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Abstract—Acquiring knowledge from continuous and hetero-
geneous data streams is a prerequisite for IoT applications. Se-
mantic technologies provide comprehensive tools and applicable
methods for representing, integrating, and acquiring knowledge.
However, resource-constraints, dynamics, mobility, scalability,
and real-time requirements introduce challenges for applying
these methods in IoT environments. We study how to utilize
semantic IoT data for reasoning of actionable knowledge by
applying state-of-the-art semantic technologies. For performing
these studies, we have developed a semantic reasoning system
operating in a realistic IoT environment. We evaluate the
scalability of different reasoning approaches, including a single
reasoner, distributed reasoners, mobile reasoners, and a hybrid of
them. We evaluate latencies of reasoning introduced by different
semantic data formats. We verify the capabilities of promising
semantic technologies for IoT applications through comparing
the scalability and real-time response of different reasoning
approaches with various semantic data formats. Moreover, we
evaluate different data aggregation strategies for integrating
distributed IoT data for reasoning processes.

Index Terms—Internet of Things, Semantic technologies,
Knowledge representations, Reasoning, RDF

I. INTRODUCTION

ADVANCES in ICT are bringing into reality the vision
of Internet of Things (IoT) where a large number of

uniquely identifiable, interconnected objects and things gather
information from diverse physical environments and deliver
the information to a variety of intelligent applications and
services. These sensing objects and things form the IoT
that can improve energy and cost efficiency and automation
in many different industry fields such as transportation and
logistics, health care and manufacturing, and facilitate our
everyday lives as well. IoT applications rely on real-time
context data and allow sending information for driving the
behaviors of users in intelligent environments.

Current IoT solutions are mostly tailored for vertical ap-
plications and systems, utilizing knowledge only from some
particular domain. To realize the full potential of IoT, these
disparate silos of expert systems need to be replaced with
horizontal collaborative systems, and harnessed by knowledge
acquisition and sharing capabilities. [1]
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Large integrated IoT systems with interoperable nodes are
challenging to be built due to the heterogeneity of protocols,
data formats, data schemes, and service interfaces. Real-
time and scalability requirements, resource-constraints, and
device mobility introduce additional challenges in building
such systems. To minimize the need for human intervention,
these networks and devices should possess auto-connecting,
self-healing, and self-organizing capabilities. Device coupling,
message routing and integration of information are important
issues in open IoT environments, where networks can be
unreliable, and devices may be unavailable, connections are
typically non-persistent and decoupled IoT nodes are common.
These challenges need to be tackled before developing a
general IoT infrastructure that enables horizontal IoT systems
spanning over various application domains [1].

In this article, we focus on knowledge sharing and integra-
tion, that is, on providing and acquiring knowledge in IoT
environments. Smart IoT applications and systems demand
machine-interpretable data for decision making, and to adapt
to different situations and contexts. Shared understanding (i.e.
ontologies) is required as well. Semantic Web technologies
provide these features and have been noted as essential
enablers for IoT as they facilitate reasoning of actionable
knowledge from multiple heterogeneous information sources,
and disparate knowledge domains, and foster interoperability
amongst a variety of applications and systems [2].

Knowledge sharing and integration calls for common rep-
resentations and knowledge acquisition, in turn, for reason-
ing actionable knowledge from IoT data. In this article, we
study Semantic Web technologies that can facilitate context-
awareness, interoperability, and reasoning on IoT. We carry
out experiments by evaluating the whole process of delivering
real IoT data, aggregating this data, and reasoning from it
with different system configurations, based on a real-world
scenario. We also study the effect of data aggregation strategies
on system performance.

These reasoning and data aggregation experiments and their
evaluations are our main contributions. Specifically, we do
not target developing a general architecture or a platform for
IoT systems, but rather evaluate different data provisioning
approaches and reasoning in a realistic IoT environment. We
study the scalability, latency, and resource usage of reasoning
with different system configurations and with semantic data
formats that can be supported by IoT devices. We have
designed and implemented an IoT system with centralized,
distributed, mobile, and hybrid reasoning configurations for
carrying out these studies.

This article is an extended version of [3] with a more de-
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tailed literature study, a novel mobile reasoner implementation,
and a deeper analysis. The reminder of this article is organized
as follows: Section II presents background and related work.
Section III describes the scenario and the system architectures
and set-ups. Section IV presents the evaluation results. Section
V contains discussion, and finally, we conclude our work with
suggestions for future work in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we discuss semantic technologies and their
applicability for IoT. Moreover, we study data delivery and
management approaches on IoT, and present a small survey
of IoT middleware and platforms.

A. Semantic technologies

Semantic Web extends the Web with machine interpretable
meaning, thus establishing data integration and sharing, and
interoperability amongst interconnected machines. The Se-
mantic Web concept is based on the Resource Description
Framework (RDF)1 which enables linking and merging of
relations between entities from multiple resources in the Web
via Internationalized Resource Identifiers (IRI). RDF Schema
(RDFS)2 and ontologies provide vocabulary for modeling and
describing RDF data. Semantic technologies can turn things
to smart objects that are capable to interact intelligently with
each other on IoT. /ulApplying such semantic technologies to
IoT systems can automate information retrieval and decision
making, and thus facilitate development of advanced applica-
tions for various fields. Utilization of semantic technologies in
IoT has been surveyed in [4], where Barnaghi et al. pointed
out semantic technologies to be important for facilitating data
integration and interoperability in IoT applications. However,
a few IoT applications utilize semantic technologies currently.

1) Data representation: Uniform Semantic Web data rep-
resentations, such as RDF, which can be unambiguously inter-
preted in the Web, are interesting candidates for data exchange
formats on IoT. However, resource-constraints and latency
requirements introduce challenges for applying these technolo-
gies. RDF data can be represented in various data formats
for publishing and exchanging semantic data. RDF/XML3,
Turtle4, and N-Triples5 are alternative W3C standard rep-
resentations for RDF. N36 is another expressive format of
RDF, which can also express rules with N3 Logic7 and
RDF properties. All of those are based on the triple struc-
ture. RDF/XML, N-Triples, and Turtle have same expressive
power but N3 differs from them. These representations are
designed for Web applications. However, resource usage is
critical for IoT, but was not emphasized when these formats
were designed. JSON for Linked Data (JSON-LD)8, Entity

1http://www.w3.org/RDF/
2http://www.w3.org/TR/rdf-schema/
3http://www.w3.org/TR/REC-rdf-syntax
4http://www.w3.org/TR/turtle
5http://www.w3.org/TR/n-triples/
6http://www.w3.org/TeamSubmission/n3/
7http://www.w3.org/DesignIssues/N3Logic
8http://www.w3.org/TR/json-ld/

Notation (EN) [5] and Header-Dictionary-Triples (HDT) are
more compact, lightweight representations for RDF. Su et al.
[6] studied expressivity and resource consumption of different
data formats that are suitable to enable semantics on IoT. HDT
is designed for compressed RDF data storages rather than
lightweight data exchange for IoT. Sensor Markup Language9

is a data format for representing sensor measurements and
device parameters, but is not based on RDF, although it has
properties to be transformed to RDF [7].

