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This paper presents a new approach that avoids the over-fitting and complexity problems suffered in the
construction of decision trees. Decision trees are an efficient means of building classification models,
especially in industrial engineering. In their construction phase, the two main problems are choosing
suitable attributes and database components. In the present work, a combination of attribute selection
and data sampling is used to overcome these problems. To validate the proposed approach, several
experiments are performed on 10 benchmark datasets, and the results are compared with those from classical
approaches. Finally, we present an efficient application of the proposed approach in the construction of non-
complex decision rules for fault diagnosis problems in rotating machines.
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1. Introduction

In the industrial field, the risks of failure and disruption are
increasing with the complexity of installed equipment. This
phenomenon affects product quality, causes the immediate shut-
down of a machine, and undermines the proper functioning of an
entire production system. Rotating machines are a major class of
mechanical equipment, and need the utmost care and continuous
monitoring to ensure optimal operation. Traditionally, vibration
analyses and many signal processing techniques have been used to
extract useful information for monitoring the operating condition.
Khelf et al. (2013) analysed the frequency domain to extract
information and diagnose faults. Cepstral analysis has been used
to construct a robust gear fault indicator (Badaoui et al., 2004),
and a short-time Fourier transform representation was derived
(Mosher et al., 2003). Other techniques have also been employed,
such as the Wigner-Ville distribution (Baydar and Ball, 2001),
continuous wavelet analysis (Kankar et al., 2011), and discrete
wavelet analysis (Djebala et al., 2008).

Classification algorithms can be used in the construction of
condition-monitoring diagnostic systems. For example, neural
networks (Chen and Chen, 2011), support vector machines (Deng
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et al., 2011), and Bayesian classifiers (Yang et al., 2005) have all
been applied. However, decision tree techniques are still preferred
in engineering applications, because they allow users to easily
understand the behaviour of the built models against the above-
mentioned classifiers. Their use in such applications has been reported
in numerous research papers, e.g. Sugumaran and Ramachandran
(2007), Zhao and Zhang (2008), Sakthivel et al. (2010), and Sugumaran
et al. (2007).

The construction of a decision tree (DT) includes growing and
pruning stages. In the growing phase, the training data (samples)
are repeatedly split into two or more descendant subsets, accord-
ing to certain split rules, until all instances of each subset wrap the
same class (pure) or some stopping criterion has been reached.
Generally, this growing phase outputs a large DT that includes the
learning examples and considers many uncertainties in the data
(particularity, noise and residual variation). Pruning approaches
based on heuristics prevent the over-fitting problem by removing
all sections of the DT that may be based on noisy and/or erroneous
data. This reduces the complexity and size of the DT. The pruning
phase can under-prune or over-prune the grown DT. Moreover,
many existing heuristics are very challenging (Breiman et al., 1984;
Niblett and Bratko, 1987; Quinlan, 1987), but, unfortunately, no
single method outperforms the others (Mingers, 1989; Esposito
et al., 1997).

In terms of growing phase problems, there are two possible
solutions: the first reduces DT complexity by reducing the number
of learning data, simplifying the decision rules (Piramuthu, 2008).
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The second solution uses attribute selection to overcome over-
fitting problems (Yildiz and Alpaydin, 2005; Kohavi and John,
1997). To overcome both the DT size and over-fitting risks, we
propose to combine attribute selection and data reduction to
construct an Improved Unpruned Decision Tree Zi/D7. The opti-
mal DT construction (DTC) problem will thus be converted into an
exploration of the combinatorial graph research space problem.
The key feature of this proposition is to encode each subset of
attributes A; and a samples subset X; into a couple (A;,X;). All
possible (A;, X;) couples form the research space graph. The results
show that the proposed schematic largely improves the tree
performance compared to standard pruned DTs, as well as those
based solely on attribute selection or data reduction.

The rest of the paper is organized as follows: In Section 2, some
previous studies on DTC are briefly discussed. Section 3 introduces
the main notions used in this work. In Section 4, we describe our
approach based on attribute selection and database sampling to
outperform conventional DTC. Section 5 reports the experimental
results using 10 benchmark datasets. In Section 6, ZUD7T is applied
to the problem of fault diagnosis in rotating machines. Finally,
Section 7 concludes the study.

2. Related work

This section describes post-pruning approaches that have been
proposed to improve DTC. Their common aim was to decrease
(1) the tree complexity and (2) the error rate of an independent
test dataset. Pruning methods have various differences that can be
summarized as follows:

1. the necessity of the test dataset;

2. the generation of a series of pruned sub-trees or the processing
of a single tree;

3. the pruning determination criteria.

Breiman et al. (1984) developed error-complexity pruning, which
uses the cost-complexity risk. The pruning measure uses an error
rate penalty based on the sub-tree size. The errors and the size of
the tree's leaves (complexity) are both considered in this pruning
method. The cost-complexity risk measurement of all possible
sub-trees in an initial DT Ty is calculated as the training error R(t)
added to the product of a factor « and the number of leaves |t| in
the sub-tree t, i.e. RC,(t)=R(t)+a(|t]). A series of sub-decision
trees with the smallest value of « are selected to be pruned. Finally,
the correctly pruned sub-tree t is selected from the « sequence of
sub-trees using an independent test dataset. The final selection is
based on the error rate or standard error (assuming a binomial
distribution).

Reduced-error pruning, proposed by Quinlan (1987), produces
a series of pruned DTs using the test dataset. A complete DT Ty is
first grown using the training dataset. A test dataset is then used,
and for each node in Ty, the number of classification errors made
on the pruning set when the sub-tree t is kept is compared with
the number of classification errors made when t is turned into
a leaf. Next, the positive difference between the two errors is
assigned to the sub-tree root node. The node with the largest
difference is then pruned. This process is repeated until the
pruning increases the misclassification rate. Finally, the smallest
version of the most accurate tree with respect to the test dataset is
generated.

In contrast to reduced-error pruning, the necessity of separate
test datasets can be avoided using pessimistic error pruning (PEP,
Quinlan, 1987). This uses the binomial continuity correction rate to
obtain a more realistic estimate of the misclassification rate. The

misclassification correction depends on the number of leaves and
misclassifications.

