
THE SURVEY of REAL TIME OPERATING
SYSTEM: RTOS

Prasanna Hambarde, Rachit Varma and Shivani Jha

Electronics and Communication Department, Electronics Design Technology Department, Nagpur University
Ramdeobaba College Of Engineering and Management, Katol Road, Nagpur, India

prasanna.hambarde07@gmail.com
rachit.varma196@gmail.com
jshivani1076@gmail.com

 ABSTRACT—The paper discusses the literature survey
of RTOS (Real Time Operating Systems) and its
contributions to the embedded world. RTOS is defined
as a system in which the correctness of the system does
not depend only on the logical results of computation
but also on the time at which the results are produced.
It has to perform critical tasks on priority basis
keeping the context switching time minimum. It is
often associated with few misconceptions & we have
tried to throw some light on it. Since last 20 years,
RTOS is undergoing continuous evolution and has
resulted into development of many commercial RTOS
products. We have selected few commercial RTOS of
different categories of real-time applications and have
discussed its real-time features. A comparison of the
commercial RTOSs’ is presented. We conclude by
discussing the results of the survey and comparing the
RTOS based on performance parameters.

KEYWORDS: RTAI, VxWorks

I. INTRODUCTION

Last few years have seen the remarkable rise in the
demand of embedded systems in human affairs. It has
made its mark in every field ranging personal home
affairs, business, and process automation in industries,
communications, entertainment and defense. As we
know, embedded system is a combination of hardware
and software and perhaps other mechanical parts
designed to perform a specific function [1]. We realize
its contribution in making our life comfortable and safe,
for that it has to satisfy time and memory constraints.
The performance of these systems depends on the OS
which are used. Most of these systems require RTOS for
such a precise task.

The first RTOS was produced more than 20 years ago by
DEC for the PDP family of machines, which then
undergone the process of evolution. Real time operating
System (RTOS), as the name suggests provides a
deadline associated with tasks and an RTOS adheres to
this deadline as missing a deadline can cause affects
ranging from undesired to catastrophic. RTOS must be
deterministic and pre-emptive. An RTOS is effective
and allows the real-time applications to be designed and
expanded more easily whilst meeting the performances
required.

 Abbreviations and Acronyms:
 IPC – Interprocess communication
 MPU – Microprocessor unit
 DEC – Digital Equipment Corporation
 LoC– Lines of code

An operating system generally consists of two parts:
kernel space (kernel mode) and user space (user
mode).The basic part of any OS and which acts as a
bridge between applications and the actual data
processing at the hardware level, is a kernel. A kernel
can provide the lowest-level abstraction layer for the
resources (especially processors and I/O devices)

� The types of kernel are discussed below:

A. Monolithic Kernel :-

• Monolithic systems are often known as “The Big Mess”
or spaghetti code.
• This type of kernel was prominent in the early days.
• Here, the system is a collection of procedures.
• Each module calls any other module.
• No information hiding (as opposed to
modules, packages, classes which are used now)

With millions of LoC and 1-16 bugs per 1000 LoC
monolithic systems are likely to contain many bugs. This

2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies

978-1-4799-2102-7/14 $31.00 © 2014 IEEE

DOI 10.1109/ICESC.2014.15

34

type of OS has the problem of being difficult to debug.
From a high-level reliability perspective, a monolithic
kernel is unstructured.

B. Micro-kernel :-

• Here, code moves as much as possible from the kernel
into “user” space.

• Communication takes place between user
 modules using message passing.

• It is easier to extend a microkernel and to port the
operating system to new architectures.

• It is more reliable (less code to run in kernel mode)
and more secure as well.

C. Exo-kernel : -

• Here kernel separates hardware from application.
• Kernel allocates physical resources to application. It is

based on conceptual model (files systems, virtual
address space, schedulers, sockets)

• Application decides what to do with these sources. It
can link to a lib OS to emulate a conventional OS.

• Usually used where strong hardware interaction is
required.