2) Ontologies: Ontologies are for organizing information
and representing knowledge formally. They enable sharing,
merging and reusing of represented knowledge. W3C Se-
mantic Web standard Web Ontology Language (OWL)10 is a
knowledge representation language for sharing and providing
knowledge in machine interpretable form. It is a language
for machines to process semantic data and to discover and
integrate knowledge from that data. Moreover, OWL enables
merging and reasoning of knowledge from RDF based data.
OWL ontologies are primarily provided and exchanged as
RDF documents. Open Geospatial Consortium (OGC) Sensor
Web Enablement (SWE) Domain Working Group11 and Se-
mantic Sensor Networks (SSN) Incubator Group12 have been
facilitating interoperability of sensor networks by standardiza-
tion and providing high level ontologies for data integration.

3) Reasoning: Reasoning is about making conclusions and
deriving of new facts which do not exist in the knowledge base.
Reasoning with rules is typically based on first-order predicate
logic or Description Logic (DL) to make conclusions from a
sequence of statements (premises) derived by predefined rules
[8]. A reasoning engine (i.e. a reasoner) is a software tool that
realizes reasoning with rules. Current reasoners can handle a
comprehensive set of RDFS and OWL vocabularies and most
RDF data formats. A reasoner concludes facts from semantic
data and ontologies based on predefined rules. Common rea-
soning and inference engines such as Jena Inference subsys-
tem13, Pellet14, RacerPro15, HermiT16, RIF4J17, and Fact++18

are based on different rule languages and have support for
ontologies and OWL. Some of the reasoners support SWRL19

and RIF20 rule languages, whereas others have implemented
their own human readable rule syntaxes. There exist also
Sensor-based Linked Open Rules [9] for sharing and reusing
rules in IoT applications which is based on Jena rules syntax.
Linked Edit Rules21 is a methodology for linking and reusing
rules on the Web which is expressed as SPARQL queries.
Moreover, BASIL [10] provides a cloud platform for editing
and reusing SPARQL queries online.

9https://datatracker.ietf.org/doc/draft-jennings-core-senml/
10http://www.w3.org/TR/owl2-primer/
11http://www.opengeospatial.org/projects/groups/sensorwebdwg
12http://www.w3.org/2005/Incubator/ssn/wiki/SSN
13https://jena.apache.org/documentation/inference/
14https://www.w3.org/2001/sw/wiki/Pellet
15http://franz.com/agraph/racer/
16http://www.hermit-reasoner.com/
17http://rif4j.sourceforge.net/
18http://owl.man.ac.uk/factplusplus/
19http://www.w3.org/Submission/SWRL/
20http://www.w3.org/TR/rif-in-rdf/
21http://www.linkededitrules.org/
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4) Distributed reasoning: IoT introduces additional chal-
lenges for reasoning, for example, reasoning can occur at
any stage of data delivery process, from sensor node to
backend knowledge repositories. Distributing reasoning tasks
can physically improve reasoning latency with large data sets.
Shi et al. [11] note that distributing of tasks can increase the
performance of the knowledge system by improving problem
solving capacity and efficiency, expanding the scope of the
application (domain) and facilitating implementation by split-
ting tasks into sub tasks. The authors point out that distributed
intelligence has advantages when: i) the data, knowledge and
control are distributed not only logically, but also physically,
ii) the cost of communication is much less than the problem
solution cost, and iii) system components collaborate with each
other to solve the problem.

Bikakis et al. pointed out in [12] the computational, commu-
nication, scalability and availability advantages of distributed
reasoning in dynamic and heterogeneous environments. That
is, distributed reasoning is justified, when i) data is highly
dynamic and has ambiguous context, ii) the amount of data
is large compared to the computational capabilities of the
IoT nodes, and iii) collective intelligence can be achieved by
sharing data and reasoning tasks.

Distributed reasoning has been utilized in multi-agent sys-
tems (MAS), where distributed software agents serve clients
by making decisions and operating collaboratively to reach
some common goals [13]. Rule-based multi-agent reason-
ing has been surveyed in the field of Ambient Intelligence
(AmI) [14]. Typically, agent systems are based on Complex
Event Processing mechanisms with persistent connected data
streams, whereas interconnected IoT environments consist
more likely of loosely coupled IoT nodes and services, where,
flexibility, integration and interoperability are preferred. More-
over, most multi-agent systems have been developed for spe-
cific environments, support only relatively narrow knowledge
domains and are mostly closed systems using miscellaneous
protocols, standards and interfaces.

Oren et al. [15] propose a solution for distributed reasoning
for Semantic Web by utilizing their own divide-conquer-swap
strategy to speed up distributed reasoning. Urbani et al. [16]
propose distributed reasoning with a MapReduce model for
greater scalability. Cheptsov et al. propose a general platform
for distributed Web scale reasoning [17] experimented in [18]
with a standalone setup on traffic prediction workflow. How-
ever, they focus on reasoning with static Web data from the
data centric perspective. Adjiman et al. [19] studied distributed
reasoning with peer-to-peer computing from the theoretical
view of propositional logic, and proposed a practical algorithm
to find a consequence for the clauses with backward chained
reasoning. Serafini et al. [20] propose also an architecture
for distributed reasoning called DRAGO. DRAGO is based
on description logics, enabling reasoning from multiple OWL
ontologies. However, also these studies focus on reasoning
with static Web data, whereas we utilize dynamic real-time
data source.

5) Stream reasoning: Stream reasoning is technique for
querying and reasoning over continuous distributed data

streams typically performed with SPARQL22 based query
languages. Stream reasoning techniques offer a time based data
model where data items can be annotated with time stamps,
either occurrence time or validity time period. Stream rea-
soners give advantages on query processing performance and
data storage overhead, which fulfill requirements of reasoning
continuous IoT data streams.

