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OBJECTIVES: This article presents a quantitative technique
to assess motion quality and smoothness during the
performance of micromanipulation tasks common to surgi-
cal maneuvers. The objective is to investigate the effective-
ness of the jerk index, a derivative of acceleration with
respect to time, as a kinetostatic measure for assessment of
surgical performance.

DESIGN: A surgical forceps was instrumented with a position
tracker and accelerometer that allowed measurement of
position and acceleration relative to tool motion. Participants
were asked to perform peg-in-hole tasks on a modified
O’Connor Dexterity board and a Tweezer Dexterity pegboard
(placed inside a skull). Normalized jerk index was calculated
for each individual task to compare smoothness of each group.

SETTING: This study was conducted at Project neuroArm,
Cumming School of Medicine, the University of Calgary.

PARTICIPANTS: Four groups of participants (surgeons,
surgery residents, engineers, and gamers) participated in
the tests.

RESULTS: Results showed that the surgeons exhibited
better jerk index performance in all tasks. Moreover, the
residents experienced motions closer to the surgeons com-
pared to the engineers and gamers. One-way analysis of
variance test indicated a significant difference between the
mean values of normalized jerk indices among 4 groups
during the performance of all tasks. Moreover, the mean
value of the normalized jerk index significantly varied for
each group from one task to another.

CONCLUSIONS: Normalized jerk index as an independ-
ent parameter with respect to time and amplitude is an
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indicator of motion smoothness and can be used to assess
hand motion dexterity of surgeons. Furthermore, the
method provides a quantifiable metrics for trainee assess-
ment and proficiency, particularly relevant as surgical train-
ing shifts toward a competency-based paradigm. ( J Surg Ed
]:]]]-]]]. JC 2016 Association of Program Directors in
Surgery. Published by Elsevier Inc. All rights reserved.)
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INTRODUCTION AND LITERATURE
REVIEW

Currently, surgical trainees acquire technical skills through
years of hands-on training in the operating room (OR) in an
apprenticeship model, supplemented by written anatomy
examinations, tutorials, and laboratory-based surgical skill
courses using cadavers or models. More recently, virtual
reality (VR)–based simulations have been included in this
paradigm. Although knowledge of anatomy can be assessed
by written or oral examination, assessment of technical skill
such as dexterity and tool handling remains more subjective
than objective.
Assessment of surgical skills in both open surgery and

minimally invasive surgery is necessary to ensure patient
safety and provides information for residents to enhance
their skills before operating on patients. Surgical training is
shifting to a competency-based education paradigm1,2 and
assessing surgical competence has several potential benefits,
including improved safety of surgical training processes,
enhanced accreditation of specialists, and maintenance of
rectors in Surgery. Published by 1931-7204/$30.00
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public confidence in the surgical profession. Currently,
most of the assessment methods for dexterity of residents
are based on subjective evaluation by an expert surgeon
observing the residents conducting different surgical tasks.
The assessment for the same task could vary depending on
who evaluates the performance and could even be biased.3,4

This article proposes a quantitative method for assessment
of the motion quality and smoothness during the perform-
ance of micromanipulation tasks and explores the correla-
tion between the level of surgical training and the proposed
metrics.
Skills that are currently evaluated include respect for

tissue, aggressive or smooth motion, and instrumentation
handling.3-5 The subjective assessment of trainees by their
preceptors has evolved to make the assessment process more
standardized. Score sheets are often used for subjective
assessment; however, the scoring procedure is dependent on
the assessment conducted by experts. The Objective Struc-
tured Assessment of Technical Skill rating system,6 the
Global Operative Assessment of Laparoscopic Skills,7 and
the Fundamental Laparoscopic Skills program8 are assess-
ment methods that incorporate checklists to calculate an
overall score for dexterity. The methods include some
objective performance metrics including time and number
of errors, as well as some subjective measures that still
require an expert to judge the performance. A complete
review of assessment of technical skills is included in the
publication by Grantcharov et al.9 Accurate, quantitative
evaluation, and improved training efficiency are demands
imposed by new training paradigms that have reduced work
hours and training resources for surgical residents.10 Virtual
simulators are one of the ways to achieve accurate and
unbiased quantitative measurement of certain aspects of
surgical performance.11 Objective assessment of surgical
skills reduces the need for subjective evaluation and provides
information for improvement of specific surgical tasks.12,13

