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rive parameters from spectral variations associated with heavy metals in soil and
to explore the possibility of extending the use of these parameters to hyperspectral images and to map the
distribution of areas affected by heavy metals on HyMAP data. Variations in the spectral absorption features
of lattice OH and oxygen on the mineral surface due to the combination of different heavy metals were linked
to actual concentrations of heavy metals. The ratio of 610 to 500 nm (R610,500 nm) in the visible and near-
infrared (VNIR) range, absorption area at 2200 nm (Area2200 nm), and asymmetry of the absorption feature at
2200 nm (Asym2200 nm) showed significant correlations with concentrations of Pb, Zn, and As, respectively.
The resulting spectral gradient maps showed similar spatial patterns to geochemical gradient maps. The
ground-derived spectral parameters showed a reliable quantitative relationship with heavy metal levels
based on multiple linear regression. To examine the feasibility to applying these parameters to a HyMAP
image, image-derived spectral parameters were compared with ground-derived parameters in terms of R2,
one-way ANOVA, and spatial patterns in the gradient map. The R1344,778 nm and Area2200 nm parameters
showed a weak relationship between the two datasets (R2N0.5), and populations of spectral parameter
values, Depth500 nm, R1344,778 nm, and Area2200 nm derived from the image pixels were comparable with those
of ground-derived spectral parameters along a section of the stream channel. The pixels classified in the rule
image of Depth500 nm, R1344,778 nm, and Area2200 nm derived from a HyMAP image showed similar spatial
patterns to the gradient maps of ground-derived spectral parameters. The results indicate the potential
applicability of the parameters derived from spectral absorption features in screening and mapping the
distribution of heavy metals. Correcting for differences in spectral and spatial resolution between ground and
image spectra should be considered for quantitative mapping and the retrieval of heavy metal concentrations
from HyMAP images.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

The distribution and diffusion of heavy metals throughout mining
areas are an important issue because abandoned tailings1 can be a
major source of environmental pollution. A general method for
surveying the spatial distribution of heavy metals involves the
Geo-information Science and
Analysis, Hengelosestraat 99,
53; fax: +31 53 4874336.

(i.e., the extraction of ore from

l rights reserved.
systematic sampling and laboratory analysis of stream sediment
samples followed by interpolation of the point results in compiling
distribution maps (Ferrier, 1999; Kemper & Sommer, 2002); however,
such an approach is time-consuming and costly. Remote sensing has
been used in investigations of the dispersion of heavy metals as a
rapid method of preliminary analysis, and the use of high-quality
imaging spectrometer (hyperspectral) data may improve upon
previous results. Several studies have indicated the possibility of
applying field and imaging spectroscopy in the identification of
minerals containing heavy metals as an indicator of contamination in
mining areas (Farrand & Harsanyi, 1997; Ferrier, 1999). Montero et al.
(2005) assessed the potential of abandoned mines for acid mine
drainage (AMD) by characterizing waste rock associated with acid
drainage, and Sares et al. (2004) indirectly determined the pH of an
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Fig. 1. Location map and HyMAP image of the Rodalquilar area, SE Spain. (a) Locations of sampling points along the studied main stream, showing the five sections. (b) HyMAP image
acquired in 2004.

3223E. Choe et al. / Remote Sensing of Environment 112 (2008) 3222–3233
AMD-affected stream by identifying iron-bearing minerals precipi-
tated on the streambed. In terms of assessing the heavy metal level in
soils, Wu et al. (2005) and Kemper and Sommer (2002) estimated
metal concentrations using reflectance spectroscopy and statistical
prediction models; the authors suggested the possibility of applying
their technique to remote sensing.

In the present study, it is assumed that although heavy metals are
spectrally featureless in the visible and near-infrared parts of the
electromagnetic spectrum, the spectral signatures of minerals that
bind heavy metals can be used for the indirect detection and mapping
of metal dispersion using spectrometer data. This study focuses on
deriving parameters from spectral responses associated with heavy
metals in soil as a fingerprint to be used in tracing the metals. We also
explore the possibility of extending ground-derived spectral para-
meters to images, and the mapping of areas affected by heavy metals
on HyMAP data using the spectral parameters themselves as an initial
step in the retrieval and quantitative mapping of heavy metals from
hyperspectral images. These aims are achieved by characterizing the
spectral variation of minerals that bind heavy metals, based on the
theory of metal sorption mechanisms in soil. Clay and metal oxide
minerals are considered because heavy metals are easily adsorbed
onto these minerals in soils. These mineral surfaces in soil have
functional groups capable of forming complexes with inorganic and
organic ions. In particular, inorganic hydroxyl groups that combine
with surface Al, Fe, Mn, or Si on metal oxides or the edges of clay
minerals are one of the major surface functional groups (Zachara &
Westall, 1999). Inorganic hydroxyl groups are not only a major
adsorption site, but also act as chromophores2 inmineral components.
2 Chromophore, a parameter or substance (chemical or physical) that significantly
affects the spectral shape and nature of materials (Ben-Dor et al., 1999).
2. Background

2.1. Binding mechanism of heavy metals onto minerals

To explain possible variations in spectral signal due to heavy metals
boundontominerals, it is necessary to consider themetal binding reaction
onto themineral surface. This approach starts from the possibility that the
spectral assignment position of minerals can change with chemical
composition and surface activity (Ben-Dor et al., 1999). Despite the
occurrence of otherwise similar minerals in different samples, variations
in spectral features (e.g., shifts in the peak wavelength) may occur
depending on the nature of highly enriched cations in the mineral.