With a streaming query engine, simultaneous queries can
be passed to a reasoner as an input thus new knowledge can
be inferred, graphs can be updated, and filtering of irrelevant
knowledge can be done in real-time. These features facilitate
distributed reasoning from continuous sensor data streams on
IoT. Stream reasoning languages and systems, such as C-
SPARQL, EP-SPARQL, CQELS, Streaming SPARQL, Spark-
wave, StarQL, and TrOWL have been compared in IoT use
cases [21]. However, stream reasoning is a new research topic
and most current engines have limited support for resource-
constrained IoT nodes, various data models, and compre-
hensive OWL vocabularies. Le-Phuoc et al. [22] propose a
framework for querying linked data streams. Tallevi-Diotallevi
et al. [23] made experiments on stream reasoning in urban
environment with real sensor data. In their experiment, rule-
based hybrid stream reasoning outperformed pure SPARQL
based stream reasoning.

6) Applications: Most of the current IoT applications and
services utilizing semantic technologies are in their early
stages. In [24], semantic technologies are used in a home
automation prototype system for monitoring and controlling
heating and air conditioning. Qunzhi et al. [25] propose seman-
tic modeling for facilitating demand response optimizations in
smart grids with automated real-time load prediction and cur-
tailment. A smart farming system is proposed in [26], where
Global Sensor Networks middleware and SSN ontologies are
utilized to automate monitoring and controlling of farming
activities. Hristoskova et al. [27] propose a ontology-based
framework for providing personalized medication for patients,
and an automated emergency alerting and advanced decisions
support system for physicians. Preist et al. [28], demonstrate
a micro architecture for an automated logistics supply chain
based on Semantic Web service descriptions.

B. Data delivery and management

In dynamic IoT systems, data must be delivered between
loosely coupled IoT nodes. Message brokers are physical
server-side software components that handle message ex-
change between distributed endpoints (producers and con-
sumers) in a loosely coupled manner. In addition, many of
these solutions provide built-in publish/subscribe patterns for
topic and content-based message routing, message decomposi-
tion and aggregation; thus, enabling context-based information
retrieval and content-based information fusion amongst the
systems and devices.

The Information-centric Networking (ICN) concept has
been lately emerged in research communities studying the
future Internet. In the ICN approach, data resources are named
based on information content rather than IP address. Moreover,

22https://www.w3.org/TR/rdf-sparql-query/
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ICN emphasizes publish-subscribe routing paradigms for mes-
saging between decoupled senders and receivers and to access
distributed information [29]. Hence, ICN offers interesting
new possibilities for communication and data access in IoT
systems although it is not yet available as an off-the-self
solution.

Large-scale semantic IoT data should be stored and man-
aged efficiently and in near real-time. RDF Databases [30]
are for managing and storing semantic data as RDF graphs.
Querying and reasoning is performed over stored RDF graphs
with SPARQL language. Current RDF databases are mostly
designed to manage static data, whereas IoT data is dy-
namic, thus frequent update operations on RDF graph cause
poor performance [31]. Furthermore, as new data is provided
continuously from multiple sources, reasoning tasks need to
be done parallel in a real-time fashion. Hence, reasoning
only with SPARQL queries over RDF database can not be
considered as an efficient solution to perform reasoning tasks
for IoT systems. Distribution and federation capabilities of
back-end RDF database enable merging of relevant back-
ground knowledge from multiple knowledge bases. Federated
querying enables remote queries over distributed databases
and combining inference from multiple results. Concurrency
control mechanisms can handle simultaneous transactions in
databases efficiently. Native RDF databases that rely on on-
disk storage solutions perform poorly with concurrent query-
ing compared to in-memory stores. However, native solutions
generally have better support for federated querying over
remote RDF databases.

C. Middleware and platforms

IoT middleware solutions and platforms provide connec-
tivity for sensors and actuators to the Internet. Mineraud
et al. [32] surveyed IoT platforms and identified gaps for
platform development. Among these gaps, processing data
streams efficiently and handling different formats and models
are critical for developing scalable platforms. Meanwhile, to
cope with big IoT data, the development of IoT platforms
demands integration of heterogeneous devices and systems,
data aggregation and high throughput processing components,
such as reasoning.

Goumopoulos et al. [33] propose a framework for managing
heterogeneous smart objects on ubiquitous applications. How-
ever, their solution was not evaluated on IoT scale. Fortino et
al. [34] propose an agent based smart objects reference archi-
tecture for IoT, where they consider also hardware aspects such
as low power networks. Californium [35] is an architecture for
scalable IoT cloud services based on Constrained Application
Protocol (COAP)23 developed in ETH Zurich that scales well
compared to HTTP based solutions. Blackstock et al. [36]
presents a hub based approach for improving interoperability
and aggregating data from heterogeneous devices and systems
on IoT. Gyrard et al. [37] propose an approach for managing
a cross domain Machine-to-Machine data utilizing ontology
hub for linking knowledge domains.

23https://tools.ietf.org/html/rfc7252

Moreover, what is the right balance for the distribution of
functionality between smart things and supporting platforms is
an important question. Edge computing brings data processing
and storage closer to sources. A remarkable advantage of edge
computing for IoT is low latency communication and rapid
response on real-time IoT environments because computation
can be performed locally near sensor or actuator [38] within
relatively small geographical areas. Data can be aggregated,
pre-processed and stored on the edge nodes and collected
from those for further use and higher level data integration. In
IoT environments, edge computing can be approached from
the perspective of sensor grids and wireless grids [39], where
local sensor networks form grids. Sensor grids can be formed
of more static things of interest or a grid can be formed
dynamically whenever an observable object pervades to or
leaves the grid area, such as passing cars in road traffic.

Fog computing paradigm launched by Cisco systems [40]
can be related to edge computing, which brings computational
load and services to the edge of the network and divides
networks into small geographical areas. Edge analytics, such
as cloudlets [41], are developed for constrained environments.
Edge analytics contributes to maximize energy efficiency,
minimize communication latencies, and reduce privacy threats.
Fog computing may facilitate real-time data processing and
analytics because computing can be performed near data
sources and with relative small data sets; on other hand, it
may challenge data integration as data should be collected
and aggregated from a large amount of small distributed
networks. The fog computing approach can facilitate real-time
computing on IoT by bringing data processing and storage
closer to sources. Future IoT platforms should include edge
and fog technologies to enable local IoT networks to perform
local analytics.