Objective feedback of technical skills is essential to the
structured learning of surgical technique and provides
essential feedback for trainees. This type of evaluation,
while evolving, has not been widely adopted into clinical
practice because of expensive instrumentation required and
lack of reliable objective measures of technical perform-
ance.12 Objective assessment methods can be categorized
into procedure-specific checklists, global, rating scales,
motion analysis, VR simulators, and automated video-
kinematic assessment.13 A review of objective assessment
techniques has been conducted by Moorthy et al.13 and van
Hoove et al.12 They concluded that objective feedback of
technical skills is crucial to the structured learning of
surgical skills. They highlighted the progress in the methods
of objective assessment of technical skills to provide
objective feedback and help residents to improve their skill.
They also discussed the potentials of VR simulators as an
objective assessment method. Additionally, it was concluded
that most methods of skills assessment that are valid for
2

measuring training progress could also be used for exami-
nation or credentialing. Moreover, different methods of
skills assessment are appropriate in different assessment
scenarios. However, as they mentioned, further research is
required to address the limitations and determine the link
between objective assessment of technical skills and meas-
ured parameters such as complication and recurrence rates
and postoperative pain.
Most of the surgical tools developed for objective assess-

ment measure kinetostatic characteristics of the surgical tool
and the surgeon’s hand during the performance of surgical
operations. These objective measures include time, trajec-
tory traveled by the instrument, number of movements,
peak forces, and mean values of velocity and acceleration.
Although the earlier measures could be considered as a set of
indicators to evaluate surgical dexterity and skills without
inclusion of any biased judgment, they do not provide
direct feedback for motion quality or smoothness and are
not sufficient to indicate a resident’s surgical skill in tool
handling and quality of their hand motion for the tasks
involving tactical approach. To address this gap, frequency
analysis and peak acceleration have recently been considered
as new metrics to incorporate effect of the hand motion in
both time and frequency domains.14 The addition of data
analysis in the frequency domain helps to evaluate the
smooth motion that is normally violated by jerky motion,
tremor, and hesitant motion.
Motion smoothness in handling a surgical tool is an

essential skill that surgical residents need to acquire before
operating on patients. Motion smoothness is an indicator of
skilled coordinated hand motion.15 Smoothness or grace-
fulness is usually quantified based on the rate of change in
acceleration (third derivative of the tool/surgeon’s hand
position) or curvature of the path, where a low curvature
shows a straight line to the target and curvature values close
to 1 means abrupt changes in curvature and jerky move-
ments.3 Motion smoothness is also measured as a cumu-
lative number of sudden accelerations and decelerations.
Jerk index is a scalar value that quantifies the smoothness
and is influenced by the duration of the task and movement
amplitude. As the jerk index is measured over a time
interval, the integral of the mean squared magnitude of
jerk is conventionally considered. Jerk measure is a time-
and amplitude-dependent factor and represents the smooth-
ness of the motion and tool handling during the perform-
ance of a given task. The smoothest motion results in a
lower jerk index. To eliminate the effects of time and
amplitude, the jerk index needs to be normalized by
multiplying [(duration interval)5/(3D path length)2] to the
jerk index.16 It has been proved that normalized jerk cost
can quantify smoothness and coordination.16 This is
because of the fact that smoothness is an indicator of
movement quality that should be independent of speed and
distance. A review of normalization procedure of jerk index
is discussed by Hogan et al.17
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FIGURE 1. The augmented bipolar forceps (1) instrumented by
accelerometer (2) and position tracker (3).
Jerk index has been used as a quantitative metric in
studies related to laparoscopic skills,16 upper limb motor
function,18 movement smoothness in golf,19 and irregu-
larity of jaw movement during chewing.20 Cotin et al.21