Error-based pruning (EBP, Quinlan, 1993) is an improved ver-
sion of PEP that traverses the tree according to a bottom-up post-
order strategy. No pruning dataset is required, and the binomial
continuity correction rate of PEP is used. Therefore, the difference
is that, in each iteration, EBP considers the possibility of grafting a
branch ¢, in place of the parent of y itself. The estimation errors
tx, ty are calculated to determine whether it is convenient to prune
node x (the tree rooted by x replaced by a leaf), replace it with t,
(the largest sub-tree), or keep the original t,.

Recently, Luo et al. (2013) developed a new pruning method
based on the structural risk of the leaf nodes. This method was
developed under the hypothesis that leaves with high accuracies
mean that the tree can classify the training data very well, and a
large volume of such leaves implies generally good performance.
Using this hypothesis, the structural risk measures the product of
the accuracy and the volume of leaf nodes. As in common pruning
methods, a series of sub-trees are generated. The process visits
each node x on DT Ty (t, is a sub-tree whose root is x). For each
sub-tree t,, feasible pruning nodes are found (their two children
are leaves), and the structural risks are measured. Finally, the sub-
tree that maximizes the structural risk is selected for pruning.

Additional post-pruning methods have been proposed, such as
critical value pruning (Mingers, 1987), minimum error pruning
(Niblett and Bratko, 1987), and DI pruning (which balances both
the Depth and the Impurity of nodes) (Fournier and Crémilleux,
2002). The choice of DT has also been validated (Karabadji et al.,
2012), and genetic algorithms used to pull out the best tree over a
set of different models (e.g. BFTree, J48, LMT, Hall et al., 2009). To
select the most robust DT, all models were generated and their
performances measured on distinct training and validation sets. In
this work, the main objective is to construct DTs without under-
pruning or over-fitting the training dataset, and without choosing
between different pruning methods. Two prior works have shown
that unpruned DTs give similar results to pruned trees when a
Laplace correction is used to calculate the class probabilities
(Bradford et al., 1998; Provost and Domingos, 2003).

The identification of smaller sets of highly predictive attributes
has been considered by many learning schemes. Attribute selec-
tion shares the same objective as pruning methods, namely the
elimination of irrelevant, redundant, and noisy attributes in the
building phase to produce good DT performance. Many studies
have investigated and improved classification models (Bermejo
et al., 2012; Macas et al,, 2012). In these works, wrapper techni-
ques have been applied to attribute selection. A target learning
algorithm is used to estimate the value of attribute subsets. The
process is driven by the binary relation “<=” between attribute
subsets. The search process can be conducted on a depth-first or
breadth-first basis, or a combination of both (e.g. “A star” (A*)
algorithm). Wrappers are generally better than filters, but the
improved performance comes at a computational cost—in the
worst case, 2™ subsets of attributes must be tested (m is the
number of attributes) (Kohavi and John, 1997).

Similar to attribute selection, DTs can be improved by reducing
the data complexity, as well as reducing the effects of unwanted
data characteristics. Data reduction essentially involves dimen-
sionality reduction and/or example reduction (Piramuthu, 2008).
Generally, reduction methods use sampling (e.g. random, strati-
fied) to select examples for consideration in the learning phase
(Ishibuchi et al., 2001; Liu, 2010).

In conclusion, different pruning techniques have been studied,
but none is adequate for all varieties of problem. There has been a
recent focus on attribute selection and sampling data to improve
DTC. To realize a better DT for a specific application, we propose
the ZUDT algorithm, which combines a novel scheme of random
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database sampling with an attribute selection wrapper process.
The main objective of our study is to reduce the effective number
of examples and training data attributes, and thus minimize the
size of the DT.

3. Preliminaries

Before describing our approach, we give some basic results
on the ordering of sets, classifier over-fitting problems, attribute
relevance and redundancy problems, and finally DTC. The definitions
presented in this section use the same semantics as in Davey (2002).

3.1. Partial order

An ordered set is a collection of elements with an order
relation.

Definition 1. A binary relation R on set E is a partial order if it is
reflexive, transitive, and anti-symmetric.

® vxeE, xRx (reflexivity),
® V(x,y)eE xE, (x Ry ety R Xx)=>(x=Y) (anti-symmetry),
® Y(x,y,2)eExExE (xRyetyR z)=>(x R 2z) (transitivity).

Example 1. Let X ={a,b,c,d,e} and P= (X, <) be an ordered set,
where < defines the following order on X: <={(a,b), (a,e), (c,b),
(c.d), (c.e), (d,e), (a,a), (b,b), (c,0), (d,d), (e,e)}.

We can represent an ordered set P as an oriented graph whose
nodes correspond to the X elements and whose edges denote the
relation <, with loops representing the couples (x,x). Fig. 1
illustrates Example 1.

Definition 2 (Graph). A graph G=(V,E) consists of a set of
vertices V and an edges set E =V x V. Each edge e e E is associated
with an unordered pair of vertices.

In the case of an oriented graph, each edge e e E is associated with
an ordered pair of vertices. In the rest of this section, we denote a
research graph L and an element in L (i.e. a vertex veG) as a
pattern.

3.1.1. Specialization and generalization patterns

Specialization (generalization) is a binary relation that defines a
partial order < on the patterns in L. A pattern ¢ is more general
than another pattern 0 if ¢ < 0. Similarly, ¢ is more specific than ¢,
i.e. for the relation a < e in Example 1, a is more general than e and
e is more specific than a.

3.1.2. Specialization and generalization operators

Let L be a partially ordered set of patterns. The specialization
operator P; associates each pattern ¢ e L with a pattern set that
is more specific: Pg(p)={0€Llp < 6}. Similarly, we can define a
generalization operator P, such that Py(¢) = {6 € L|0 < ¢}. An operator

O O

a ® ¢

)

Fig. 1. Partial order.

P; is said to be direct (immediate) if it only associates ¢ with the most
general patterns of the set of patterns that are more specific Ps(¢),
Ps(¢) = min(Ps(¢)). Then, an operator Py is said to be direct (immedi-
ate) if it only associates ¢ with the most specific patterns of the set of
patterns that are more general Pg(p), Pg(p) = max(Pg(p)).