The surface complexation model of the binding reactions of heavy
metals describes the binding ofmetal ions to the surface functional group
on the mineral surface to form a more stable molecular unit (Christl &
Kretzschmar, 1999; Zachara & Westall, 1999). Inorganic hydroxyl groups
that bind to surface Al, Fe, Mn, or Si on oxides or Al and Si exposed on the
edges of clay minerals are the main surface functional groups (Sparks,
1995; Zachara &Westall, 1999). The surface complexationmodel is based
on the fact that the sorption of ions takes place at specific surface sites
(Dzombak&Morel,1990; Christl &Kretzschmar,1999). Sites that originate
fromabrokenmineral lattice, knownasvariable charge sites, are relatively
stable over long time scales (Roberts et al., 2005). Metal cations (M2+)
adsorbed onto such hydroxylated surface sites (ROH, inwhichR can be Al,
Fe, Mn, Si, etc. upon mineral surfaces) are generally described as follows:

ROHþM2þ ¼ ROMþ þ Hþ ð1Þ

ROHþM2þ ¼ RO�Mþ þ Hþ ð2Þ

In this reaction, H+ ions are released from ROH (e.g., AlOH, SiOH, or
FeOH) on the mineral surface, such as clay and metal oxides, as M2+



Fig. 2. Spectral variations in the VNIR and SWIR ranges related to lattice OH and oxygen
binding with heavy metals as a function of heavy metal concentrations. (a) Ratio
610,500 (n1, m1) and ratio 1344,778 (n2, m2) in the VNIR range. (b) Absorption depth
(S, P) at about 500 nm for field samples with heavy metal concentrations ranging from
356 to 19507 ppm. (c) Absorption depth (S, P) at about 2200 nm for sediment samples
with heavy metal concentrations ranging from 349 to 1789 ppm.
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cations are adsorbed; consequently, an increase in the amount of
metal cations results in a decrease in the extent of the hydroxyl
surface site (i.e., ROH) and an increase in RO at the mineral surface. As
a consequence of the binding reaction of heavy metals, decreasing
ROH and increasing RO (e.g., FeO) on the surfaces of clay and oxide
minerals may result in variations in the shapes of their absorption
peaks (e.g., depth, area, or asymmetry of reflectance spectra) at around
2200 nm and 500–1000 nm, respectively, once heavy metals are
bound to the minerals.

3. Description of the study area

The study site is the Rodalquilar gold-mining area in SE Spain
(Fig. 1), part of the Cabo de Gata volcanic field. The rocks in this area
are dominated by quartz, alunite, jarosite, pyrophyllite, illite, kaolinite,
hematite, and related minerals. Gold mineralization at Rodalquilar
resulted from a hydrothermal alteration system that produced high
levels of sulfidation (Arribas et al., 1989; Rytuba et al., 1990).

Small-scale mining of silver-rich galena from veins took place for
many centuries; however, from the 1940s to the 1960s, gold mining
was undertaken at a larger scale, including both underground mining
and open pits. Mining was concentrated along the east wall of the
Cinto caldera, approximately 1.5 km northwest of Rodalquilar. In this
area, gold occurs in association with pyrite that also contains high
levels of arsenic and other metals. High levels of pollutants derived
from waste rock, tailings, and material associated with leaching
operations have been reported from stream sediments along the
entire length of the rambla to the coast (Wray, 1998; Ferrier, 1999;
Moreno et al., 2007).

4. Materials and methods

To observe the relationship between heavy metal levels and
spectral responses, spectral variation with changing concentrations of
heavy metals was defined as the parameters derived from spectral
absorption features such as peak depth, area, asymmetry, and band
ratio. These parameters were linked to heavy metal concentrations via
correlations between them. Based on the obtained statistical relation-
ships, we compared gradient maps of heavy meal levels and spectral
parameter values. In terms of quantitative relationships, the spectral
parameters were used for a linear regression with measured con-
centrations. The image-derived spectral parameters were compared
with ground-derived spectral parameters for individual sampling
points, and applied to image classification for mapping the distribu-
tion of heavy metals in the area adjacent to the streamline. The
obtained results were then compared with a distribution map com-
piled from the ground dataset.