used the smoothness as a metric for evaluating laparoscopic
skills, which showed that experts had a smoother motion
compared to novice participants. Judkins et al.3 measured
curvature of the motion signal (the tendency of the motion
to keep the trajectory as a straight line) in robotic surgery.
Median values of curvature were used to determine smooth-
ness and objective evaluation of novices and experts in the
performance of robotic surgical training tasks. Chmarra
et al.22 defined smoothness as a motion metric to objectively
classify residents according to their basic laparoscopic skills.
The smoothness metric was able to distinguish skill level as
experienced, intermediate, or novice. Also, in their study,
time, path length, depth perception, and motion smooth-
ness were positively correlated. Sakata et al.23 used the jerk
square mean value as the average of the square of the joint
angle third derivative value to study age-related changes in
smoothness of lower extremity joint movement during load
lifting. These results verified that smoothness in the hip and
ankle joints during lifting decreases with advancing age.
Carpinella et al.18 used jerk index to study arm impairment
in multiple sclerosis for a sensitive quantification of arm
function. Action Research Arm Test tasks executed by
patients with multiple sclerosis were significantly less
smooth (jerk increased) with respect to controls. Choi
et al.19 studied kinematic evaluation of movement smooth-
ness in golf with the normalized jerk cost. The jerk index
analysis verified that skilled golfers have smoother swings
than unskilled golfers.
To investigate smoothness using the jerk index, digitized

acceleration and position recordings are converted into
reliable quantitative metrics that correlate experimental data
to surgical performance. Normally, this conversion requires
complicated postprocessing of the digitized data to correlate,
for instance, the metrics with hand motion dexterity and
surgical skills, that is, smooth motion. In addition, artificial
neural network algorithms, with their own shortcomings,
are required to train the systems using experienced surgeons.
Furthermore, the experimental environment and the surgi-
cal tasks should realistically simulate conditions inside the
OR during the performance of surgical procedures and
should accurately measure the quantitative metrics.
This study focuses on investigating the potential applica-

tion of the normalized jerk index to compare the dexterity
and smoothness of motion during the performance of 3 sets
of micromanipulation tasks that simulated picking up and
placing cotton strips in brain surgery.24 This study shows
how participants with different levels of expertise exhibit
different performance while conducting the same micro-
manipulation task. The measure used was the normalized
jerk index that was determined by integrating the square of
the absolute jerk over time. Three pegboards were designed
Journal of Surgical Education � Volume ]/Number ] � ] 2016
to test smoothness of the motion and the participant
dexterity during completion of each task. In addition, effect
of the tool handling (unanchored and anchored wrist) on
the task performance was investigated.
METHOD

Experimental Test Rig and Instrumentation

A bipolar forceps (Codman & Shurtleff Inc., MA, USA) was
augmented by an accelerometer (Mide Technology, MA,
USA) to record acceleration and by a position tracker
(Polhemus, VT, USA) to record the path of the tool
motion. The acceleration signals were recorded at a sam-
pling rate of 120 Hz and the position signals at a sampling
rate of 120 Hz. The data were transferred to the computer
for postprocessing of signals. The instrumented forceps are
shown in Figure 1.
As observed in Figure 2, 2 different test platforms were

designed to investigate the feasibility of analyzing smooth-
ness and dexterity of hand motion with the normalized jerk
index. The modified versions of O’Connor Finger Dexterity
and Tweezer Dexterity tests were chosen, as they are capable
of testing both manual dexterity and the ability to use fine
instruments. The first test board was a normal O’Connor
Finger Dexterity board with 100 holes (Fig. 3A). The holes
are rectangular with randomly distributed directions. Nine
holes are numbered in the board, and participants were
asked to place a pin in each hole with the bipolar forceps
(task A). For the next 2 tests, a smaller O’Connor Dexterity
board was mounted inside a skull (5 cm below the surface)
to mimic brain surgery conditions, as shown in Figure 3B
and C. The participants placed 9 rectangular pins inside the
9 holes of the board. This test was conducted in 2 different
conditions: first with unanchored condition (Fig. 3C) where
no pivot point was allowed for resting the hand (task B),
and for the second test, the same test was conducted with
anchored hands where the participants were allowed to
anchor their hand over the skull or over the test table (task
C), similar to how surgeons perform some surgical proce-
dures to have a more-steady hand.
Test Procedure

Four different groups of subjects participated in this study:
surgeons, residents, engineers, and gamers. Surgeons
included 2 neurosurgeons (5 and 25 y in practice), 1
otolaryngologist (25 y in practice), and 1 general surgeon
3



FIGURE 2. Experimental test rig developed to conduct the experiments. Two pegboards (numbered and designed to test the dexterity and
smoothness of the motion while conducting 3 micromanipulation tasks.