3.1.3. Minimum and maximum patterns

Let be a specialization relation in L, and @ <= L be a patterns set.
min(®) is the most general patterns set of @, and max(®) is the
most specific patterns set of @.

min(®) = {p e DA e ® s.t. 0 < )

max(®) ={p e P|A e @ s.t. p < 6}

Using a direct order relation, we can represent a partially
ordered set by a directed graph and acyclic Hasse diagram. Fig. 2
illustrates Example 1 as a Hasse diagram.

3.14. Research graph traversing strategy
Graph specialization is generated by the specialization order
relation defined on L, which can be traversed in several modes:

® Breadth-first search: traverses the research space (specializa-
tion graph) elements in a bottom-up manner and generates
patterns level-by-level. Known to be an apriori-like where
all motifs with the same level are explored before the more
specific ones.

® Depth-first search: achieves the quickest possible solution by
exploring the immediate successor of any generated pattern,
and specializes as much as possible the pattern level before
exploring patterns of the same level.

3.2. Over-fitting

Consider the sample data illustrated in Fig. 3. Let us assume
that “circles” and “plus signs” in this figure correspond to sampled

Fig. 2. Hasse diagram.

Fig. 3. Over-fitting in decision tree learning. (a) An over-generalization. (b) An ideal
classification. (c) An over-fitting.
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observations from two classes and from (a, b, ¢) different classifier
models.

Classifier (a) simply classifies the data according to a straight
line. This gives a very poor classification, considered as a hazard
classification. In contrast, classifier (¢) over-fits the training data,
becoming increasingly dependent on the samples. Thus, its capa-
city to correctly predict other data classes decreases. Finally,
classifier (b) gives the best generalization of the learning process,
and has the smallest probability of misclassifying new data.

Definition 3 (Over-fitting). h e H over-fits training set S if there
exists h' e H that has a higher training set error but lower test
error on the test data. (More specifically, if learning algorithm A
explicitly considers and rejects h' in favour of h, we say that A has
over-fitted the data.)

3.3. Attribute particularity

The identification (elimination) of relevant (redundant) attri-
butes is the main purpose of an attribute selection algorithm.

3.3.1. Relevance

In machine learning, relevance includes three disjoint cate-
gories: strong relevance, weak relevance, and irrelevance (Kohavi
and John, 1997), in order of importance. Strongly relevant attri-
butes should be conserved by any attribute selection algorithm;
however, Ruiz et al. (2006) state that there is no guarantee that a
feature will necessarily be useful to an algorithm just because of its
relevance (or vice versa). Weakly relevant attributes could be
conserved or not, depending on the evaluation measure (e.g. accuracy,
simplicity) and other selected attributes. Irrelevant attributes should
be eliminated.

3.3.2. Incremental relevance

Caruana and Freitag (1994) define incremental relevance by
considering the monotonicity of the accuracy and order of the set
of subsets P(R, <).

Definition 4 (Incremental usefulness). “Given data D, a learning
algorithm T, and a subset of attributes X, the attribute e is
incrementally useful to T with respect to X if the accuracy of the
hypothesis that T produces using the group of attributes {e} U X
is better than the accuracy achieved using just the subset of
attributes X” (Caruana and Freitag, 1994).

To obtain a predictive feature subset of attributes, the above
definition is useful in the present work.

3.3.3. Redundancy

Attribute redundancy in machine learning is widely accepted as
the correlation between attributes. Two attributes are redundant
to each other if their values are completely correlated. Correlation
between two variables can be checked based on the entropy, or
the random variable uncertainty (Xing et al., 2001; Liu and Yu,
2005).

3.4. Decision trees

DTs are built recursively, as illustrated in Fig. 4, following a top-
down approach. They are composed of a root, several nodes,
branches, and leaves. DTs grow according to the use of an attribute
sequence to divide training examples into n classes. Tree building
can be described as follows. First, the indicator that ensures
the best split of the training examples is chosen, and population
subsets are distributed to new nodes. The same operation is
repeated for each node (subset population) until no further split

Attribute 1 )

¥y +y ¥ + 0.9
Attribute 2 i I* * o ©
Tt x o+ O O
C3(%)
* + x - -
+I+ + + SRl
- B 8 * %
C1(+) C2(*)

Fig. 4. Decision tree example.

operations are allowed. Terminal nodes are composed of popula-
tions in the same class (increased proportion in some types of DT).
The classification operation assigns an individual to a terminal
node (leaf) by satisfying the set of rules oriented to this leaf. The
set of rules forms the DT.

It is clear that the size and uncertainty of the training examples
are the central issue in DTC, and so we aim to make it less complex
while retaining high performance. DT performance is mainly
based on determining its size (Breiman et al., 1984). It has been
proved that the tree size grows with the number of training data
observations (Oates, 1997).

4. The ZuDT approach

This section describes the idea of replacing the post-pruning
phase by attribute selection and dataset reduction. The main
objective is to illustrate that the performance of an unpruned DT
can be improved using these two steps. Wrapper attribute selec-
tion can eliminate irrelevant and redundant attributes, and data
reduction reduces the size complexity problem. We must therefore
determine both the best attribute subset and the subset of training
examples used to build the best unpruned decision tree t*. The key
features of the proposed method are as follows: (i) data prepro-
cessing, (ii) definition of attribute combinations as a level-wise
research space (specialization graph), and (iii) application of an
oriented breadth-first exploration in the research space to find the
best unpruned decision tree t*. Fig. 5 presents a schematic of the
proposed method.

4.1. Data preprocessing

Experimental analyses on DT pruning methods give the follow-
ing split of training and test data: 25 instances of 70% training and
30% test data (Esposito et al., 1997), 9 instances of 60% training and
40% test data (Mingers, 1989), and 10 instances of 25% training and
75% test data (Bradford et al., 1998). Multiple instances were used
to avoid the assumption that “a single random split of data may
give unrepresentative results”. To obtain representative results
in the experimentation stage, and to reduce the size of the target
robust unpruned DT, the dataset was randomly split into a 50%
training set and a 50% test set five times. Each training set was
further split at random into three sub-training sets containing 50%
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Fig. 5. Description of the Z//D7 approach.

v 25%
i~1Training data
« 50% '

> 25%
i Training data i-2Training data
L 25%
i-3 Training data
data
4 50%
i Test data

Fig. 6. Data preprocessing.

of the whole training set. This results in 15 training sets of 25% of
the dataset, as in Bradford et al. (1998), but the test set remains at
50%. Note that for each of the five test sets, there are three sub-
training sets. Fig. 6 illustrates the splitting process, where i varies
from 1 to 5.