4.1. Ground dataset

4.1.1. Experimental data
The 49 samples of dry sediments were collected from stream

channels in the Rodalquilar area that drain from the Au and Pb–Ag
mining areas and mill tailings. The 20 samples collected from branch
streams were excluded from spatial analysis such as mapping and
image processing because spatial patterns were only considered along
the main streamlines. Samples were sieved in the field to obtain the
soil fraction smaller than 2 mm. The sampled drainage pattern was
divided into five main sections: path-I, path-II, and path-III,
representing the upper reaches of the sampled stream, and co-path-
I and co-path-II, which lie below the confluences of these upper parts.
This division enabled observations of the distribution of heavy metal
concentrations (see Fig. 1(a)). For chemical analysis, sediment samples
were preprocessed by total extraction, carried out by adding aqua
regia (3:1 ratio of HCl to HNO3) for decomposition of the greater part
of any heavy metals present in soils. The concentrations of a large
number of heavy metals were analyzed using inductively coupled
plasma-atomic emission spectrometry (ICP-AES) and atomic-absorp-
tion spectroscopy (AAS); among these metals, As, Cu, Pb, and Zn were
considered to be indicative of environmental pollution.

In terms of spectral measurements, stream sediment samples were
measured in the laboratory using an ASD FieldSpec Pro (Analytical
Spectral Devices Inc.) equipped with a contact probe, using a
Spectralon Diffuse Reflectance Panel for reflectance calibration. The



Table 2
ERL and ERM guideline values for trace metals (ppm, dry wt.)

Element Guidelines

ERLa ERMb

As 8.2 70
Cu 34.0 270
Pb 46.7 218
Zn 150.0 410

a Effects range-low.
b Effects range-median.
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instrument covers the 350–2500 nm range, using the VNIR (350–
1050 nm), SWIR1 (1000–1800 nm), and SWIR2 detectors (1800–
2500 nm). Samples were contained in a 60×15mmdishwith a sample
depth of approximately 8 mm and spectrally measured using the
contact probe, which involves surface-to-surface contact measure-
ments with a spot size of 10 mm and a light source (i.e., halogen bulb).
The internal light source illuminated the sample surface, and all
spectral measurements were carried out in a dark room to avoid
interference by stray light.

4.1.2. Derivation of spectral parameters
Based on metal binding mechanisms, variations in absorption

features such as the peak depth and peak area of the hydroxyl lattice
on clay or oxide minerals were observed at around 2200 nm (Fig. 2), at
which point occurs the OH absorption feature of νOH+δOH in
combination mode (Ben-Dor et al., 1999). Molecules that combine
with Fe have absorption features that lie mainly in the VNIR region
because of the crystal field and the charge transfer effect (Gaffey et al.,
1993; Ben-Dor et al., 1999), thereby giving rise to Fe–O absorption
features in the 400–1200 nm range.

Obtained spectra were continuum-removed and normalized to
enhance the spectral absorption features. The continuum-removal
analysis proposed by Clark and Roush (1984) is the standard
transformation in spectroscopy (van derMeer, 2006). In this approach,
the continuum that is a convex hull of straight-line segments is fitted
over a reflectance spectrum and subsequently removed by division or
ratioing relative to the complete reflectance spectrum (van der Meer,
2006).

Variations in the spectral absorption features of functional groups
that bind heavy metals were measured separately in the VNIR and
SWIR regions to derive spectral parameters. The spectral features in
the VNIR region are known to be associated with iron, e.g., Fe–O (Ben-
Dor et al., 1999). In this range, the shape of the absorption peak was
measured from the continuum-removed spectra, and the wavelength
band ratio was calculated from the reflectance spectra without
continuum-removal (see Fig. 2). Variations in absorption features
around 2200 nm associated with ROH (R: Al, Si, Fe, Mn, etc.) on the
surface of clay or metal oxide minerals were measured from normal-
ized continuum-removed spectra.

4.1.3. Statistical processing
The relationships between the spectral absorption feature para-

meters and heavy metal concentrations were assessed using the
Pearson correlation coefficient. The bivariate correlation was pro-
duced at a 95% confidence level (2-tailed).
Table 1
Heavy metal concentrations within stream sediment samples collected from the five
analyzed pathways

Stream Section Statistics Heavy metal concentration (mg/kg: ppm)

Cu Pb Zn As

Total Mean 129.7 1412.7 200.9 292.2
Highest 584.5 18,811.3 728.1 826.9
Lowest 46.3 96.0 61.3 62.3

Path-I Mean 92.2 336.4 148.5 353.3
Highest 143.9 1024.6 274.4 826.9
Lowest 60.7 110.8 61.3 112.0

Path-II and co-path-I Mean 118.7 410.6 193.8 127.8
Highest 275.6 1187.2 472.5 194.3
Lowest 46.3 96.0 65.4 62.3

Path-III Mean 328.2 8038.5 469.8 238.4
Highest 584.5 18,811.3 728.1 375.5
Lowest 49.1 277.0 115.7 157.7

Co-path-II Mean 68.1 268.6 104.7 541.7
Highest 101.8 371.9 124.3 675.4
Lowest 50.2 167.1 88.2 414.0
To observe the quantitative relationship between spectral para-
meter values and metal levels, two kinds of multiple linear regression,
with stepwise and enter methods, were applied. For the stepwise
multiple linear regression, at each step the independent variable not
in the equation and with the smallest probability of F is entered,
provided that the probability is sufficiently small. Variables in the
regression equation are removed if their probability of F becomes
sufficiently large. The method terminates when no more variables are
eligible for inclusion or removal. For enter multiple linear regression, a
procedure for variable selection is adopted in which all variables in a
block are entered in a single step (Hartman, 2000).