RTOS can be defined as “The ability of the operating
system to provide a required level of service in a
bounded response time.”[2] RTOSs’ are broadly
classified into two categories, namely, hard real time
and soft real time as described below:

A. Hard RTOS: These types of RTOS strictly adhere to
the deadline associated with the tasks. These systems
can’t tolerate any delay, otherwise the system will
break. For ex, break system in automotives,
pacemakers.

B. Soft RTOS: In these types of RTOS, missing a
deadline is acceptable. These systems can tolerate
delay but is highly undesired. e.g. on-line Databases.
In addition, they are classified according to the types
of hardware devices (e.g. 8-bit, 16-bit, 32-bit MPU)
supported.

II. FEATURES of RTOS :-

An RTOS must be designed in a way that it should strike a
balance between supporting a rich feature set for
development and deployment of real time applications and
not compromising on the deadlines and predictability [3]

A. Task Priority:
Preemption defines the capability to identify the task that
needs a resource the most and allocate it the control to
obtain the resource. In RTOS, such capability is achieved

by assigning individual task with the appropriate priority
level. Thus, it is important for RTOS to be equipped with
this feature.

B. Reliable and Sufficient Inter Task Communication
Mechanism:

For multiple tasks to communicate in a timely manner and
to ensure data integrity among each other, reliable and
sufficient inter-task communication and synchronization
mechanisms are required.

Other features of RTOS have been discussed during
performance analysis done later in the paper.
Here the RTOS are chosen from different categories which
are:-

� VxWorks : Most compatible RTOS
� Windows CE : Commercially successful
� QNX Neutrino: Commonly used for multiple node

systems.
� RTAI : Popularly used RTOS

III. MISCONCEPTIONS REGARDING RTOS and
THEIR CLARIFICATION :-

� RTOS is very fast: This is not true.
An RTOS should have a deterministic behavior in terms
of deadlines but it’s not true that the processing speed
of an RTOS is fast. This ability of responsiveness of an
RTOS does not mean that they are fast.

� All RTOS are same.
 As already discussed there are two types of RTOS
(Hard & soft).

� RTOS uses considerable amount of CPU overhead.
This is not true. Only 1%-4% of CPU time is
required by an RTOS [4]

� There is no science in RTOS system design.
But most good science grew out of attempts to solve
practical problems faced by different embedded
systems.

� RTOS always consumes lot of energy.
Energy consumption of any system is mainly
dependent on hardware used & architecture
followed.

IV. LIMITATIONS of RTOS:

• It can be Costly.
• RTOS are generally complicated and can

consume a non-trivial amount of processor
cycles.

• RTOS doesn’t support multitasking with absence
of round-robin scheduling.

35

V. RTOS UNDER COMPARISON :

A. VxWorks: VxWorks is a RTOS designed by Wind
River systems, California. It is one of the most
preferred commercial RTOS in today’s world. Its
special module is being used by BOEING-777 and
Mars Rover (Curiosity) project. Thus it becomes
very essential to discuss details of this RTOS.[5]

B. Windows CE: It is now officially known as Windows
Embedded Compact. It’s a closed source O.S,
initially released 16 years ago, in 1996. Many
embedded platforms have been based on the core
Windows CE O.S, including Microsoft's Windows
Phone and many industrial devices.[6]

C. QNX Neutrino: It is a commercial Unix-like RTOS,
originally developed in 1982 by Canadian company
Quantum Software Systems. QNX was one of the
first commercially successful microkernel O.S and is
used in a variety of devices including cars and
mobile phones.[7]

D. RTAI: RTAI stands for Real-Time Application

Interface. It is a real-time extension for the Linux
kernel - which lets you write applications with strict
timing constraints for Linux. It’s used to control
robots, data acquisition systems, manufacturing
plants, and other time-sensitive instruments and
machines. It also enhances the hard real-time
scheduling capabilities and primitives for
applications to use it.[8]

VI. PERFORMANCE ANALYSIS

PARAMETERS:

A. Deadlock :
It is a situation in which two or more competing
processes are each waiting for other to finish and thus
neither ever does. It usually results into resource
starvation or lag in execution. As we know any delay
in result from RTOS can be catastrophic, so we expect
RTOS to preferably avoid situation of deadlock or
handle it efficiently.