The chosen splitting process has been proposed to give a biased
estimation prediction error. The principal justification is that
the chosen process overlaps the test set because of the random
sampling.

4.2. Encoding

We use a wrapper algorithm to select the best couple (Xi),
where X is the attribute subset of the attribute set E and i is a
sub-training set of the training set I. (X,i) constructs the best DT t*,
and the problem must be represented as a research graph. The

{a,b,1}-{a,b,6}{a,b,15}

N

{a,1}{a,6}-—{a,15} {b,1} {b,6} —{b,15}

Fig. 7. Graph research space.

research graph is an ordered set P of the couples set R according to
the binary relation <. The use of the proposed data preprocessing
step will increase the number of subsets traversed by the wrapper
algorithm, i.e. 15 x 2™. The set of couples R is defined as

R={(X,0))IX<E,iel} (1)

Example 2. For a dataset that contains two attributes {a, b}, the
couples set is represented as follows:

R={(a1),....,(a,15),(b, 1), ...,(b,15),(a,b, 1), ...,(a,b,15)}
Fig. 7 illustrates the research graph P(R, =).

Formally, the task of finding t* (the best unpruned DT) can be
described as follows. Consider a database D, and a language LT for
expressing R elements (couples (X,i)) which are used to build DTs.
Let a set I of 15 sub-training sets, and a set S of five testing sets v,
respectively, and, as well as an objective function F. The main
problem is to extract t* such that t* = {t(X,i) e LT|max F(t)}. The
objective function evaluates each constructed tree with i using the
other learning sub-sets Va e S\i and the b-test set. This is calcu-
lated by the function w : I—[1..5], where b = w(i) with respect to
the size of X. The function w : [—-[1..5] is given by

1 ifl<c<3
2 ifd<c<6
wi)=¢3 if7<c<9 )

4 if10<c<12
5 if13<c<15

4.3. Research space exploration

A breadth-first search is adopted to traverse the graph. The
proposed search method has similar characteristics to apriori-
based frequent itemsets mining algorithms (Agrawal et al., 1994).
The search for the best unpruned tree t* starts with the empty
subset (. Exceptionally, the size increases by two as we go from
to couples containing one attribute and one sub-training index i.
The search process then proceeds in a bottom-up manner. At each
iteration, the size of the newly discovered subsets (X,i)eR
increases by one with respect to the incremental relevance
property (IRP), which is a predicate IRP :L;,{—{0,1}. The new
intermediate candidates L, ; are generated by joining two similar
but slightly different (by one attribute) subsets that have already
been discovered, Ci. The new candidates Cy, ; are the L, that
satisfy the proportional relevance property (PRP), which is a
predicate PRP:L,,1—{0,1}. The process is repeated iteratively,
alternating between candidate generation and evaluation phases,
until there are no new candidates in Cy ; (Cx,q =0). For each
explored couple (X,i)eR, a DT is built using only the subset of
examples i that is divided over the attributes subset X, i.e. a
particular permutation of the attributes in X. As illustrated earlier,
the attributes sequence is ordered based on the split criteria (e.g.
Gini index, impurity-based criteria, twoing criterion). At this stage,
the proposed approach features two opportunities: a personalized
DT model definition and a predefined model (e.g. BFTree, J48,
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REPTree, SimpleCart), which is subject to the constraint of avoid-
ing the pruning phase. Every constructed DT is evaluated accord-
ing to formula (3). Algorithm 1 gives the pseudo-code of the
proposed traversal method.

Algorithm 1. | The best unpruned DT search function.

Input: A dataset D, a language LT, predicates IRP and PRP.
Output: The optimal DT t*(X,i).

i Ly ={(e,i)lecE,iel}

: C1 ={(e,i)|(e,i) e Ly, IRP(t(e,i)) and PRP(t(e,i))}

: t* = Best —of (Cy)

i=1

: while C; is not empty do

L,‘+1 = {(Y, l)‘V(X, l) € C,‘, VeeE Y=XU e}

Ciy1 ={(X,D)|(X,1) e Li 1, IRP(t(X, 1)) and PRP(t(X, 1))}
t'=Best—of (Ci 1)

. if Accuracy(t*) < Accuracy(t’) then

10: tf =t

11: end if

12: i=i+1

13: end while

14: return t*

XNU RN

(o]

Until recently, every wrapper algorithm that considered more
than 30 attributes was computationally expensive. There are many
methods of speeding up the traversal process. The principal
concepts are based on minimizing the evaluation subsets (Hall
and Holmes, 2003; Bermejo et al.; Ruiz et al., 2006), or using a
randomized search (Stracuzzi and Utgoff, 2004; Huerta et al.,
2006). To tackle this problem, the incremental relevance and a
proportional of 5% of the best subset's accuracy properties are
adopted. The accuracy of the DT constructed using couple (X,i) is
calculated as follows:

I
Accuracy(t(X,i)) = average( Y Accuracy(t(X, i), a)+Accuracy(t(X, i), w(i))) .
a#i

3)

Fig. 8 shows an instance of IRP and PRP. IRP aims to eliminate
the generated candidates L, by the addition of the gray and
green attributes (i.e. IRP is not satisfied), and PRP aims to keep the
attribute subsets that have an accuracy that is greater than that of
the best of the intermediate candidates (L, ;) minus 5% (e.g. on
the right of Fig. 8, the black candidate is the best, white candidates
are eliminated, and only the gray ones are kept).