FIGURE 3. Three micromanipulation tasks: task A—O'Connor Finger Dexterity test with unanchored configuration of the wrist, task B—Tweezer
Dexterity test with unanchored configuration, and task C—Tweezer Dexterity test with anchored configuration.
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(25 y in practice). Engineer group consisted of mechanical,
electrical, and biomedical engineers (25, 30, 35, and 45 y
old), and residents included 2 neurosurgery residents (post-
graduate year 1 [PGY1] and PGY3) and 2 otolaryngology
residents (PGY2 and PGY4). Gamers (a participant in a
computer or role-playing game) were all undergraduate
students.
For each participant, a video demonstration of the

performance of each task was provided, followed by a
training period of not less than 15 minutes to familiarize
each participant with the setup before conducting the real
experiments. Participants consisted of 4 surgeons, 4 resi-
dents, 4 gamers, and 4 engineers. Once the participant felt
comfortable in handling the bipolar forceps and performing
the experiment, the task A (big board), task B (small board
—unanchored), and task C (small board—anchored) were
conducted. Each participant conducted 9 trial runs for each
task. Therefore, 4 (groups) � 4 (participants) � 3 (tasks) �
9 (trials) ¼ 432 trial runs were collected. The experiments
were performed without any preference in sequence by
surgeons, engineers, neurosurgery, and otolaryngology res-
idents, and gamers.
DATA PROCESSING

The recorded signals for each participant were transferred to
a computer for postprocessing. In the first step, the signals
were segmented to compute the jerk index for each motion.
Nine signals are stored for the big board experiment, 9
signals for the small board–anchored experiment and 9
signals for small board–unanchored test. In the next step, as
gravity acceleration is included in the acceleration signals,
the gravity component was filtered by implementing a high
pass fourth order Butterworth filter with a cutoff frequency
of 0.2 Hz. This resulted in 3-dimensional acceleration
signals without the gravity component.25

To determine the jerk index of each signal, the length of
the pathway needs to be determined as follows26:

Lpathway¼
Z t2

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂x
∂t

� �2

þ ∂y
∂t

� �2

þ ∂z
∂t

� �2
s

d t ð1Þ

where x, y, and z are position coordinates along the
Cartesian coordinate system, and t1 and t2 are the start
and end time of the task. The jerk index can be determined
using20:

J¼
Z t2

t1

∂3x
∂t3

� �2

þ ∂3y
∂t3

� �2

þ ∂3z
∂t3

� �2

d t ð2Þ

As mentioned in the Literature Review section, in order
to compare the smoothness, the effect of duration and
amplitude must be removed from the jerk index, or the jerk
index should be normalized. The normalized jerk cost can
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be determined as follows:
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These equations are applied on our recorded digitized
data at a sampling frequency of 120 Hz while the highest
frequency component in the power spectral density plots
was 13 Hz.
STATISTICAL ANALYSIS

Mean values � standard deviation (μ � σ) of quantified
jerk indices were reported to quantitatively compare the task
performance of the participants in the 4 groups: surgeons,
neurosurgery and otolaryngology residents, engineers, and
gamers. Results of the 2 experiments, using the large
pegboard and the small pegboard, were compared using
the statistical information of each group. In addition,
analysis of variance (ANOVA) was employed to investigate
the differences or similarities of the measured indices among
all 4 groups. For each group, the type of task was compared
for the participant to see if the level of difficulty could affect
the amount of the jerk index. With respect to the second
task, the ways each participant held the surgical tool was
also investigated to observe how handling the tool affected
the value of the jerk index. The procedure with p o 0.05
was considered as a significant trial.27

The jerk index was considered as the random variable to
compute the values of kurtosis (to estimate the peakedness
of the probability distribution of the jerk index) and
skewness (to estimate the asymmetry of the distribution).28

Each set of jerk indices was recognized to differ or skew to a
significant degree if the absolute values of kurtosis or
skewness are more than 2.29 The kurtosis (k) and skewness
(s) of the distribution diagrams were defined as

k¼
1
n

Pn
i¼1 ðδri�μÞ4

1
n

Pn
i¼1 ðδri�μÞ2� �2 �3 ð4Þ

s¼
1
n

Pn
i¼1 ðδri�μÞ3

1
n

Pn
i¼1 ðδri�μÞ2� �1:5 ð5Þ

where δri and μ represent the sample value of the jerk index
and the corresponding mean value, respectively. n is the
number of indices considered for investigating the form of
the probability distribution.
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RESULTS AND DISCUSSION