4.1.4. Mapping of the ground dataset
To compare the spatial pattern of elements in the distribution

maps of heavy metal levels with that in the maps associated with
spectral parameter values, gradient maps for each dataset were
compiled within a 40-m-wide bufferzone3 from the streamline.
Kriging interpolation was used as the gridding method in producing
the gradient maps. This method produces visually appealing maps
(e.g., gradient maps) from irregularly spaced data and expresses the
spatial trends in each dataset. As described above, the streams were
divided into five sections to facilitate the description of the spatial
patterns observed in the gradient maps.

4.2. Image dataset

4.2.1. HyMAP image
The image data used in this study was acquired in 2004 during the

HyEUROPE 2004 campaign using the airborne imaging spectrometer
HyMAP operated by HyVista Corporation (Fig. 1(b)). The sensors
collected reflected solar radiation in 126 narrow bands over the 450–
2500 nm wavelength range and with continuous spectral coverage
except for the 1400 and 1900 nm atmospheric water bands (Cocks
et al., 1998). The spatial configuration of the instrument yielded a
spatial resolution of 4 m. The HyMAP data were atmospherically
corrected using the ATCOR 4 model.

4.2.2. Degree of spectral similarity between HyMAP image and field
spectrometer data

To assess the degree of similarity between the reflectance spectra
of HyMAP images and ground-measured spectra, the values of image
pixels corresponding to the locations of ground sampling points along
the main stream channels were compared with ground spectrometer
data. The degree of spectral similarity between image pixels and
ground spectra was measured to evaluate the possibility of applying
the spectral processing of ground data to the image. We measured the
degree of spectral similarity of pixels on a classified image that
correspond to the GPS coordinates of each field sampling point and
the eight surrounding pixels; the most reliable pixel of the nine was
then selected, taking into account geocoding errors of the image and
GPS data. The degree of spectral similarity was measured using
spectral anglemapper (SAM), which determines the degree of spectral
3 Bufferzone, a border area that acts as a barrier separating or surrounding an area
designated for special protection.



Fig. 3. Comparison of spatial patterns in gradient maps for (a) total concentration, (b) Pb concentration, and (c) R610,500 nm.
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similarity between two spectra by calculating the angle hðYx Þ, treating
the spectra as vectors in a space with dimensionality equal to the
number of bands (Kruse et al., 1993). The spectral angle, hðYx Þ, for
images I and Yxa I, is given by

hðYx Þ ¼ cos�1 f kð Þd e kð Þ
jj f kð Þjj jj e kð Þ jj

� �
ð3Þ

where λ is the wavelength range of reflectance spectra, f (λ) is the
image pixel spectra, and e(λ) is the sediment sample spectrameasured
using ASD (Chang, 2003). Smaller values represent a higher degree of
similarity between the two spectra of interest. The degree of spectral
similarity was separately calculated using SAM for the VNIR (400–
1400 nm) and SWIR (2000–2400 nm) ranges, for which spectral
parameters were calculated.

4.2.3. Similarity of spectral parameters between image and ground
datasets

To statistically assess the degree of similarity of spectral para-
meters between the image and ground dataset, a one-way ANOVAwas
performed for 29 ground samples within a main stream and image
pixels corresponding to the sampling points. The null hypothesis in
the one-way ANOVA was that there exist no significant differences
between the mean values of parameters calculated from the image



4 Sediment quality guidelines (SQGs) were proposed by the National Oceanic and
Atmospheric Administration of the USA to estimate the possible toxicological
significance of chemical concentrations in sediments (McCready et al., 2006).

Fig. 4. Comparison of spatial patterns for gradient maps between (a) Zn concentration and (b) Area2200 nm value.
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and ground spectra. This null hypothesis was tested by calculating an
F-value at a significance level of 0.05.

4.2.4. Classification of HyMAP image based on spectral parameters
Spectral parameters derived from ground data were applied to

the classification of spectral responses related to heavy metals on
HyMAP data. The parameters were calculated from the spectra of each
image pixel after pre-processing (e.g., continuum-removal and
normalization), and a rule image was produced for each parameter.
A 40-m-wide bufferzone from the main streamline was considered as
a study section, including 29 sampling points, to focus on the spread of
pollution by stream water during the rainy season. The link between
spectral parameters and heavy metal levels on the image was
simplified via a binary fitness function (Legg et al., 2004; Debba
et al., 2005). To obtain a map for screening heavy metals, the binary
classes were characterized by whether the spectral response was
significantly affected by heavy metals. A threshold for each parameter,
St, for classification associated with heavy metal levels was defined by
the spectral parameter value corresponding to a high concentration of
heavy metal (i.e., exceeding the average concentration of each heavy
metal). Each spectral parameter value, S(xi,j), was classified according
to the following binary fitness function:

ws xi;j
� � ¼ 0; if S xi;j

� �
bSt

1; if S xi;j
� �

zSt

�
ð4Þ

where xi,j, i=1,2,…, n, and j=1,2,…, m represent the pixel spectra
associated with the spatial location, i and j, respectively.
5. Results and discussion