Conditions for deadlock:

• Mutual exclusion
• Circular wait
• Hold and wait
• Less preemption

These four conditions are known as the Coffman
conditions from their first description in a 1971 article
by Edward G. Coffman, Jr. [9] Probability of RTOS of
getting into a deadlock condition depends on the
degree of preemption.

1) Avoiding deadlock: Best approach is to prevent one of
the four Coffman conditions from occurring,
especially the fourth one. Also methods like acquiring
additional information in advance about the process
and deciding whether a process should wait or not can
also be used by a RTOS to prevent deadlock.

2) Deadlock handling: If deadlock occurs, RTOS should
be able to recover from it, as early as possible.
Usually solution for recovery is process termination,
which is implemented as:

• Abort all deadlocked processes.
• Abort one process at a time until the deadlock cycle is

eliminated.

 B. Memory footprint :
Memory footprint is an estimate of RAM and ROM
requirements of an RTOS on a specific embedded
platform. Effective code, read-only data of the kernel,
and any runtime library code are all collectively part of
the ROM size. RAM requirements on the other hand
are a sum of data structures and global variables and
temporary programs.
Memory footprint values depend upon architecture of
hardware platform, compiler settings (optimizations)
& most importantly OS configurations which include
kernel size & size of run-time libraries. Footprint
metrics are often an important decision factor when
considering an RTOS solution, especially in situations
where devices have limited on-chip memory and no
possibility of interfacing with external memory. [10]
Lower footprint value of RTOS may reduce cost
dedicated for storage hardware while planning a
project and can also further increase scope of adding
more functions in the system keeping the memory size
same.

 C. Portability/ Compatibility :
Often, a current application may outgrow the hardware
it was originally designed for, as the requirements of

36

the product increases. An RTOS with such a capability
can thus be ported between processor architectures.
Thus, giving flexibility to choose hardware according
to project requirements.

Fig1. No. of Platforms supported by RTOS under survey

D. Development tools provided :
A sufficient set of development tools including
debugger; compiler and performance profiler might
help in shortening the development and debugging
time, and improve the reliability of the coding.
Commercial RTOSs usually have a complete set of
tools for analyzing and optimizing the RTOSs’
behavior whereas Open-Source RTOSs may not have
the same, with them. E.g. Windows CE provides most
advanced & efficient development tools (Microsoft
Visual Studio 2012) .We have considered popular
development platforms for this comparison.

E. Security provided :
Until last decade, RTOS had to serve its typical
features, but from last few years, due to attacks of
malicious software on important systems & network it
has to provide complete security. Here security refers
to protection which secures system from any
unauthorized access inside the system and as well as
outside the system. They are expected to follow
POSIX standards of security to serve current
embedded applications. [11] RTOS like VxWorks &
Nucleus (MG) have successfully fulfilled this role.

F. Run-time performance :
Run-time performance of an RTOS is generally
governed by the interrupt latency, context switching
time and few other metric of kernel performance. This
consideration is useful if the performance assessment
of the application on a given RTOS is to prototype its
performance-critical aspects on standard hardware
[12].

1) Latency: Latency is analysed externally taking the
RTOS under test in conjunction with the hardware as a
black box. The latency consists of the time difference
between the moment that an interrupt is generated and
the moment that the associated interrupt handler
generates an external response.

2) Jitter: Jitter is indirect information obtained from
several latency measures, consisting of a random
variation between each latency value. In a RTOS, the
jitter impact could be notorious, as it is analysed by
Proctor when trying to control step motors.

3) Worst Case Response Time: Worst Case Response
Time is obtained using the method proposed by ISA
that was discussed above analysing the maximum
interrupts frequency that is handled by the RTOS with
reliability. The worst case response time is the inverse
of the maximum frequency obtained.