A typical acceleration (3D) and position (3D) of picking a
pin in the O’Connor Finger Dexterity test are depicted in
Figure 4. The normalized jerk index based on the procedure
defined in Data Processing section was calculated for each
motion.
Table 1 shows the mean values of jerk indices of each

group of participants. Each number provides the informa-
tion of all 36 trial runs (4 participants � 9 trials) for each
group. Box and whisker plots were used to investigate the
distributional characteristics of jerk indices obtained from
each experiment. Figure 5 shows a comprehensive range of
jerk indices (from minimum to maximum values) for each
group of participants and all 3 tasks A, B, and C.
As observed in Table 1 and Figure 5, in all 3 tasks, the

performance of the assigned tasks by surgeons was accom-
plished with a lower jerk index. In contradistinction, gamers
(in tasks A and B) and engineers (in task C) show the
highest jerk index. The results showed that even the
maximum values of the jerk indices, quantified from
residents and surgeons, were still less than the minimum
values of those of engineers and gamers. Therefore, there is a
significant difference between the levels of jerk index in
engineers/gamers and residents/surgeons, indicating that the
residents and surgeons were able to perform the tasks better
than gamers and engineers. Because gamers have a high
degree of manual dexterity, we expected their performance
to be much closer to that of surgeons and residents. We also
FIGURE 4. A sample acceleration signal (ax, ay, az) and a sample
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found that the variability of the data among surgeons was
much less than that found in the other groups. Values of
kurtosis and skewness are also listed in Table 1. Both
kurtosis and skewness would later be used to determine the
type of the distribution that fits the quantified jerk indices.
One-way ANOVA was conducted to evaluate whether

type of the task accomplished (i.e., the difficulty of the task)
as well as how the tool was held (anchored and unanchored)
had a significant effect on the measured jerk index. For the
4 groups of participants, in task A, there was a significant
difference in the mean values of jerk indices. More
specifically, a p value (p) of less than 10–5, while the F
value (F) and critical value of F (F crit) were 3.67 and 3.47,
respectively (p{0.05, F ¼ 3.67 4 Fcrit ¼ 3.47. Similarly,
in the performance of task B, the p value was much less than
0.05 (p{0.05), and F ¼ 2.67 4 Fcrit ¼ 1.35. The jerk
indices calculated for task C indicated a p o 0.05 and
F ¼ 2.67 4 Fcrit ¼ 2.21. The results showed that, for all
3 tasks, the value of jerk index was affected by the category
of participants.
Another ANOVA was conducted to determine whether

the value of jerk index was different in all 3 tasks for each
group. These results are presented in Table 2. We found a
significant difference between the jerk indices obtained for
each group during the performance of the 3 tasks. There-
fore, the mean value of the jerk indices changed depending
on the task accomplished.
We also investigated the trend of increasing/decreasing

the jerk indices quantified during the performance of each
position signal (x, y, z) recorded by the instrumented forceps.
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FIGURE 5. Box and whisker plots indicating the distribution of jerk
indices measured for each group of participants and the 3 tasks.
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task to see whether there was an improvement in participant
performance as they became more familiar with experiment
procedure. The study showed that the learning curve did
not have a significant effect on the values of jerk index, and
we could not identify any significant improvement from
TABLE 2. Results of ANOVA Test Conducted for Each Group
During Performance of 3 Tasks

Group p F Fcrit
Engineers {0:05 2.36 3.09
Gamers {0:05 2.91 3.09
Residents {0:05 2.67 3.09
Surgeons {0:05 2.12 3.09
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FIGURE 6. Variations of jerk index during performance of task A from trial 1 to trial 9 for all participants. Each set of marker shows participant 1 to 4
in each group.
trial 1 through trial 9. This may relate to the fact that all
participants were well-trained before commencing the
experiments; therefore, conducting more trial runs did not
help them improve their ability. Figure 6, for example,
shows the jerk index quantified for each trial of task A and
shows that the jerk index does not change from trial
1 through trial 9.
The purpose of designing the 3 tasks was to examine

whether the level of difficulty or type of handling the tool
could affect the task performance, as well as to investigate
which group of participants performed the given tasks with
FIGURE 7. Typical Q-Q plot of jerk indices of surgeons, obtained
during the performance of task A.