5.1. Relationship between spectral parameters and heavy metal
concentrations

5.1.1. Heavy metal concentrations
Arsenic, Cu, Pb, and Zn were analyzed as an indicator of the

environmental impact of mining activity in the Rodalquilar area. The
concentrations of these heavy metals in sediment samples are
summarized in Table 1. The concentrations of heavy metals in most
samples exceed the effects range-low (ERL) value of sediment quality
guidelines (SQGs)4 in Table 2. On average, Pb showed the highest
concentration of the four elements, with the concentrations of Cu, Zn,
and As being between 129 and 292 ppm at every stream section. The
highest As concentration was observed along path-I and co-path-I.

The spatial distribution of heavy metals observed in the gradient
maps revealed two main spatial trends. The descriptive statistics are
summarized in Table 1 and the distributions of Pb, Zn, and As
concentrations are displayed in Figs. 3, 4, and 5, respectively. Arsenic
concentrations show a marked increase along the tributary down-
stream from the tailing site (co-path-II). Relatively high concentra-
tions of Pb, Zn, and Cu are recorded in the southern part of the study
area and along the tributary that flows through the tailings. Extremely



Fig. 5. Comparison of spatial patterns in gradient maps for (a) As concentration and (b) Asym2200 nm.
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high values of Pb are found along path-III, draining from an
abandoned Pb–Zn mine, although the values show a marked decrease
in downstream sections. Zn and Cu concentrations are slightly
elevated along the upper part of the path-II streamline and the
upper stream of path-I, where the stream passes through an
abandoned gold-mining area, as well as those areas that record high
Pb concentrations. Pb and Zn concentrations show slight increases in
downstream areas.

5.1.2. Spectral parameters
As shown in Fig. 2, several variations in spectral absorption

features show an association with heavy metal levels. In the visible
range in association with FeO, band ratios between 610 and 500 nm
(n1/m1) and between 1344 and 778 nm (n2/m2) were defined as a
parameter caused by spectral variations (see Fig. 2(a)). In addition, the
absorption peak depth, which is the distance from S to P at around
Table 3
Pearson correlation coefficients between ground-derived spectral parameters and heavy m

Element Depth500 nm R1344,778 nm R610,500 nm

log (Cu) 0.253 0.101 0.462⁎⁎
log (Pb) 0.349⁎ 0.126 0.708⁎⁎
log (Zn) 0.538⁎⁎ 0.165 0.634⁎⁎
log (As) −0.050 0.043 0.096
log (Tot) 0.412⁎⁎ 0.142 0.748⁎⁎

⁎ Correlation is significant at the 0.05 level.
⁎⁎ Correlation is significant at the 0.01 level.
500 nm (see Fig. 2(b)), increases with high concentrations of heavy
metals. The absorption depth and area values at around 2200 nm,
where lattice OH in minerals is found, decrease with higher con-
centrations of heavy metals (Fig. 2(c)). These variations were defined
as the spectral parameters, Depth500 nm, R610,500 nm, R1344,778 nm,
Depth2200 nm, Area2200 nm, and Asym2200 nm, respectively.

5.1.3. Statistical correlation with geochemical values and spectral
parameters

The strengths of the relationships between spectral parameters
and heavy metal concentrations were defined using the Pearson
correlation coefficient, as summarized in Table 3. Three spectral
parameters, R610,500 nm, Area2200 nm, and Asym2200 nm, showed a
significant correlation with heavy metal concentrations on log scale.
Copper showedweak correlations with all spectral parameters, and its
relationship with R610,500 nm and Area2200 nm was statistically
etal concentrations on logarithmic scale

Depth2200 nm log (Area2200 nm) Asym2200 nm

−0.168 −0.447⁎⁎ −0.195
−0.247 −0.511⁎⁎ −0.037
−0.468⁎⁎ −0.715⁎⁎ −0.253
0.432⁎⁎ 0.466⁎⁎ 0.810⁎⁎

−0.332⁎ −0.614⁎⁎ −0.152



Table 4
Statistical description of the performance of calibration models (stepwise and enter
multiple linear regression) associated with heavy metal levels and ground-derived
spectral parameters

Regression Predictor F p-
value

R2 SEEa RPDb SDVc

Stepwise multiple linear regression
log (Pb) R610,500 nm 38.341 0.000 0.530 0.382 1.362 0.520
log (Zn) log (Area2200 nm) 30.169 0.000 0.470 0.243

log (Area2200 nm),
R610,500 nm

5.528 0.025 0.546 0.228 1.395 0.318

log (As) Asym2200 nm 72.901 0.000 0.682 0.170
Asym2200 nm, R610,500 nm 21.607 0.000 0.808 0.134
log (Area2200 nm),
R610,500 nm, Asym2200 nm