(The test proposed by the A&CS consists in setting a
system that copies the input signal directly to an output
port, and measuring how many pulses was generated
in the input and how many were copied to the output.
Theoretically, while the system is stable, the
accumulated number of pulses in both ports should be
equal. Later, the input signal frequency should be
slowly incremented until the input and output pulses
count starts to diverge. In this moment, the frequency
should be reduced until the maximum system
operation frequency is found.)[13]

Fig3. Show worst case response time
A: Response Time (1/max sustained frequency), B:
Latency, C: Latency Jitter

4) Scheduling algorithms: Scheduling algorithms used in an
O.S, have a great impact on their run-time performance.
Problems regarding multi-tasking & Task-priority are
addressed by these algorithms. Frequency of context
switching is also decided by these algorithms.

0
2
4
6
8

10

N
o.

 O
f P

la
tf

or
m

Su

pp
or

te
d

Supported
Platforms

0 100 200

Windo…

Neutrino

RTAI

VXWorks

Time (In Micro Seconds)

Latency Jitter

Latency

Response
Time

37

The VxWorks Scheduler:

Base Scheduling algorithm: - Priority Pre-emptive
The tasks are done in order of their priorities. A
particular task will be pre-empted, only if a task having
higher priority is requested. Tasks that have higher
periodic requirements should be given higher priority;
tasks that make intensive computations should be given
lower priority. VxWorks has an option to enable the
Round-Robin mode, in which every task gets equal CPU
burst turn by turn. Starvation is possible as the low
priority tasks may not get CPU.
RTAI Scheduler: FPPS (Fixed Priority Preemptive
Scheduling) is used in RTAI, in which higher priority
jobs are completed first. Priority is again decided on
basis of time constraints. Preemptive scheduling suffers
problem of context switching. More the preemption
more are the context switches. Fixed priority Scheduling
with deferred pre-emption (FPDS) has been proposed
instead of FPPS. FDPS is a mid-ground between FPPS
and FPNS(Fixed Priority non-Preemptive Scheduling)
and gives benefits of both the techniques.(gives
advantage over context switching overhead and resource
access control) Each job of FPDS contains sub-jobs and
pre-emption is possible only between sub-jobs. Lesser
the preemptions, lesser is the context switch.[14]

Fig.4 This Figure shows Frequency of context switching
of RTOS under survey.

5) Interrupt Latency
Interrupt Latency is defined as the sum of interrupt
blocking time during which the kernel is pending to
respond to an interrupt, saving the tasks context,
determining the interrupt source, and invoking the
interrupt handler. For a particular interrupt, the latency
also includes the execution time of other nested interrupt
handlers. Since most embedded systems is interrupt-
driven, low interrupt latency will drastically increase
system throughput.(In this experiment, we configured the

MPC8260 hardware timer with a period of 50MHz to
generate a timer interrupt every 20us)[15]

Table
Number

Calculation of Interrupt
Latency

Interrupt latency
(μS)

Vx Works RTAI

98(0.55) 132(1.2)

Fig5. Shows Interrupt Latency of RTAI and VxWorks

It is not surprising that VxWorks has much lower
interrupt latency (35%) than RTAI. Traditional Linux is
known for having high interrupt latency. It appears that
even though RTAI had been added with real-time
capability, it still exhibits some non-real-time behaviour.

6) Inter-Process Communication
Modern real-time applications are constructed as a set of
independent, cooperative tasks. Along with high-speed
semaphores, VxWorks and RTAI also provide message
queue as higher-level synchronization mechanism to
allow cooperating tasks to communicate with each other.
Because of the implementation complexity, using this
service imposes the greatest amount of latency and thus
is a key metric to operating system study.[16]

Fig.6 This Figure shows Message Queue Test Setup
This test is done by creating and activating (or open) a
message queue. Next, spawning a receiving task from
which the messages receive function is invoked. The
receive system call blocks the receiving task and put it in

0
2
4
6

Frequency
of context
switching

0 100 200

Vx Works

RTAI

Time (in Micro Second)

Interrupt
Latency

38

the wait state (since the message queue is empty). While
the receiving task was waiting for the message, we
spawned a sending task to send a message via the same
message queue. The time between the sending task to call
the message send function and the receiving task to
receive message notification is given in Table below
[17]:

Table Number Calculation of Message Queue Delay
Message Queue
Delay (μS)

VxWorks RT AI
118 (0.9) 113(1.8)

Fig. 7 This Figure shows Message Queue Delay in
VxWorks and RTAI.