8

minimal hand vibration. It was important to ensure that the
results were repeatable, that is, the same trait would be
observed in future tests. The form of distribution diagram
was used to predict the future behavior of results. It is well
known that normally distributed data exhibit predictable
traits and probabilities.30 The random variable, under which
the results were analyzed, was jerk index obtained during
performance of each task.
Quantile-Quantile (Q-Q) plots were used to evaluate the

type of distribution. Q-Q plots provide graphical informa-
tion about statistical properties such as mean and median
values of random variable. A Q-Q plot draws a theoretical
line through the data points and evaluates how the actual
data points adhere to the theoretical normal distribution.
In addition to Q-Q plots, kurtosis and skewness measures

were used to determine the type of distribution. The kurtosis
or skewness values of more than 2 indicate that data groups
differ or skew to a significant degree.31 Values of kurtosis and
skewness are listed in Table 1. As observed, all measures are
bounded between �2 and 2 that indicate that the distribution
of data may follow a normal distribution. As observed,
measures of experiments conducted by surgeons and residents
were closer to zero as compared to engineers and gamers.
There were 12 (4 participants � 3 tasks) sets of Q-Q plots.
Figure 7 depicts a typical plot representing the graphical
information of the surgeons conducting task A. As observed,
the jerk indices of this set of experiments followed a pattern
very close to the line, indicating that jerk indices are normally
distributed. The jerk data, obtained for surgeons and residents,
showed a similar linear pattern. Therefore, in future experi-
ments repeated by surgeons or residents with the same level of
expertise, there is a higher probability than engineers and
Journal of Surgical Education � Volume ]/Number ] � ] 2016



gamers to observe values within the ranges that we obtained in
this study. However, for gamers and engineers (with the same
level of expertise), we may observe a different pattern of
jerk index.
This study shows that normalized jerk index can quantify

motion smoothness and can be used to assess hand motion
dexterity of surgical trainees (both in micromotions and
normal motion). This quantifiable normalized jerk index
has the potential to assess levels of hand dexterity as a part of
automated surgical training simulators as a metric to assess
dexterity. Although we did not use it to improve the
performance of the surgeons, by taking variables such as
path length, variability in the direction of motion, and
acceleration into account, it may be possible to instruct the
novice toward altering/improving performance. Further-
more, the jerk index might also be used as a determinant
in the selection process toward identifying skilled surgical
candidates at the baseline level.
CONCLUSIONS

Technical surgical skills are acquired through years of hands-
on training in the OR, supplemented by written anatomy
examinations, tutorials, and laboratory-based surgical skill
courses using cadavers or models. More recently, VR-based
simulations have also been included in this paradigm.
Although knowledge of anatomy can be assessed by written
or oral examination, assessment of technical skills such as
dexterity and tool handling remains more subjective than
objective. Assessing surgical competence has several potential
benefits, including safety of surgical training process, accred-
itation of specialists, and maintenance of public confidence in
the surgical profession. This is particularly important as
surgical training shifts to a competency-based education
paradigm. Currently, surgical skills are mostly assessed sub-
jectively whereby experienced surgeons educate and observe
residents and provide feedback. Objective assessment of
surgical skills is an important component for the structured
learning of surgical skills, which provides feedback for train-
ing. This type of evaluation has not been widely adopted into
clinical practice in part due to the high cost of simulated
teaching modules, which while effective, may not be ideal
given the lack of reliable metrics that accurately reflect
technical skills. Motion smoothness in handling surgical tools
is an essential skill that surgical residents must acquire before
independently operating on patients. Motion smoothness is
recognized as an indicator of skilled and coordinated hand
motion. In this study, a test setup of 2 modified O’Connor
Dexterity board and a Tweezer Dexterity pegboard (placed
inside a phantom skull) were developed along with an
instrumented bipolar forceps to quantitatively measure
motion quality and smoothness of different groups (surgeons,
residents, gamers, and engineers). The acquired acceleration
and position signals were processed to determine the
Journal of Surgical Education � Volume ]/Number ] � ] 2016
normalized jerk index as an indicator of this skill. Our results
indicated that experienced surgeons completed all 3 tasks with
a lower jerk index. Moreover, the residents experienced
motions more similar to the surgeons compared to the
engineers and gamers. It can be speculated that such a
methodology might help assess the skillset of surgical residents
as they, through the course of time, attain surgical compe-
tency. Such a model, in theory, could help to determine the
level of competency of different trainees, allowing those with
optimal dexterity to progress to a higher level of training.
Furthermore, the jerk index might also be used as a
determinant in the selection process toward identifying skilled
surgical candidates at the baseline level.
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