5. Validation of 7./DT

The proposed method is implemented and tested on 10
standard machine learning datasets, which were extracted from

N-2

level k+1

Fig. 8. IRP, PRP examples. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)

the UCI collection (Blake and Merz, 1998). The code is implemen-
ted in Java using the WEKA framework (Hall et al., 2009) and
GUAVA Google library (Bourrillion et al., 2010). Experiments were
conducted and compared with the results from the original WEKA
pruned DTs, i.e. DTP (Decision Tree construction technique with
use of Pruning phase), an “attribute selection” algorithm imple-
mentation that behaves like a wrapper algorithm, i.e. IUDTAS
(Improved Unpruned Decision Tree construction using only
Attribute Selection), and a second algorithm that considers only
the sampling step, i.e. IUDTSD (Improved Unpruned Decision Tree
construction using only Sampling Data).

The datasets are described in Table 1. The “% Base error”
column refers to the percentage error obtained if the most
frequent class is always predicted.

In addition, the selected datasets represent various applica-
tions. Three DTs, namely ]J48, SimpleCart, and REPTree, were
chosen to apply different pruning methods within their standard
WEKA implementation. The main DT characteristics considered in
the experiments are reported in Table 2.

The experiments are based on the DTs reported in Table 2,
implemented in their standard settings but without the pruning
phase (unpruned DTs).

Tables 3, 4 and 5 list the classification accuracy for J48, REPTree,
and SimpleCart, respectively, when the Z/D7T algorithm is applied
to the 10 experimental datasets. The tables show that the number
of attributes used to construct the DT is less than the number of
data attributes, and only about one-sixth are used in the case
of large attribute sets. The accuracy results show that the DTs
outperform the %-based accuracy when only the most frequent
class is continually predicted.

Table 6 shows WEKA's DTs built using the pruning phase (DTP).
The design of these trees is mostly based on the construction (growing
and pruning) phase, where 50% of the examples (instances) are used
as the training set.

As in the proposed approach, each dataset was randomly split
into training and test sets five times (50% split). The results
reported in Table 6 represent the mean prediction accuracy over
the five i-test datasets, which gives a comparison of accuracy and
size between the proposed approach and the standard implemen-
tation DTP, i.e. using the pruning phase.

Table 6 shows that results differ from one model to another.
Generally, the ]J48 trees are larger than the REPTree and SimpleCart
DTs. This phenomenon is due to the pruning technique applied. In
contrast to the Reduced-error pruning (REPTree) and Error Complex-
ity Pruning (SimpleCart) techniques, the EBP technique employed
by J48 (and discussed in Section 2) grafts one of the sub-trees of
a sub-tree X that was selected to be pruned. Furthermore, the
accuracy of the J48 DTs is the best for six datasets. Clearly, these
results provide a picture of the over-pruning and under-pruning
encountered in some databases. Over-pruning can be observed in
the case of the Zoo and Breast-cancer datasets using REPTree and

Table 1
Main characteristics of the databases used for the experiments.

Dataset No. classes  No. attributes  No. instances  %Base error
Zoo 7 17 101 59.40
Glass 7 9 214 35.52
Sonar 2 60 208 46.64
Ecoli 8 7 336 57.44
Diabetes 2 8 768 34.90
Hepatitis 2 19 155 20.65
Tic-tac-toe 2 9 958 34.65
Breast-cancer 2 9 286 29.72
Primary-tumor 21 17 339 75.22
Waveform-5000 3 40 5000 66.16
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Table 2
Main characteristics of the DTs used for the experiments.

DTs Split criteria Pruning method Principal standard options
J48 (C 4.5) Gain ratio Error-based The confidence pruning is 0.25
The minimum number of instances at leaves is 2
One fold is used for pruning
Consider the sub-tree raising operation when pruning
REPTree Gain ratio Reduced-error The minimum number of instances at leaves is 2
One fold is used for pruning
SimpleCart Gini index Error-complexity Binary split for nominal attributes

The minimum number of instances at leaves is 2
One fold is used for pruning
Five fold internal cross-validation

Table 3 Table 6
TUDT approach applied to J48 results. DTP results.
Data # Attributes Size Accuracy Dataset J48 REPT SCart
Zoo 3 11 90.50 Size  Accuracy  Size  Accuracy Size  Accuracy
Glass 5 29 70.56
Sonar 7 17 91.10 Z0o 13 9520 1 43.60 1 43.60
Ecoli 5 15 85.26 Glass 35 80.56 9 72.33 9 69.90
Diabetes 5 25 80.92 Sonar 19  89.42 3 77.88 9 80.76
Hepatitis 6 15 84.09 Ecoli 25 8226 13 82.26 15 82.02
Tic-tac-toe 8 73 84.70 Diabetes 31 81.40 39 80.57 5 77.55
Breast-cancer 5 51 79.02 Hepatitis 9 87.01 7 85.71 17 90.12
Primary-tumor 10 42 53.40 Tic-tac-toe 97 84.88 64 79.16 45 92.94
Waveform-5000 7 179 83.80 Breast-cancer 20 71.04 1 72.16 1 72.16
Primary-tumor 46 52.30 20 44.85 21 48.04
Waveform-5000 341  85.36 87 80.28 49 79.36
Table 4
TUDT approach applied to REPTree results.
- - Table 7
Data # Attributes Size Accuracy IUDTSD results.
Zoo 5 13 95.00 Dataset 48 REPT SCart
Glass 5 27 76.40
Sonar 6 17 91.58 Size  Accuracy  Size  Accuracy Size  Accuracy
Ecoli 5 15 83.33
Diabetes 6 57 77.60 Zoo 1 9400 1 4500 7 5550
Hepatitis 3 9 79.22 Glass 17 7429 25 74.06 17 7172
Tic-tac-toe 9 76 81.83 Sonar 11 8509 9 8461 9 8389
Breast-cancer 5 68 78.49 Ecoli 17 8411 9 8422 29 8452
Primary-tumor 10 40 56.30 Diabetes 27 8170 45 81.90 47 8229
Waveform-5000 6 295 83.08 Hepatitis 11 8961 9 8766 13 8861
Tic-tac-toe 73 84.70 91 8397 49 9295
Breast-cancer 27 77.62 61 73.07 7 77.27
Table 5 Primary-tumor 49 50.88 50 50.14 45 54.28
TUDT approach applied to SimpleCart results. Waveform-5000 197 83.98 191 8447 155 8248
Dataset # Attributes Size Accuracy L . . .
sets of examples i—j train (ie[1...5] and je[1...3]). The results
Zoo 5 13 95.00 reported in Table 7 give the mean prediction accuracy over the five
glass g 157’ ;i-gg i-test datasets. We can observe that, although the sizes of the trees
onar R . .
Ecoli 3 19 85,56 are greater than the pruned DTs, their accuracy is much better. The
Diabetes 5 61 78.71 accuracy of algorithms that only apply attribute selection without
Hepatitis 6 17 89.93 data sampling is reported in Tables 8-10. These results were
Tic-tac-toe 9 49 93.05 obtained by implementing a wrapper algorithm that traverses
l‘z;f;?r;at?f;;r ]g i_}; ;ggf the research graph space, as in the proposed method, using a
Waveform-5000 6 231 8219 random 50% subset (instances) as learning data. The best DTs