D. Limitations of current approaches
Realization of interoperable IoT systems is limited by the

heterogeneity of devices, protocols, data models, and service
interfaces as well as resource constraints and dynamicity.
These limitations are potentially be tackled by empowering
current systems with the state-of-the-art semantic technologies
in all phases of data processing pipelines. However, current
semantic technologies such as knowledge representations,
reasoners, and rules are mostly developed for processing
static data and require a considerable amount of computing
resources.

Current IoT middleware and platforms do not implement
sufficient mechanisms for processing data formats and models,
support easy platform expandability, and have limited support
for cross-platform integration, which set up a barrier to the
data integration and the management of connected devices.
Moreover, lack of de-facto communication protocol suite and
standard object models for interfacing heterogeneous IoT
devices slows down the integration of solutions across the
application domains [32]. Su et al. [21] pointed out that
stream reasoning currently focuses on query processing and
data retrieval, hence do not emphasize IoT characteristics such
as heterogeneous and salable data, low-latency reasoning, and
materialized knowledge.
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III. EXPERIMENTS

A. Experimental IoT environment and system architectures

In these experiments, we focus on scalability, that is, on
studying the performance of reasoning and data delivery when
the amount of connected IoT nodes and the data volume
sizes are varied. Semantic representations are known to have
a significant effect on resource usage [6]. Hence, different
semantic data formats for providing data from IoT nodes is
considered as one of the most important feature to be tested.
Heterogeneity and continuously provided data streams in dis-
tributed environments are assumed as general characteristics
of IoT systems. Hence, our experiments focus on reasoning in
real-time with a large-scale of distributed data providers and
data volumes in configurable distributed environment.

1) Data integration: ActiveMQ message broker manages
loosely coupled message delivery between IoT nodes and
reasoning nodes with Apache Camel24 via Java Message
Service (JMS)25. ActiveMQ is a highly configurable, scalable
and fast messaging solution which utilizes Enterprise Inte-
gration Patterns via the Apache Camel integration framework
for integrating different systems and components. It provides
flexibility for data aggregation and delivery, and interoper-
ability between sensors, reasoner nodes, and the knowledge
base. Such a system is expected to scale to handle multiple
concurrent data providers and consumers and also larger data
loads with load balancing and clustered message brokers. The
RDF database provided by Sesame26 RDF framework is used
as a knowledge base because of its good scalability, and
comprehensive feature set and integration capabilities.

IoT nodes produce semantic data to the ActiveMQ message
broker via a lightweight MQTT27 protocol. The message bro-
ker forwards messages to the JMS queue from where messages
are aggregated and consumed by subscribed reasoning nodes.
The queuing mechanism guarantees that the first requested
reasoning node with free resources consumes messages from
the JMS queue, thus reducing latency. Finally, reasoning nodes
insert reasoned facts to the Sesame RDF database.

2) Reasoning node: Jena reasoning framework is utilized to
enable flexible deployment of reasoning tasks. It implements
a comprehensive subset of OWL language and it can interpret
most of the IoT data formats used. It supports user defined
rules and the reasoning engine can operate in forward chaining,
backward chaining or in a hybrid mode. Android distribution
of Jena framework is deployed on mobile reasoning nodes
with triggering rules. Only partial ontology is processed in
mobile reasoning nodes which infer classes that are further
processed in reasoning cluster. One reasoning node can host
concurrently as many reasoning instances as there exist JMS
queue consumers at the time. The message broker balances the
message load for each reasoner node depending on their re-
sources in distributed configuration. The reasoner instances are
configurable; rules and ontologies can be loaded at reasoner
start-up time or during execution from memory, a local file

24http://camel.apache.org/
25http://docs.oracle.com/javaee/7/tutorial/doc/jms-concepts.htm
26http://rdf4j.org/
27http://mqtt.org/

or a remote URL. With this feature, the context of a reasoner
instance can be changed.

3) Centralized reasoning: Figure 1 presents a system with
a single reasoning node where data processing and reasoning
is performed in a centralized manner. In this simplest system,
the message broker is not utilized, but simulated IoT nodes
(e.g. cars) send real sensor data directly via HTTP protocol
to a centralized reasoning service. The reasoning service
aggregates data, performs reasoning with Jena rule reasoner
and OWL ontology, and stores results to the RDF database.

Fig. 1. Centralized reasoner.

4) Distributed reasoning: Figure 2 presents a distributed
system in which data and reasoning tasks are dispatched to
physically distributed reasoning nodes which form a reasoning
cluster. The operation is otherwise similar to the centralized
configuration, but IoT nodes produce data to a message broker
via MQTT protocol and the data is consumed by eight dis-
tributed reasoning nodes in the cluster. Distributed reasoning
nodes consume messages from the message broker’s JMS
queue and aggregates them for reasoning process. Messages
are aggregated into sets based on vehicle identifiers, as this
aggregation strategy is mandated by the rules listed in Table I.
A sequence of messages is first aggregated and then reasoning
is processed over aggregated messages with implemented rules
and OWL ontology. One reasoning node consumes messages
from multiple sequences and performs reasoning in parallel
reasoning instances. Different data aggregation strategies are
realized by controlling the amount of aggregated messages,
by selecting messages based on sources (i.e. IoT nodes) and
content, and by controlling that the interval messages are
aggregated before triggering reasoning.

Fig. 2. Reasoning cluster.

5) Mobile reasoning: For bringing data processing closer
to data sources, we developed mobile reasoning systems.
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This approach is expected to reduce communication costs,
provide better availability and real-time response, and preserve
privacy. Figure 3 presents the mobile reasoner configuration
in which data and simple reasoning tasks are dispatched to
mobile nodes. These nodes are chained to a static reasoning
cluster (Figure 2) through a message broker’s JMS queue
which delivers concluded facts to the reasoning cluster for
performing more complex reasoning tasks and storing final
facts to the RDF database. The message broker acts as an
edge node serving a geographical region. IoT nodes produce
data to an ActiveMQ message broker via MQTT protocol
and mobile nodes subscribe to the reasoning system when
entering the region. In practice, the mobile reasoner subscribes
to a queue on the message broker (left in the Figure 3)
and starts consuming messages from this queue. The mobile
reasoner aggregates a sequence of messages from the queue
into an RDF data model and the Jena reasoner performs
reasoning over this model with predefined rules and static
knowledge presented as OWL ontology. In the chained mode,
mobile reasoners filter input data for the reasoning cluster by
reasoning preliminary facts with a reduced rule set.