7.082 0.012 0.843 0.123 2.386 0.293

log (Tot) R610,500 nm 49.500 0.000 0.593 0.288 1.456 0.419

Enter multiple linear regression
log (Pb) Depth500 nm, R610,500 nm,

R1344,778 nm, Depth2200 nm,
log (Area2200 nm),
Asym2200 nm

7.727 0.000 0.615 0.374 1.390 0.520
log (Zn) 7.132 0.000 0.596 0.230 1.387 0.318
log (As) 34.258 0.000 0.876 0.114 2.562 0.293
log (Tot) 8.965 0.000 0.650 0.289 1.447 0.419

a Standard error of estimate.
b Ratio of prediction deviation.
c Standard deviation of validation set.
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significant, with a p-value less than 0.01. Lead and total concentrations
of heavymetals had the highest correlation coefficients: 0.71 and 0.75,
respectively. These two geochemical values showed similar trends of
Fig. 6.Measured vs. predicted heavymetal concentrations plotted on a log scale, as derived fr
(a) Lead. (b) Zinc. (c) Arsenic. (d) Total concentrations.
correlations with the analyzed parameters. In terms of Zn, Area2200 nm

showed the strongest relationship, with a correlation coefficient of
−0.72. The negative sign of the correlation supports the hypothesis
that if heavy metals combine to the surface functional group, e.g., ROH
(Formulas 1 and 2), it is possible that the absorption feature of the
group at the assigned spectral position might weaken because of a
decrease in the amount of ROH at the mineral surface. Arsenic
concentrations had a statistically significant correlation with
Asym2200 nm (R=0.81) at a significant level of 0.01.

5.1.4. Comparison of spatial distribution patterns
Based on the correlation results, the gradient maps of spectral

parameters were compared with maps showing heavy metal
concentrations on log scale in association with the distribution
pattern along the studied streamline. R610,500 nm, Area2200 nm, and
Asym2200 nm showed similar spatial patterns to Pb and total
concentrations, Zn, and As concentrations, respectively. In Fig. 3, the
gradient maps of Pb and total concentrations show the same pattern,
and the map associated with R610,500 nm value shows a similar
distribution pattern to both geochemical maps. In particular, these
patterns show a good likeness in most sections of stream channels
except for path-II. In the Area2200 nm map (Fig. 4 (b)), the color legend
was inversed due to the negative correlation with Zn concentrations.
The Area2200 nm and Znmaps display comparable patterns along path-
III, co-path-I, and co-path-II, but values on the Area2200 nm map are
higher than those on the Zn map along path-I and the upper part of
om an entermultiple linear regressionmodel using ground-derived spectral parameters.



Fig. 7. Scatter plot of spectral parameter values, (a) R1344,778 nm and (b) Area2200 nm, for
classified HyMAP image pixels and ground spectrometer data.
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path-II (Fig. 4). Overall, the pattern apparent in the Asym2200 nmmap is
comparable to that on the map showing the distribution of As
concentration, although discrepancies are observed along the upper
part of path-III (Fig. 5). The map of As concentrations on a log scale
shows numerous differences in spatial pattern compared with the
Table 5
Results of one-way ANOVA between ground- and image-derived parameter values

Spectral parameter ANOVA Path-I Path-II Path-III and
co-path-I

Co-path-II Total

Depth500 nm p-value 0.006 0.730⁎ 0.001 0.261⁎ 0.001
F 9.501 0.125 21.902 1.497 13.042
Fcritical 4.414 4.844 4.747 5.591 4.027

R610,500 nm p-value 0.000 0.030 0.061⁎ 0.585⁎ 0.000
F 27.139 6.624 4.451 0.351 21.874
Fcritical 4.494 5.117 4.965 7.709 4.030

R1344,778 nm p-value 0.412⁎ 0.830⁎ 0.854⁎ 0.626⁎ 0.859
F 0.705 0.048 0.035 0.264 0.032
Fcritical 4.414 4.747 4.747 5.987 4.020

Depth2200 nm p-value 0.020 0.000 0.435⁎ 0.001 0.000
F 6.649 52.877 0.660 38.823 14.903
Fcritical 4.494 4.965 4.965 5.987 4.013

Area2200 nm p-value 0.123⁎ 0.001 0.409⁎ 0.000 0.001
F 2.619 20.239 0.732 93.179 11.293
Fcritical 4.414 4.747 4.747 5.318 4.013

Asym2200 nm p-value 0.003 0.034 0.066⁎ 0.001 0.001
F 12.458 6.044 4.245 45.716 12.344
Fcritical 4.494 4.965 4.965 5.987 4.013

⁎ No significant differences at pN0.05.