SimpleCart. An under-pruning case is illustrated in the case of the
Ecoli dataset, where the accuracy of the J48 and REPTree models is
the same when the size of J48 is much larger. Consequently, we
can conclude that J48 is an under-pruned DT.

To demonstrate the effectiveness of the proposed method
against an algorithm that only applies a sampling process without
attribute selection, we generated DTs using the 15 sub-learning

validated by the same preprocessing output used in the proposed
approach are selected (the five i-test datasets).

Tables 11-13 compare the results from Zi/D7 based on a
combination of sampling and attribute selection with the original
WEKA pruned DT construction (Table 11), an approach that only
applies data sampling, i.e. IUDTSD (Table 12), and an approach that
only applies attribute selection i.e. IUDTAS (Table 13). The “+”
symbol signifies that the proposed approach produces better
results than the comparative method. Otherwise, we use the
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Table 8
Application of IUDTAS to J48 results.

Table 12
Comparison of IUDTSD and Zi/DT results.

Dataset # Attributes Size Accuracy Dataset ]48 REPT SCart
Zoo 5 1 93.60 Size  Accuracy  Size  Accuracy  Size  Accuracy
Glass 2 27 79.81
Sonar 3 13 87.30 Zoo = - + + - +
Ecoli 3 17 80.71 Glass - - - + - =
Diabetes 3 11 78.95 Sonar - + - + - +
Hepatitis 3 9 85.45 Ecoli + + - = +
Tic-tac-toe 5 124 84.63 Diabetes + = - - - -
Breast-cancer 2 12 75.94 Hepatitis - - = - - +
Primary-tumor 8 38 53.72 Tic-tac-toe = = + - = =
Waveform-5000 6 189 81.21 Breast-cancer - + - + +
Primary-tumor + + + + -
Waveform-5000  + = - + _ —
Table 9
Application of IUDTAS to REPTree results.
Table 13
Dataset # Attributes Size Accuracy Comparison of IUDTAS and ZUD7T results.
Zoo 4 1 91.20 Dataset J48 REPT SCart
Glass 2 45 80.93
Sonar 3 27 87.11 Size  Accuracy  Size  Accuracy  Size  Accuracy
Ecoli 3 53 84.52
Diabetes 3 89 84.79 Zoo - = - + - +
Hepatitis 3 27 89.09 Glass - - + - + -
Tic-tac-toe 4 94 78.91 Sonar - + + + + +
Breast-cancer 2 21 75.94 Ecoli + + - + +
Primary-tumor 8 54 53.60 Diabetes - + + - + -
Waveform-5000 8 505 86.01 Hepatitis - - + - + =
Tic-tac-toe = + + + +
Breast-cancer - + - + - +
Primary-tumor - - + + + -
Tablg w, . Waveform-5000  + + + - + -
Application of IUDTAS to SimpleCart results.
Dataset # Attributes Size Accurac . . P
v The comparison in Table 11 clearly indicates that the proposed
Zoo 5 1 94.40 approach is generally more accurate than DTP (in the case of
Glass 2 47 82.80 REPTree and SimpleCart). In the case of J48, each approach performs
;‘”‘ﬁr ‘3‘ i; 21';2 better on four datasets. The pruned standard DTs are smaller in
coll . . .
Diabetes 5 145 9260 REPTree and SimpleCart, but J48 gives the smal!est DTs for ZUDT.
Hepatitis 3 27 89.09 Table 12 compares the results of Zi/D7 with those from the
Tic-tac-toe 6 105 90.43 application of data sampling IUDTSD. It is clear that the accuracy of
Breast-cancer 2 17 75.94 TUDT is much better than that of IUDTSD, but in contrast to the
Primary-tumor 7 61 55.14 accuracy results, the size results show that the sampling approach has
Waveform-5000 8 233 86.41 ..
some advantages. In general, the table indicates that the accuracy
results of ZUDT are better when using the REPTree and SimpleCart
models, but the DTs constructed are larger than the sampling
Table 11 approach results.. In the case o.f J48, we have eq.uallty between Fhe
Comparison of DTP and ZUDT results. accuracy and size results. This shows that using data sampling
certainly provides a less complex DT, albeit at the cost of robustness.
Dataset J48 REPT SCart Table 13 compares the results of Z/D7T with IUDTAS, in which
Size Accuracy Size Accuracy  Size  Accuracy only attribute selection is applied. Clearly, the accuracy and size
results from the proposed approach are better. In general, the table
Zoo + + + + indicates that Z/DT gives better accuracy and size results with the
Glass + - - + - + REPTree and SimpleCart models, except in the case of J48 DT sizes,
sonar + + - + - + which are larger than those of the attribute selection approach.
Ecoli + + - + - + . . . . .
Diabetes + _ _ R _ i These results show that using a combination of attribute selection
Hepatitis - - - - - — and data sampling provides a robust and less complex DT.
Tic-tac-toe + = - + _ —
Breast-cancer - + + - +
Primary-tumor + + - + - + . - . PRI . .
Waveform-5000  + A ~ N ~ N 6. Application to fault diagnosis in a rotating machine

symbol “~”. It is important to note that the over-pruned DTs of size
one (i.e. Zoo and Breast-cancer) are always considered to be worse,
and the accuracy is considered to be equal if the difference
between the Z«D7 and the comparative approach (i.e. DTP,
IUDTSD, or IUDTAS) is in the interval [—1, +1]%. Otherwise, the
tree with the greatest accuracy is considered to be better.