Fig. 3. Mobile reasoners chained to reasoning cluster.

B. Rules and ontology

We assume a city environment in which dynamic mobile IoT
nodes are located relatively close to each other within network
coverage area. The simulation scenario consists of deducing
different traffic situations from real GPS observation data
collected from taxi cabs. The rule set was designed to acquire
knowledge from GPS observations. To acquire knowledge,
rules are used to infer over temporal relationships between
sequential observations received from multiple sensors and
aggregated by sender identifiers. The knowledge acquired from
the GPS data describes traffic jams, taxis turning left, right,
and making U-turns, taxis speeding and stopping for a long
time, taxis accelerating and decelerating strongly, and areas
where taxis stop often for a while. More complex rules can
be formed by combining these basic rules. The rule set is
presented as pseudocode in Table I.

Figure 4 presents static knowledge in a simple OWL ontol-
ogy and describes classes of inferred facts. Our system pre-
processes and loads the static knowledge classified by this
ontology. The static knowledge in ontology is 2,100 bytes,
including 24 OWL classes and 12 properties. The lightweight
design of ontology is tailored for typical IoT applications
where large amount of data is delivered from IoT devices and
demanded to be processed with small amount of knowledge
for achieving efficiency and meeting resource constraints.
The system reasons from dynamic IoT data generated from

Fig. 4. Static knowledge as a high-level ontology (Properties are not included
in this figure).

heterogeneous devices with static knowledge. Since the static
knowledge is used, it is efficient to deduce results and keep
soundness and completeness for the reasoning process. We
create Jena rules carefully to avoid those cases, which may
cause incompleteness and our experiments verify the com-
pleteness during run time. Moreover, by using static ontology,
observation data does not need to describe data types, thus
reducing payload. An inferred OWL class instance inherits all
properties that the original RDF observation resource describes
as RDF triples such as longitude, latitude, velocity, direction,
timestamp, and vehicle identifier.

Scenario specific user defined rules are written in Jena rules
format. The rules are designed according to the sequence of
individual GPS observations dispatched by IoT nodes. That is,
the reasoner deduces facts given in Table I from a sequence
of observations by comparing consecutive values of direction,
velocity, timestamp and location with forward chained rules.
Rules are used in an incremental manner, which enables
reasoning of all required knowledge from a sequence of obser-
vations. A sequence of observations is first aggregated and then
rules are fired if some condition occurs. Thus, the reasoner
starts processing the U-Turn rule whenever LowSpeed fact
occurs. For example, a U-turn is assumed to happen only
after a taxi has driven at a relatively low speed, say, lower
than 25 km/h, and if the direction change is near 180 degrees
(real rules use a turn window between 170 and 190 degrees).
LowSpeed fact triggers the rule for U-turn and U-Turn fact
is inferred from the next sequence of observations. Rules and
ontologies as well as example data used in our experiments
can be found from https://bitbucket.org/aimaar/iotsemantics.
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TABLE I
IMPLEMENTED RULE SET

Fact Triggering rule
Low speed [1] ObservationxhasV elocity<25km/h→ ns:LowSpeed
Long stop [2] LowSpeedxhasV elocity<3km/h→ Stop∧ StopxhasDuration>3min→ ns:LongStop
High speed [3] ObservationxhasV elocity>80km/h→ ns:HighSpeed

Left turn [4] LowSpeedxhasDirection(a)∧LowSpeedxhasDirection(b)∧ a=b-90deg ∨ a=b+270deg → ns:LeftTurn
Right turn [5] LowSpeedxhasDirection(a)∧LowSpeedxhasDirection(b)∧ a=b+90deg ∨ b=a-270deg → ns:RightTurn

U-Turn [6] LowSpeedxhasDirection(a)∧LowSpeedxhasDirection(b)∧ a=b-180deg ∨ b=a+180deg → ns:U-Turn
Speeding [7] HighSpeedxhasV elocity>100km/h→ ns:Speeding

High acceleration [8] ObservationxhasV elocity(v2)hasTmeStamp(t2)and(v2− v1)/(t2− t1)>2.5m/s2→ ns:HighAcceleration
High deceleration [9] ObservationxhasV elocity(v2)hasTmeStamp(t2)and(v1− v2)/(t2− t1)>2.5m/s2→ ns:HighDeceleration

Jam [10] LowSpeedxhasDuration>90s∧LowSpeedxhasAverageSpeed<20km/h→ ns:Jam
Crossing Zone [11] LeftTurnnhasLocation(x)∧RightTurnnhasLocation(x)→ ns:CrossingZone
Stopping Zone [12] LongStop1hasLocation(x)∧LongStop2hasLocation(x)∧LongStopnhasLocation(x)→ ns:StoppingZone

Jam Zone [13] Jam1hasLocation(x)∧Jam2hasLocation(x)∧JamnhasLocation(x)→ ns:JamZone
Pollution Zone [14] HighAcc1hasLocation(x)∧HighAcc2hasLocation(x)∧ HighAccnhasLocation(x)→ ns:PollutionZone
Attention Zone [15] HighDec1hasLocation(x)∧HighDec2hasLocation(x)∧ HighDecnhasLocation(x)→ ns:Attention Zone
U-Turn Zone [16] U-Turn1hasLocation(x)∧U-Turn2hasLocation(x)∧ U-TurnnhasLocation(x)→ ns:U-TurnArea

C. Experiment setup

Reasoning nodes, Sesame RDF database and ActiveMQ
broker are physically distributed on several servers within the
same 1Gb/s sub-network. Eight physically distributed nodes
are used in the reasoning cluster for distributed scalability
tests. One distributed reasoning node server has 16 cores and
64 GB of main memory. A single reasoning node runs on
a server with 32 cores and 128 GB of main memory. The
maximum amount of reasoner threads in each node equals to
the amount of IoT nodes.

Real data used in the experiments is gathered from the
GPS devices of taxi cabs driving in downtown of Oulu. The
dataset is collected from 65,000 separate taxi trajectories,
including 5,543,348 observations producing 72,063,524 RDF
triples. The data consists of location coordinates represented
as longitude and latitude, velocity, direction, time stamp,
and sender identification denoting the individual taxi cab.
GPS observation data is transformed from Extensible Markup
Language (XML) to different RDF representations, stored into
SQLite database, and read from the database for simulation
process.

