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Abstract

How to quantify the uncertain information in the framework of Dempster-Shafer evidence

theory is still an open issue. Quite a few uncertainty measures have been proposed in

Dempster-Shafer framework, however, the existing studies mainly focus on the mass func-

tion itself, the available information represented by the scale of the frame of discernment

(FOD) in the body of evidence is ignored. Without taking full advantage of the information in

the body of evidence, the existing methods are somehow not that efficient. In this paper, a

modified belief entropy is proposed by considering the scale of FOD and the relative scale of

a focal element with respect to FOD. Inspired by Deng entropy, the new belief entropy is

consistent with Shannon entropy in the sense of probability consistency. What’s more, with

less information loss, the new measure can overcome the shortage of some other uncer-

tainty measures. A few numerical examples and a case study are presented to show the effi-

ciency and superiority of the proposed method.

1 Introduction

Dempster-Shafer evidence theory [1, 2] is effective in modeling and processing uncertain

information of intelligent systems. It has been extensively studied in many fields such as pat-

tern recognition [3–8], fault diagnosis [9–12], multiple attribute decision making [13–15], risk

analysis [16–20], controller design [21, 22] and so on [23–25]. However, some open issues in

Dempster–Shafer evidence theory are still needed for further study. Firstly, highly conflicting

evidence may lead to counterintuitive results, conflict management among different informa-

tion sources should be addressed cautiously [26–29]. Secondly, the dependence among differ-

ent evidence should be taken into consideration before applying combination rule [30–32].

Thirdly, a widely applicable method of generating basic probability assignment (BPA) should

be developed to model uncertain information [33–35]. Finally, the incompleteness of the

frame of discernment (FOD) should be taken into consideration in an open world [29, 36–38].

These open issues are often related to uncertainty modeling. One way to manage the uncer-

tainty is to quantify the uncertainty before further information processing.

Uncertainty often comes from several types of uncertain and incomplete information,

including ignorance, vagueness and so on [39]. Uncertainty and ignorance are difficult catego-

ries to deal with [40]. Although ignorance increases the uncertain degree of uncertain
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information in an open world, with a proper uncertainty measure, one can manage or even

decrease the uncertain degree of uncertain information. Since uncertainty measure is a hot

topic in information processing [41–44], many theories have been developed for uncertainty

modeling, such as Shannon entropy [45], possibility theory [46], fuzzy sets [47], Dempster–

Shafer evidence theory [1, 2] and rough sets [48]. Some extended theories and hybrid methods

are also presented for uncertainty measure, e.g. Hohle’s confusion measure [49], Yager’s disso-

nance measure [50], the weighted Hartley entropy [51], Klir & Ramer’s discord measure [52]

and Klir & Parviz’s strife measure [53], Deng entropy [54], generalized evidence theory [29], D

numbers [55] and so on [56–61]. Among these methods, Shannon entropy is a well-known

theory for uncertainty measure in the probabilistic framework. For example, as a generaliza-

tion of Shannon entropy, network entropy is an effective measurement for testing the com-

plexity of networks [62–65]. But Shannon entropy can’t be used directly in the framework of

Dempster–Shafer evidence theory, because a mass function in evidence theory is a generalized

probability assigned on the power set of FOD. To address this issue, some modified methods

based on Shannon entropy are proposed [49–53], of which some have been successfully

applied in real applications [66, 67]. However, these methods are somehow not that effective in

some cases [54, 56].

Recently, in Dempster–Shafer framework, a new uncertainty measure named Deng entropy

is proposed. Deng entropy can measure the uncertain degree more efficiently than some other

uncertainty measures in some cases [54]. Although Deng entropy has been successfully applied

in some real applications [9–12, 68], it doesn’t take into consideration of the scale of the FOD,

which means a loss of available information while doing information processing. The informa-

tion loss will lead to fail in uncertainty measure in some cases. In order to overcome this short-

age of Deng entropy, a modified belief entropy based on Deng entropy is proposed in this

paper. The proposed belief entropy can improve the performance of Deng entropy by consid-

ering the scale of the FOD and the relative scale of a focal element with respect to FOD. What’s

more, the proposed method remains all the merits of Deng entropy thus it can degenerate to

Shannon entropy in the sense of the probability consistency.

The rest of this paper is organized as follows. In Section 2, the preliminaries on Dempster–

Shafer evidence theory, Shannon entropy, Deng entropy and some uncertainty measures in

Dempster–Shafer framework are briefly introduced. In Section 3, the new belief entropy is pre-

sented. In Section 4, some numerical examples are presented, as well as a comparative study

between the new belief entropy and some other uncertainty measures. In Section 5, a case

study is presented to show the effectiveness and the potential application prospect of the new

measure. The conclusions and ongoing work are given in Section 6.

2 Preliminaries

Some preliminaries are briefly introduced in this section, including Dempster-Shafer evidence

theory, Shannon entropy, Deng entropy and some other typical uncertainty measures in

Dempster-Shafer framework.