We now consider the application of the proposed method
to fault diagnosis in rotating machines. Some of the main faults
affecting the proper functioning of such machines were produced
experimentally on a test rig. The condition-monitoring task can be
converted to a classification task, where each condition (good and
defective) is considered as a class. The target is to extract informa-
tion from vibration sensors to indicate the machine's current
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condition (class). The approaches investigated in this paper are
then used to seek the non-complex construction of effective
decision rules, following the schematic shown in Fig. 9.

6.1. Experimental study

The test rig shown in Fig. 10 is composed of three shafts, two
gears (one with 60 teeth and the other with 48 teeth), six bearing
housings, a coupling, and a toothed belt. The system is driven by a
DC variable-speed electric motor with a rotational speed ranging
from 0 to 1500 rpm.

Vibration signatures were used to monitor the condition of the
test rig. The vibration signals were acquired using an acceler-
ometer fixed on the bearing housing, connected to a data

)
| Rotating
machine
Unknown 1\ ) Known
condition conditions
)
Vibration
acquisition
——— L n .
Signal phase
processing Generalization
——y— phase
p—
Indicators
extraction
I’ : : -1UDpT \
| Decision tree '?J];’TSD 1
;| construction CIUDTAS :

g \ / N/ "\ / Nih Class:
IstClass: \ / 2ndClass: / \ / tFaul?SS'
Healthy > ( Faulty ) conditi}én
condition conditionl N - °°

Fig. 10. Test rig (URASM-CSC Laboratory).

acquisition system equipped with OROS software. Vibration sig-
natures were recorded under three different rotational speeds
(300, 900, and 1500 rpm) under a normal operating condition
and with three different faults: mass imbalance, gear fault, and
faulty belt.

6.2. Signal processing

The wavelet transform has been widely studied over the past
two decades, and its use has seen a significant growth and interest
in vibration analysis. The formulation of its discrete variant (DWT),
which requires less computation time than the continuous form, is
shown in the following equation:

) 1 [t — 2k
DWI(, k):ﬁ [ s(Ey* (t > ) dt @)

Mallat (1989) introduced an effective use of the discrete wavelet
transform by applying a succession of filters on several levels. The
resulting signals are called approximation coefficients and detail
coefficients. To overcome the down-sampling encountered throughout
the decomposition, the coefficients are subjected to reconstruction
filters to create new signals called approximations (A) and details (D).
Fig. 11 illustrates the principle of DWT decomposition. In the present
study, Daubechies wavelets with two levels of decomposition were
used to extract the approximations and details of the original signals.
The frequency space was transformed by applying a Fast Fourier
Transform (FFT) to each original signal, as well as to each of the
approximations, details, and coefficients, as shown in Fig. 12 for the
example of mass imbalance under a rotational speed of 900 rpm.

6.3. Extraction of Indicators

Thirty-five original signals were recorded under four different
operating conditions (classes) and three different rotational speeds,
giving a total of 420 original signals. The crest factor, root mean square,
skewness, and variance were extracted from the temporal forms of
these signals.

From the frequency spectra, we derived the maximum ampli-
tude, its frequency, the frequency of the second highest amplitude,
the interval between the two highest amplitude frequencies, the

Original Signal

1st Approximation 1st Detail

2nd Approximation 2nd Detail

3rd Approximation 3rd Detail

4th Approximation 4th Detail

Fig. 11. DWT decomposition.
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Fig. 12. Original signal, approximations, and detail spectra extracted from the test rig under the condition of mass imbalance.
Table 14 Table 15
Fault diagnosis results for rotating machine application. Indicators used in the construction of the best tree.
DTs IUDT DTP IUDTSD IUDTAS AOT Indicator Originating signal
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 1 Skewness Original signal
2 Root mean square of the spectra Original signal
J48 89.52 21  91.66 33 9238 19  96.66 29 3 Signal root mean square First approximation signal
REPTree 98.41 21 8531 27 9214 19 9047 29 4 Crest factor First detail signal
SimpleCart 95.37 23 9230 35 9047 19 96.66 25 5 Mean interval between the frequencies Original signal

mean interval between the four highest amplitude frequencies,
and the root mean square. These 11 indicators were also extracted
from each of the four signals from the DWT decomposition
application, giving a total of 55 indicators from the original signal.

6.4. Results and discussion

The experimental results using three DT algorithms are given in
Table 14. These results indicate a global superiority in terms of
classification accuracy. Slightly less complex trees are constructed
with the IUDTSD approach, but these exhibit much lower perfor-
mance. IUDTSD can also be seen to give an over-generalization, as
explored in Section 3.2.

The best results were obtained using REPTree, and the decision
rules produced by the experimental algorithms are given in the
appendix. In terms of the Zi/DT output, REPTree gave the best
classification accuracy. Table 15 lists the selected indicators used
for its construction in appearance order in the tree (AOT), showing
the signal from which each indicator originated.

From Table 15, we can see that only the indicators extracted
from the original signal and the first-level decomposition were
used to construct the best tree, where four decomposition levels
were done. By exclusively extracting the retained indicators in the

of the four maximum amplitudes

DTC, a significant saving in both storage memory and computation
time can be achieved, particularly in diagnostic and maintenance
tasks that require the archiving of data over long periods.

7. Conclusion

The popularity of DTs is strongly related to their simplicity, ease
of understanding, and close resemblance to human reasoning.
However, each DT model has its own specific advantages and
limitations, making the choice of a particular DT difficult to justify.
The model choice depends strongly on the performance of the
pruning approach, which forces users to select a model according
to their requirements. This implies that DT users must study all
growing and pruning techniques so as to choose the most appro-
priate model, which is a difficult task.

When constructing DTs, the pruning phase is useful for redu-
cing the model's complexity and size, but often imparts a penalty
on the accuracy, particularly for small datasets. In this paper, we
proposed an improved algorithm without the pruning phase that
combines the attribute selection and data sampling processes.