In the reasoning cluster case, eight physically distributed
nodes consume events from the message broker. Different
scenarios from the data set described above are sketched by
varying the amount of IoT nodes sending data to the system
and the number of events sent by one node.

With mobile reasoning nodes, we use ten Android emulators
chained with the reasoning cluster specified earlier. As emula-
tors tend to perform poorly compared to real devices, we run
emulators with hardware accelerator on one 2.0 GHz AMD
Opteron CPU to correspond with the real performance of 1.9
GHz Qualcomm Snapdragon 600 processor. The amount of
concurrent reasoning threads is limited based on aggregation
size to avoid exceeding the heap size limit of Android memory
manager. In the mobile reasoning experiment, we use the
aggregation size of 100 triples and five concurrent reasoning
threads where a new Jena reasoner instance is run after each
aggregation process.

Figure 5 presents a general process of delivering sensor data
from IoT nodes through reasoning process to RDF database.

The process consists of sensor data delivery (transmission),

Fig. 5. Semantic data delivery process.

aggregation and transformation of data to RDF model (pro-
cessing), reasoning, and storing the resulting knowledge into
the RDF database (transmission). The latency of the whole
process is measured with different data formats, amount of
connected sensors and data sequence sizes. The latency is
also measured in the partial stages of the delivery process,
including transmission, reasoning, and data processing.

IV. EVALUATION RESULTS

We perform seven experiments. Four experiments are per-
formed to evaluate the scalability of the system. Centralized
and reasoning cluster configurations are compared with dif-
ferent data formats first. In the third experiment, scalability is
evaluated with a different amount of IoT nodes but with a con-
stant amount of messages (1 million). The fourth experiment
evaluates the scalability of distributed reasoning by changing
the amount of reasoning nodes. In the fifth experiment, we
study how different data aggregation strategies affect latencies
and the amount of inferred triples. In the sixth experiment,
we evaluate two versions of mobile reasoning. First, reasoning
tasks are divided between mobile reasoners and the reasoning
cluster (chained mode) and then the mobile reasoners perform
all reasoning tasks by themselves (independent mode). In all
these experiments, latency is measured from the beginning
of delivering data to a reasoning node to storing the inferred
facts to the RDF database. In the seventh experiment, latency
is measured in different stages of data delivery process in
centralized, distributed, and mobile reasoning cases to evaluate
the cause of latency in more detail. Our experiments are
performed at least three times each and average latencies are
caculated.
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The size-based aggregation strategy is used in all scalability
experiments. 100 messages are aggregated into an RDF data
model. Aggregation size of 100 messages is based on the
fifth experiment, which shows the optimal performance, when
considering latency relative to the amount of inferred triples.
Each reasoner thread processes one task at a time over the
aggregated data. Reasoning continues until all rules in Table I
are processed. RDF data encoding is utilized for providing
data from IoT and mobile nodes for the reasoning process.
RDF/XML, N3, JSON-LD context referenced, and EN short
packet data formats are compared. RDF data formats enable
reasoners to infer from selected RDF model and produce new
facts in RDF/XML in a straightforward manner.

Bandwidth usage is proportional to the payload sizes of
data formats. Payload sizes are shown in Figure 6. Parsing
of EN data to RDF data model in Jena reasoner needed
extra computation, thus causing approximately 2% overhead to
latencies. The processing time of individual reasoning tasks is
not measured as we are focusing on scalability. For example,
when 10,000 events are produced from 100 IoT nodes (totaling
1 million messages) and aggregation size of 100 messages is
used, this results in 10,000 separate reasoning tasks. Moreover,
as each message includes 12 RDF triples, reasoning in the
previous example is performed over 12 million RDF triples in
total.

Fig. 6. Comparison of payload sizes of data formats.

In the first experiment (Figure 7), we produce 1,000 to
5,000 events from 1 to 100 IoT nodes to the centralized
reasoning node. When the amount of IoT nodes and events
increases, RDF/XML shows a remarkable increase in latency
compared with other data formats. Ten IoT nodes producing
data (10/5,000) result in a shorter latency than 50 nodes
(50/1,000) when both configurations produce the same amount
of data. This difference can be explained by limited server
resources and lack of message queuing, that is, more reasoning
threads are started with 50 nodes, thus more context switching
is performed.

As the processing of RDF/XML requires more memory
and computing resources than other formats, the server is not
able to handle all reasoner threads and events from 100 IoT
nodes in a reasonable time. With other formats, the latency
increases when the amount of IoT nodes exceeds 100, although
the increase is significantly smaller than with RDF/XML. It
should be noted that these are scalability tests; hence, we do
not measure the processing time of a single reasoning task.

The second experiment is performed with eight distributed
reasoning nodes. We send 100 events from each IoT node
to the message broker and increase the amount of IoT nodes

Fig. 7. Latency of centralized reasoning.

Fig. 8. Latency of distributed reasoning.

from 500 to 50,000. As seen from Figure 8, increasing the
data set size causes quite a linear increase in latencies. Only
half of the latency of the centralized reasoning is experienced
even though data set size is 50 times larger at its maximum.
Moreover, increasing the amount of IoT nodes does not cause
the increase in latencies as in the centralized case, which can
be seen in the next experiment.

The third experiment evaluates scalability in terms of the
amount of IoT nodes by delivering the same amount of events
(1 million) in each run. It can be seen from the results (Fig-
ure 9) that latency decreases when the total amount of events
is kept constant and the amount of IoT nodes is increased
from 1,000 to 50,000. This phenomenon can be explained
with better bandwidth and hardware resource utilization of
the distributed reasoning nodes, that is, the throughput of
the system is higher with a greater amount of IoT nodes.
Latency has smaller variations between data formats than in
the centralized case because the message broker performs load
balancing and queuing, thus, memory and computing resources
suffice for the tasks.

The fourth experiment evaluates scalability of distributed
reasoning nodes by varying the amount of nodes in the cluster
(Figure 10). The latency converges between six and eight
nodes with the 100/1,000 data set. With the 100/10,000 data
set, the minimum is reached somewhere after eight nodes,
which derives from the better utilization of bandwidth and
hardware resources with a greater amount of nodes. Short EN
format is used as it is the most compressed one. With only two
distributed reasoning nodes, a five-fold decrease of latency is
experienced in comparison with centralized reasoning (see, the
100/1,000 data set with EN in Figure 7).
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Fig. 9. Latency of distributed reasoning with a different amount of IoT nodes.

Fig. 10. Latency of distributed reasoning with a different amount of reasoning
nodes.