Table 6
Statistics of spectral parameters calculated from ground data and image data

Spectral parameters Ground Image

Mean Max Min Mean Max Min

Depth500 nm 0.199 0.247 0.126 0.115 0.316 0.053
R610,500 nm 1.892 2.049 1.801 1.676 1.791 1.519
R1344,778 nm 1.325 1.418 1.148 1.356 1.492 1.240
Depth2200 nm 0.559 0.727 0.293 0.350 0.829 0.040
Area2200 nm 34.377 50.630 15.853 21.916 60.587 1.504
⁎

Asym2200 nm map; consequently, the raw value of As concentration
was used in producing a gradient map that showed a good likeness to
the distribution pattern of the geochemical map.

5.1.5. Quantitative relationships
Quantitative relationships between metal concentrations and

spectral parameters are listed in Table 4. Results are shown for all
predictions with R2N0.5. Two kinds of multiple linear regressions,
stepwise and enter methods for selecting predictor variables, were
applied. For stepwise linear regressions, R610,500 nm, Area2200 nm, and
Asym2200 nm were mainly used as predictors. Of the parameters used
for validation, R2 (N0.5), RPD (N1.3), and SEE (b0.4) lay in reliable
ranges. Prediction results for Zn using R610,500 nm and Area2200 nm and
Pb and total value using R610,500 nm indicated a weak relationship
(R2N0.5). Prediction of As using R610,500 nm, Area2200 nm, and
Asym2200 nm showed a more reliable result: R2=0.843, RPD=2.386,
and SEE=0.123. In terms of enter multiple linear regression, all six
spectral parameters were included in the regression as a predictor.
Their prediction performances for Pb, Zn, As, and total value was
superior to those of the stepwise method. For the enter multiple linear
model, predicted and measured heavy metal concentrations are
compared in a scatter plot using a log scale (Fig. 6).

According to the prediction results of the linear regression model,
ground-spectra-derived spectral parameters raise the possibility of a
quantitative approach for heavy metal concentrations except for
copper; in particular, multiple linear regression employing the enter
method.

5.2. Application of the spectral parameters to a HyMAP image

5.2.1. Spectral similarity
The mean values obtained using SAM indicate a high degree of

similarity (SAMb0.1) between HyMAP image spectra and ground
spectrometer spectra. SAM values for spectra in the SWIR range
(2000–2500 nm) (SAMSWIR=0.037) are lower than those in the VNIR
range (400–1200 nm) (SAMVNIR=0.087), meaning that the spectral
parameters in the SWIR range in the HyMAP image might be more
similar to the parameters derived from the ground spectra. These
results indicate that spectral parameters derived from ground spectra
could be applied to the image dataset in both wavelength ranges.

5.2.2. Comparison between ground- and image-derived spectral
parameter

To assess the degree of similarity of obtained spectral parameter
values between ground and images, the R2 value and one-way ANOVA
was calculated between ground spectrometer data and those image
pixels that correspond to the field sampling sites. R610,500 nm and
Area2200 nm in the scatter plot (Fig. 7) show weak relationships
between the image and ground datasets for each of the 29 sampling
points in themain stream (R2N0.5), while the other parameters record
R2 values below 0.5.

In terms of the one-way ANOVA of populations for Depth500 nm,
R610,500 nm, and Area2200 nm, p-values were below 0.05 and F-values
were larger than critical values, meaning that these parameters showed
Asym2200 nm 1.196 2.887 0.198 −0.037 1.259 −0.739
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a significant difference between the image and ground datasets;
however, we also calculated ANOVAwithin each stream section because
the populations of these parameters recorded different mean values in
each stream section (Table 5). The one-way ANOVA results for
Depth500 nm values along path-II and co-path-II indicated that the
populations of the image and spectral parameters are statistically
similar. For Area2200 nm, path-I and path-III and co-path-I exhibit no
significant difference between the two populations. In terms of
R610,500 nm, the two datasets showed similar populations along co-
path-II and path-III and co-path-I. The F-value calculated for image and
ground R1344,778 nm data was smaller than the corresponding critical F-
value (p=0.859); therefore, there are no significant differences in
R1344,778 nm values, and the ANOVA results for all stream sections also
showed statistical similarity between the two datasets. Depth2200 nm
Fig. 8. Distribution maps of spectral parameter values, (a) R1344,778 nm, (b) Area2200 nm, and (c)
parameters derived from ground data (inset figures).
and Asym2200 nm showed significant differences in the population
between image and ground, except for path-III and co-path-I.

The differences in spectral parameter values between image and
ground data might be explained by the contrasting scales of
observation. In terms of comparing spectrum values, spectrometer
data for ground samples were fine-scaled, covering a single point, a
spot size of 10 mm for the measurement, whereas each pixel on the
HyMAP image contained the average reflectance of a 4×4 m surface
area. Even though the pixel spectra on the classified image,
corresponding to the GPS coordinates of the field sampling point,
are similar to the spectrometer data, the spectral response could
include differences between the image and spectrometer data due to
the measurement scale. In addition, in comparing maps, the gradient
map interpolating the parameter values derived from spectrometer
Depth500 nm, classified fromHyMAP image pixels, comparing gradient maps for spectral
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data employed a coarse spatial resolution representing the sampling
interval, downscaled for mapping.