VII. CONCLUSIONS :
Real time applications have become popular these days due
to the complexity in the system. To meet those
complexities, the developers are given the invariable task of
making the real time software. There are quite large
numbers of RTOS available in the market and one does get
confused as to which one to select; such that it provides the
efficient embedded systems design in terms of cost, power
consumption, reliability, speed etc. Ranking RTOS is a
tricky and difficult because there are so many good choices
are available in the market. The developer can choose either
commercial RTOS (44% developers are using) or open-
source RTOS (20) or internally developed RTOS (17 %).
From comparison and study of these selected commercial
RTOS, we can infer that –

� RTAI and VxWorks provide a wide range of supported

platforms.
� RTAI, an Open-source RTOS is most suited for small

applications, such as robotics and medical devices.

� Whereas, VxWorks is dominant in highly complex and
high performance applications.

� When we have many interrupts VxWorks is the better
pick & it is faster than RTAI. Applications which are
getting number of interrupts continuously in such case
VxWorks should be preferred. Interrupts will tend to
increase when number of inputs is applied to the RTOS
simultaneously.

� In terms of message send/receive latency, RTAI is a
better performer than VxWorks by a marginal difference.
As mentioned earlier, these figures might vary to a large
extent depending on the IPC implementation (IPC can be
implemented using shared memory).

ACKNOWLEDGEMENT
Authors would like to thank
Prof. Manoj.B Chandak (CSE Dept.),
Prof. Jiterndra Zalke (EDT Dept.)
Prof. Tauseef Diwan (CSE Dept.)

REFERENCES
[1]Real Time Operating Systems by- Karteek Irukulla
[Online]. Available: http://www.scribd.com/doc/40401275/RTOS
[2] POSIX Standard 1003.1
[3]Features of RTOS [Online]. Available: http://www.thegeekstuff
/2012/02/rtos-basics/
[4]Deadlock [Online].Available: en.wikipedia.org/wiki/Deadlock
[5] http://en.wikipedia.org/wiki/VxWorks
[6] http://en.wikipedia.org/wiki/Windows_CE
[7] http://en.wikipedia.org/wiki/QNX
[8] http://en.wikipedia.org/wiki/RTAI
[9]Coffman conditions [Online]. Available:http://www.mentor.com
/embedded-software/ resources/overview/measuring-rtos-performance-
what-why-how
[10]A.Silberschatz, P.B.Galvin and G.Gagne, “Operating System
Concepts”
[11]RTOS Selection Guide [Online].Available: http://www.zembedded.
com/rtos-basic-selection-guide/
[12] Rafael V. Aroca, GlaucoCaurin – “A Real Time Operating Systems
(RTOS) Comparison”
[13] Rafael V. Aroca, Glauco Caurin – “A Real Time Operating Systems
(RTOS) Comparison”
 [14] Mark Bergsma, Mike Holenderski, Reinder J. Bril and Johan J.
Lukkien–“Extending RTAI/Linux with Fixed-Priority Scheduling with
Deferred Preemption”
 [15]Jun Sun, “Interrupt Latency”, Monta Vista Software
[Online].Available http://www.mvista.com/realtime/latency/
 [16] Performance Analysis of VxWorks and RTAI [Online].Available:
Performance Analysis of VxWorks and RTLinux by Benjamin Ip
http://www.scribd.com/doc/3792519/ Vxworks-Vs-RTLinux.
[17] J.A.Stankovic and K.Ramamritham, -“The spring kernel: A new
paradigm for real-time operating systems ”.

110 115 120

RTAI

TIme (in Micro Second)

Message
Queue
Delay

39