In the fifth experiment, we evaluate the size-based and time-
based aggregation strategies. Measurements are performed
with 100 IoT nodes sending 1,000 events to the reasoning clus-
ter deployed with eight nodes. Figure 11 shows how size-based
aggregation strategy affects latency and the amount of inferred
triples. Here, completion size means the amount of aggregated
messages. The amount of inferred triples reaches its maximum
with the aggregation size of 1,200 triples (100 messages).
Large completion size causes the amount of inferred triples
to decrease when the data set contains also smaller sequences
than the chosen completion size is. For example, taxi trajecto-
ries containing less than 200 observations are not aggregated
when the completion size is 200. Decreasing completion size
decreases the amount of inferred triples because aggregation
breaks the inference chain on completion and completeness of
reasoning suffers. Also latency is increased because handling
a larger amount of aggregation and reasoning processes causes
more context switching (more reasoner instances are loaded).

Figure 12 shows results for the time-based aggregation
strategy. The number of inferred triples stays quite steady,
but latency increases at 10 ms completion time and from
200 ms onwards. Here, completion time refers to the time
interval the aggregator collects messages. The increase occurs
at 10 ms because of the same phenomenon that happens
with size-based strategy; more computation for aggregation
and reasoning (caused by context switching) is needed due to
shorter aggregated sequences. From 200 ms and onwards, the
long waiting period starts to increase latency. More triples are
inferred because message sequences are longer, that is, the

Fig. 11. Size based aggregation.

inference chain does not break often and reasoning is more
complete.

Fig. 12. Time based aggregation.

In the sixth experiment, we measure the performance of
mobile reasoning with both independent mobile reasoners and
chained mobile reasoners. An independent mobile reasoner
processes reasoning tasks independently with the whole rule
set given in Table I, whereas a chained mobile reasoner per-
forms reasoning with limited rules, i.e. rules 1 to 9 in Table I,
and forwards the concluded facts to the reasoning cluster for
reasoning with more complex and computation intensive rules.
These two rules were selected as they are utilized for deducing
all other complex events. Performing these rules on mobile
devices is expected to decrease significantly the load of the
reasoning cluster. First, we produce 1,000 to 5,000,000 events
from 1 to 1,000 IoT nodes to the message broker from where
independent mobile reasoners and chained mobile reasoners
consume them. From Figure 13, it can be seen, that latency
with chained mobile reasoners decreases tenfold compared
to independent mobile reasoners. This is simply because the
reasoning cluster processes more complex inference rules.

Next, we send events to the chained mobile reasoning sys-
tem by increasing the amount of IoT nodes from five hundred
to one hundred thousand. In each IoT node, we produce 100
events and send them to the broker. One event includes 12 RDF
triples, totaling to maximum of 120 million triples. Reasoners
are deployed on ten mobile reasoning nodes and on a reasoning
cluster with eight distributed nodes. Results (Figure 14) show
that latencies increase linearly and the system scales well to
the large amount of IoT nodes. The results indicate that each
mobile node can handle 100 events per second.

In the seventh experiment, we measure the latency in
different stages of the data delivery process. As distributed
computing is performed at node and processor level, exact
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Fig. 13. Latency of chained mobile reasoning compared to independent
mobile reasoners (log scale axis for latency).

Fig. 14. Latency of mobile reasoning with a different amount of IoT nodes.

latency for a particular distributed reasoning task is not
meaningful to measure, thus the total Average Reasoning
Latency (ARL) per thread in a single reasoning node is
measured. ARL is calculated by summing processing times of
all reasoning tasks, and dividing it by the number of reasoning
nodes and threads. Transmission time includes latencies of
communications and database insertions. Message processing
time includes latencies of data aggregation, routing, queuing,
and dispatching tasks.

In the centralized case (Table II), ARL increases to 65%
of total latency. In the reasoning cluster case, ARL is 45% of
total latency, which indicates that more latency is caused in
the message processing phase because of an increased amount
of message routing, queuing, and dispatching tasks. The same
phenomenon is present in chained mobile reasoning where
message processing overhead increases and reasoning latency
decreases because of filtering and chaining. With chained
mobile reasoning, the processing and reasoning phases in
Figure 5 are repeated when transferring concluded facts back
to the message broker. When considering total latency in all
cases, processing and reasoning tasks take a major part of time
while transmission time is minor.

TABLE II
LATENCY IN DIFFERENT STAGES OF DELIVERY PROCESS

Reasoning set-up Transmission Processing ARL
Centralized 3% 32% 65%

Cluster 3% 52% 45%
Chained Mobile 6% 56% 38%

V. DISCUSSION

Our experiments show that distributed reasoning with EN
is the most efficient solution. However, data formats have a
more significant effect on the centralized system than on the
distributed systems. Distributed reasoners deduce facts from
aggregated message sequences, where each reasoner operates
on a small data sequence in real-time. In mobile reasoning
experiments, basic forward-chained rules were utilized to
perform simple reasoning tasks at mobile reasoners, then, the
reasoned facts were used as input for the reasoning cluster
for performing more complex reasoning tasks. Chained rea-
soning with mobile reasoners outperforms and shows scaling
capabilities when more mobile reasoners become available
and subscribe in to the system. Moreover, chained distributed
reasoning improves real-time responsiveness and distributes
workload of reasoner nodes in the system as it moves compu-
tation closer to the data sources. Data aggregation strategies
have a considerable effect on reasoning performance. In the
centralized case, most of the latency is generated in the
reasoning phase, whereas in distributed reasoning, the message
processing phase causes a considerable latency. Thus, message
aggregation and data fusion at sensor level could shorten event
processing times and improve performance of the distributed
set-ups.

Multiple reasoning nodes introduce increased scalability
and decreased latency compared to the centralized case, as
was expected. Short EN format outperforms in all experi-
ments, having the lowest latency and minimal resource usage.
RDF/XML produces remarkable increase in latency compared
with other data formats in a centralized case (Figure 9),
while the amount of IoT nodes and messages is increased.
However, data formats do not make a big difference with
distributed reasoning nodes (Figure 10). EN has still slightly
lower latency than other alternatives. Moreover, increasing the
number of messages introduces larger latency than increasing
the number of IoT nodes. This indicates that the message
broker handles load balancing between distributed reasoning
nodes well; thus, memory, computing and communication
resources are utilized efficiently. Large data sets are handled
successfully with distributed reasoning nodes. When 1,000,000
messages are sent, the latency caused by eight nodes is 25%
of the latency caused by two nodes.