5.2.3. Spatial distribution patterns of classified image pixels
The spectral parameters were calculated with HyMAP image

pixels, and each parameter produced a rule image for extended
observations from pixels of the sampling point to the area adjacent to
the streamline. The parameter values for each stream section derived
from the HyMAP image are compared with those from the ground
dataset in Table 6. The rule images associated with spectral
parameters were classified based on threshold values. Fig. 8 shows
the classification results of the HyMAP image for spectral parameters.
Of the six spectral parameter rule images, the distribution pattern of
classified images for Depth500 nm, R1344,778 nm, and Area2200 nm showed
a similarity to the spatial patterns in the gradient map of the ground
dataset. In particular, similar patterns were recorded along the upper
part of path-III and the tributary flowing from the tailings site,
corresponding to higher concentrations of heavymetals. The classified
pixels indicate that the spectral parameter values shown on the map
represent above-average heavymetal concentrations, according to the
definition of the threshold value employed in the classification
procedure.

In terms of R1344,778 nm, image pixels along parts of path-I around
the tailing dump and path-III were classified as having higher
parameter values than those on the ground parameter map, and
lower values were recorded along co-path-I (Fig. 8 (a)). For the
Area2200 nm map, the distribution pattern showed similar results for
the two datasets in all areas except for the middle sections of path-I
and path-II (Fig. 8 (b)). For the Depth500 nm map, those sections with
higher values recorded comparable patterns between the image and
ground datasets, whereas image pixels showed relatively high values
along the middle sections of path-I and path-II, which recorded
relatively low values in the ground dataset (Fig. 8 (c)).

6. Conclusions

This study examined the possible use of spectral indicators
obtained from a field sample in estimating heavy metals, as well as
extending their use to image data in mapping heavy metal distribu-
tions as an initial step to retrieving heavy metals from image-derived
spectral parameters and quantitatively mapping their distribution.
Parameters derived from the spectra of sediment samples were linked
to heavy metals and extended to HyMAP images. From variations in
the spectral absorption features of ROH (R: Al, Si, Mn, Fe, etc.) and RO
(i.e., FeO) at mineral surfaces, Depth500 nm, R610,500 nm, and R1344,778 nm

in the VNIR range and Depth2200 nm, Area2200 nm, and Asym2200 nm in
the SWIR range were derived as spectral parameters associated with
heavy metals, based on the theory of metal binding reactions. The
ground-derived spectral parameters R610,500 nm, Asym2200 nm, and
Area2200 nm showed statistically significant relationships with Pb, As,
and Zn, respectively, as well as similar spatial patterns on the
compiled maps. This result indicates that spectral parameter values
are directly related to heavymetals, and can be used to screen them on
a map. Moreover, the reliable nature of results obtained by multiple
linear regressions (generally, R2N0.5, RPDN1.3, and SEEb0.4) between
the ground-derived spectral parameters and heavy metal concentra-
tions indicates the feasibility of retrieving heavy metal concentrations
from spectral absorption feature parameters.

Based on groundmeasurements, spectral parameters were derived
from a HyMAP image after assessing the degree of similarity of the
spectra of HyMAP image pixels, corresponding to the sampling
locations of ground data, with ground-measured spectra. Image-
derived spectral parameters were compared with ground-spectra-
derived parameters based on R2, ANOVA, and spatial pattern. The
R1344,778 nm and Area2200 nm parameters showed a weak relationship
between the two datasets (R2N0.5). Populations of the image-derived
spectral parameter values Depth500 nm, R1344,778 nm, and Area2200 nm

were comparable with those of ground-derived spectral parameters
along a section of the stream channel. Extending the observation from
each pixel of the sampling points to the area adjacent to the
streamline, the spatial pattern of classified pixels in the rule images
of the Depth500 nm, R1344,778 nm, and Area2200 nm parameters are
somewhat similar to the spectral parameter distribution of sediment
samples in the gradient map. Areas in the classified image that
corresponded to higher values in the ground gradient map showed a
closer match.

These results show that some of the spectral parameters derived
from the spectra of sediment samples can be applied to the image
dataset, although differences in observation scales between image
(4×4 m resolution) and spectrometer data (spot point of 10 mm
diameter) could lead to discrepancies in spectral parameter values
between the ground and image datasets. As a further step, the
retrieval of heavy metals and quantitative mapping using spectral
parameters derived from hyperspectral images should take into
account differences in the spectral and spatial resolution between
ground spectrometer data and image data. Despite the requirement
for further corrections, spectral absorption feature parameters
considered in the present study showed the potential to detect
heavy metals, and the image-derived spectral parameters themselves
showed a capacity to screen areas affected by heavy metals as a
preliminary observation in determining sampling strategies and
precise analyses in investigating environmental pollution.
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