or after the period in which it is established
in the production plan.

t
£y + Xy < _NumMax; (A.26)
i=1
t—1
thye = > NumMax; (A.27)
i=1
VreRY, Vp=p €P, VteT
t
te + Vope < > _NumMax; (A.28)
i=1
e > ZNumMaxl (A29)
i=1
VreRY, Vp,p €P, VteT
t
U + Zpye < _NumMax; (A.30)
i=1
t—1
thye = Y NumMax; (A.31)

i=1

VreR?, Vp,p €P, VteT

« Nonnegativity and integrality

The following constraints define the limits for planning, storage,
supply, demand, stockyard allocation, and product scheduling
variables.

X, >0, VreR', VpeP, Vtel. (A32)
Yppe = 0, VreR’, Vp,p' €P, VtcT. (A.33)
Zyy = 0, VreR* Vp,p' eP, VteT. (A.34)
ey =0, VseS, VpeP, VteT. (A.35)
IRy >0, VpeP, VteT. (A.36)
IPpy; >0, VneN,VpeP, VteT. (A.37)
fre €{0,1}, VseS, VpeP, VteT. (A.38)
0<Sfy <1, VseS VpeP, vp

e (Pu0), p#p, VteT. (A39)
e = 0, VreR, Vp,p' eP, VteT. (A.40)
u;p,t €{0,1}, VreR, Vp,p' €P, VteT. (A41)
0;;,,pp,t €{0,1}, vr,r" ¢E, Vp,p/,p,p' €P, VtcT. (A.42)

Appendix B. Maximal clique algorithm

In this article, the goal is to detect maximal cliques that is larger
than a minimum weight. The weight of a clique is calculated as the

sum of the weights of its vertices. In this work, the weight is the
task duration times. Therefore, in one clique, if the sum of the
weights of its vertices is greater than the duration of the period t,
this clique must be inserted in PFPSP formulation.

Consider the conflict graph (Fig. 5), with information regarding
the duration of each task available in the Table 3, and that the
length (period capacity) is 8 h. Two maximal clique constraints
can be inserted into PFPSP:

X3 + X%, <=8 (B.1)
Yi53 + Zg0s + 2543 <=8 (B.2)

The constraint (B.1) is the maximal clique associated with the
vertices A and B (Fig. 5), constraint (B.2) is related to the vertices
C, F and E forming another maximal clique. Note that the sum of
the duration tasks on both constraints violates the period length
(values extracted from the Table 3). In the constraint (B.1) the
sum is 10, and the constraint (B.2) the sum of the tasks execution
times is 12 h. As the maximal clique refers to F and D vertices
(Fig. 5) do not violate the length of period, this constraint is not
inserted in PFPSP formulation.

The following algorithm is an extension of Bron-Kerbosch algo-
rithm with pivoting and weight estimate (Bron & Kerbosch, 1973).
Consider the following sets: C, the set of vertices already defined as
part of the clique; P, set of candidates to join the click and S, ver-
tices already been analyzed and which do not lead to increased
set of candidate P. The MinWeight value is the length of period t.

1: procedure BK3(C,P,S) > Bron-Kerbosch algorithm
with pivoting and weight estimate

2: if (P and S are empty) then

3: if (w(C) > MinWeight) then > If weight of
the clique C exceeding the duration of period t.

4: AddMaximalCliqueConstraint(C) >
inserts the clique C in PFPSP formulation.

5: end if

6: end if

7: if (w(C) + h(C) > MinWeight) then  © if weight of

the clique C plus the weight estimated of the other
vertices which may be part of the clique C, exceeds the
duration of the period t.

8: Random pivot (u) between PU S
9: forido1 P\ N(u) > neighborhood of the
vertex u.
10: BK3(C u {i},P N N(i),SNN(i))
11: P:=P\{i}
12: S: =S\ {i}
13: end for
14: end if

15: end procedure

The main advantage of this modification in BK algorithm, is
related to weight estimate. Since the intent is only maximal cliques
that meet the minimum weight condition, some pruning can be
made, if these branches will not produce a maximal clique that vio-
lates the weight estimated.
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