N.E.I Karabadji et al. / Engineering Applications of Artificial Intelligence 35 (2014) 71-83 81

Experimental results on 10 benchmark datasets showed that the
proposed approach improves the accuracy of DTs and effectively
reduces their size, avoiding the problems of over- or under-pruning.

Finally, the Zi/DT approach was applied to the practical
application of fault diagnosis in rotating equipment. This demon-
strated its effectiveness in terms of classification accuracy and tree
complexity. Moreover, extracting only indicators selected by the
proposed approach allows a significant gain in storage memory
and computation time.

Appendix A

REPTree DTP

sCF-Sigs <0.13

sCF-A2s <0.07

| sfMXPx-Sigs < 53.5 : 2.000000 (42/4) [25/7]

| sfMXPx-Sigs > =53.5 : 1.000000 (7/0) [3/0]
sCF-A2s > =0.07

sMeanFFT-Sigs <0

| sfMXPx-Sigs <52.5

| | sfMXPx-Sigs <10.5 : 1.000000 (18/0) [6/0]

| | sfMXPx-Sigs > =10.5

| | | sfMXPx-Sigs <50.5:2.000000 (30/2) [12/0]
| | | sfMXPx-Sigs > =50.5:1.000000 (18/2) [7/2]
| sfMXPx- Sigs > =52.5

| | sCF-A2s < 0.08 : 1.000000 (13/0) [6/2]

| | sCF-A2s > =0.08

| | | sRMS-Sigs < 3.03 : 1.000000 (2/0) [2/0]

| | | SRMS-Sigs > =3.03:7.000000(25/0) [16/3]
sMeanFFT-Sigs > =0

| sfMXPx-Als < 48 : 7.000000 (36/0) [17/0]

| sfMXPx-Als > =48

| | sfMXPx-Sigs < 53 : 1.000000 (7/0) [4/0]

| | | sfMXPx-Sigs > =53:7.000000(7/0) [3/0]
sCF-Sigs > =0.13

| sRMS-Sigs < 4.98

| | sRMS-Sigs < 2.81 :2.000000 (2/0) [1/0]

| | sRMS-Sigs > =2.81:1.000000 (3/2) [3/1]

| sRMS-Sigs > =4.98 : 3.000000 (70/0) [35/0]

REPTree IUDTSD

sCF-Sigs < 0.13

sfMXPx-Sigs < 51

| sRMS-Sigs < 7

| | sRMS-Sigs < 4.57 : 2.000000 (7/0) [0/0]

| | sRMS-Sigs > =4.57 : 1.000000 (7/0) [0/0]

| sRMS-Sigs > =7

| | sCF-A2s < 0.07 : 2.000000 (15/0) [0/0]

| | sCF-A2s > =0.07

| | | sMeanFFT- Sigs < 0 : 2.000000 (6/0) [0/0]
| | | sMeanFFT-Sigs > =0:7.000000 (10/0) [0/0]
sfMXPx-Sigs > =51

| sfMXPx-A2s < 53.5: 1.000000 (10/1) [0/0]

| sfMXPx-A2s > =535

| | sMeanFFT-Sigs < 0 : 1.000000 (6/0) [0/0]

| | sMeanFFT-Sigs > =0 :7.000000 (16/0) [0/0]
sCF-Sigs > =0.13

|

|

sRMS-Sigs < 5.11 : 2.000000 (2/1) [0/0]
sRMS-Sigs > =5.11 : 3.000000 (26/0) [0/0]

We conclude that the proposed method is feasible, especially in
the case of small datasets, and is an effective approach when
exhaustive knowledge on data characteristics is missing.
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REPTree IUDTAS

sMeanFFT-A2s < 0

sRMS-D2s < 1.28 : 2.000000 (15/0) [0/0]
sRMS-D2s > =1.28

SRMS-D2s < 3.94

| sMeanFFT-A2s < O
| | sRMS-D2s < 141

| | | sMeanFFT-A2s < O

| | | | sMeanFFT-A2s < 0 : 2.000000 (5/1) [0/0]

| | | | sMeanFFT-A2s > =0 :1.000000 (4/0) [0/0]

| | | sMeanFFT-A2s > =0:7.000000 (8/0) [0/0]

| | sRMS-D2s > =141

| | | sMeanFFT-A2s < 0 : 1.000000 (21/0) [0/0]

| | | sMeanFFT-A2s > =0

[

[

| sMeanFFT-A2s > =0:7.000000 (24/1) [0/0]
SRMS-D2s > =3.94

| sMean-Freqdsit-Als < 10.17 : 1.000000 (19/0) [0/0]

| | sMean-Freqdsit-Als > =10.17 : 2.000000 (14/1) [0/0]
sMeanFFT-A2s > =0

sMeanFFT-A2s < 0.01

| sCF-D1s < 0.14

| | sRMS-D2s < 15.12 : 7000000 (17/0) [0/0]

| | sRMS-D2s > =15.12:3.000000 (2/0) [0/0]

| sCF-D1s > =0.14
\
\

| sCE-D1s < 0.17 : 3.000000 (10/1) [0/0]
| sCE-D1s > =0.17 : 3.000000 (39/0) [0/0]

| sMeanFFT-A2s > =0.01 : 2.000000 (22/0) [0/0]

REPTree ZUDT

sSkew-Sigs < 0.23
sMeanFFT-Sigs < 0.01
sMeanFFT-Sigs < 0
sRMS-Als < 2.18 : 2.000000 (9/0) [0/0]
SRMS-Als > =2.18
SRMS-Als < 8.46
sMeanFFT-Sigs < 0O
| sMeanFFT- Sigs < 0 : 1.000000 (9/0) [0/0]
| sMeanFFT-Sigs > =0

sMeanFFT-Sigs > =0 : 7.000000 (10/0) [0/0]

|
|
|
|
|
|
|
| SRMS-Als > =8.46
|

sMeanFFT-Sigs > =0

| sCF-D1s < 0.15: 7.000000 (11/0) [0/0]

| sCF-D1s > =0.15:3.000000 (5/1) [0/0]
sMeanFFT-Sigs > =0.01 : 2.000000 (13/0) [0/0]
sSkew-Sigs > =0.23 : 3.000000 (19/0) [0/0]
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