Aggregation strategy comparison validates that time-based
aggregation results in the more stable output of reasoning pro-
cess when completeness is considered. In contrast, size-based
strategy can decrease reasoning latency, but completeness of
reasoning suffers if the aggregation size is not properly chosen.
Aggregation size of 100 messages is optimal for the used data
set, as this size produces a high amount of inferred triples and
small latency. With time-based strategy, 50 ms time interval is
optimal for the used data set, if low latency is a more preferred
feature. The balance between latency and completeness of
reasoning requires choosing the right aggregation strategies
and optimizing them carefully.

The poor performance with centralized configuration derives
from the lack of load balancing, as the message broker was
not involved. This produces a large amount of concurrent
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thread executions and context switches in the server core (CPU
utilization was near 100%) and the server runs out resources.
The advantage of message queuing and load balancing can be
seen from the third experiment (Figure 9), where only 25%
of the latency of the first experiment is experienced with the
100 IoT nodes sending 1,000 messages in EN format.

The overall performance of the distributed system was not
as high as with the chained mobile reasoning, which can be
attributed to the late stage of data aggregation. When aggre-
gation is done in reasoning nodes, the amount of computation
and delivered messages is increased and this causes processing
overhead in message broker and reasoning nodes, including
message grouping and aggregation.

Chained reasoning with mobile nodes outperforms indepen-
dent mobile reasoners. That is, input data filtering reduces
reasoning workload both in the cluster and mobile nodes
as fewer facts need to be processed. Moreover, input data
filtering decreases the amount of messages delivered through
the system. If mobile nodes act as data producers and rea-
soners, the system adapts to handle all provided real time
data, even when new mobile nodes subscribe to the system.
When external IoT nodes act as data producers, we can
compute that approximately 1,000 mobile nodes and 100 static
distributed nodes are enough to serve 100,000 IoT nodes in
near real time in the studied scenario. In real-world cases,
the performance of mobile reasoning depends on the load
of the network and workload of mobile devices and highly
heterogeneous urban networks can provide alternative commu-
nication links. Lightweight RDF data formats evaluated in our
experiments are also potential for resource-constrained devices
[6]. The mobile reasoning distributes data processing closer
to data sources, reduces communication costs, provides better
availability and real-time response, and offers possibilities
for preserving privacy. Moreover, this configuration enables
more accurate reasoning from surrounding local vicinity by
crowdsourcing.

Distributing reasoning tasks with compliant semantic data
exchange and aggregation methods provides a potential ap-
proach to perform real-time reasoning and combining dis-
tributed knowledge at IoT scale. Sliding window aggregation
techniques would improve the accuracy of the reasoning,
as forward chained reasoning could be continuous over ag-
gregated data sequences. A remarkable advantage of edge
computing for IoT is low latency communication and rapid
response on real-time IoT environments because computation
can be performed locally near sensors or actuators [38] that
was verified in our mobile reasoning case. Data can be
aggregated, pre-processed and stored on the edge nodes and
collected from those for higher level data integration (e.g. in
cloud services).

Lightweight IoT protocols and low power communication
technologies such as CoAP28 and 6LoWPAN29 enable resource
efficient communications and connectivity amongst heteroge-
neous devices and networks. Message exchange schemes such
as publish/subscribe patterns, support topic and content-based

28https://tools.ietf.org/html/rfc7252
29https://datatracker.ietf.org/wg/6lowpan/charter/

message routing and aggregation methods, enable context-
based information fusion from multiple heterogeneous data
sources for reasoning and integrating knowledge from diverse
application domains. SSN and OGC SWE can facilitate this
by providing high-level sensor ontologies for service and
knowledge integration. Moreover, the combinations of these
approaches provide versatile and sophisticated ways to de-
velop collaborative smart IoT environments and promote an
evolution from vertical infrastructures to horizontal semantic
IoT infrastructure.

When considering real world applications, the implemented
scenario and rule set was relatively simple, as it only covers
a restricted context. More complex scenarios can be imple-
mented by combining data from diverse knowledge domains
and ontologies such as from road and weather conditions,
traffic control systems, and public transportation. This diverse
data can be integrated and processed at different stages of the
data delivery process.

VI. CONCLUSIONS

In this article, we study the best practices for providing
semantic data and reasoning actionable knowledge with well-
known Semantic Web technologies and methods on context-
aware IoT environment. IoT systems were developed to eval-
uate the scalability and real-time response of reasoning with a
real data set. We present experimental evaluations on realistic
traffic scenario for IoT applications and services.

Alternate RDF data formats were evaluated for representing
semantic data on IoT. Different data provisioning, reasoning,
and aggregation methods were compared and analysed with
properly selected RDF data formats emphasizing scalability in
terms of the amount of connected IoT nodes and data volume
size. The results verify that Semantic Web technologies and
standards are adaptable to IoT. Such technologies facilitate
interoperability and apply well for data provisioning and near
real-time reasoning on IoT environments.

RDF provides tools and features to interpret and integrate
distributed semantic data on IoT environment. RDF enables
describing the meaning of data and merging this distributed
semantic data. Moreover, it enables inference from RDF
model, and therefore, provides a basis for reasoning actionable
knowledge. Lightweight RDF data formats are potential for
delivering semantic data between resource-constrained IoT
devices. RDF databases are capable of storing large-scale
semantic data with inference support and federation, and can
scale to local semantic data repositories into the edge nodes
of networks. Thus, they enable storing intermediate knowledge
and combining it with refined knowledge from federated back-
end knowledge bases in cloud. Semantic Web standard OWL
ontologies and rule-based reasoning provide promising ap-
proaches to perform reasoning in different contexts from RDF
data and integrate knowledge from various knowledge sources.
Current reasoning engines can be utilized to realize reasoning
from RDF data and OWL ontologies on IoT applications.

Based on the findings, the future studies and experiments
will be carried out on semantic reasoning with more diverse in-
formation sources, complex scenarios, and more sophisticated
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rules. Reasoning engines certainly have an effect on reason-
ing performance, thus different reasoning engines should be
evaluated. Integration of real-time reasoned knowledge with
background knowledge by utilizing federated RDF databases
would be valuable, as they provide background reasoning and
knowledge integration services on cloud platforms. Finally,
applying cloud and edge computing techniques to IoT with
semantic technologies can, at its best, lead to new efficient
computing and analysis techniques for large-scale IoT data.
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