2.1 Dempster-Shafer evidence theory

Let O = {θ1, θ2, . . ., θi, . . ., θN} be be a finite nonempty set of mutually exclusive and exhaustive

events, O is called the frame of discernment (FOD). The power set of O, denoted as 2O, is com-

posed of 2N elements denoted as follows:

2O ¼ f;; fy1g; fy2g; . . . ; fyNg; fy1; y2g; . . . ; fy1; y2; . . . ; yig; . . . ;Og: ð1Þ
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Amass function m is defined as a mapping from the power set 2O to the interval [0, 1],

which satisfies the following conditions [1, 2]:

mð;Þ ¼ 0;
X

A2O

mðAÞ ¼ 1: ð2Þ

Ifm(A)> 0, then A is called a focal element, the mass function m(A) represents how strongly

the evidence supports the proposition A.

A body of evidence (BOE), also known as a basic probability assignment (BPA) or basic belief
assignment (BBA), is represented by the focal sets and their associated mass value:

ð<;mÞ ¼ fhA;mðAÞi : A 2 2O;mðAÞ > 0g: ð3Þ

where < is a subset of the power set 2O, each A 2 < has an associated nonzero mass valuem
(A).

A BPAm can also be represented by its associate belief function Bel and plausibility func-

tion Pl respectively, defined as follows:

BelðAÞ ¼
X

�6¼B�A

mðBÞ and PlðAÞ ¼
X

B\A6¼�

mðBÞ: ð4Þ

In Dempster-Shafer evidence theory, two independent mass functions, denoted asm1 and

m2, can be combined with Dempster’s rule of combination defined as [1, 2]:

mðAÞ ¼ ðm1 �m2ÞðAÞ ¼
1

1 � k

X

B\C¼A

m1ðBÞm2ðCÞ; ð5Þ

where k is a normalization constant representing the degree of conflict betweenm1 andm2, k is

defined as [1, 2]:

k ¼
X

B\C¼;

m1ðBÞm2ðCÞ: ð6Þ

2.2 Shannon entropy

As an uncertainty measure of information volume in a system or process, Shannon entropy

plays a central role in information theory. Shannon entropy indicates that the information vol-

ume of each piece of information is directly connected to its uncertain degree.

Shannon entropy, as the information entropy, is defined as follows [45]:

H ¼ �
XN

i¼1

pi log bpi; ð7Þ

where N is the number of basic states, pi is the probability of state i, pi satisfies
PN

i¼1

pi ¼ 1. If the

unit of information is bit, then b = 2.

2.3 Deng entropy

Deng entropy is a generalization of Shannon entropy in Dempster–Shafer framework [54]. If

the information is modelled in the framework of a probability theory, Deng entropy can be
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degenerated to Shannon entropy. Deng entropy, denoted as Ed, is defined as follows [54]:

EdðmÞ ¼ �
X

A�X

mðAÞ log 2

mðAÞ
2jAj � 1

; ð8Þ

where |A| denotes the cardinality of the proposition A, X is the FOD. If and only if the mass

value is assigned to single elements, Deng entropy can be degenerated to Shannon entropy, in

this case, the form of Deng entropy is as follows:

EdðmÞ ¼ �
X

A�X

mðAÞ log 2

mðAÞ
2jAj � 1

¼ �
X

A�X

mðAÞ log 2mðAÞ: ð9Þ

For more details about Deng entropy, please refer to [54].

2.4 Uncertainty measures in Dempster-Shafer framework

Assume that X is the FOD, A and B are focal elements of the mass function, and |A| denotes

the cardinality of A. Then, the definitions of some typical uncertainty measures in Dempster-

Shafer framework are briefly introduced as follows.

2.4.1 Hohle’s confusion measure. Hohle’s confusion measure, denoted as CH, is defined

as follows [49]:

CHðmÞ ¼ �
X

A�X

mðAÞ log 2BelðAÞ: ð10Þ

2.4.2 Yager’s dissonance measure. Yager’s dissonance measure, denoted as EY, is defined

as follows [50]:

EYðmÞ ¼ �
X

A�X

mðAÞ log 2PlðAÞ: ð11Þ

2.4.3 Dubois & Prade’s weighted Hartley entropy. Dubois & Prade’s weighted Hartley

entropy, denoted as EDP, is defined as follows [51]:

EDPðmÞ ¼
X

A�X

mðAÞ log 2jAj: ð12Þ

2.4.4 Klir & Ramer’s discord measure. Klir & Ramer’s discord measure, denoted as DKR,

is defined as follows [52]:

DKRðmÞ ¼ �
X

A�X

mðAÞ log 2

X

B�X

mðBÞ
jA \ Bj
jBj

: ð13Þ

2.4.5 Klir & Parviz’s strife measure. Klir & Parviz’s strife measure, denoted as SKP, is

defined as follows [53]:

SKPðmÞ ¼ �
X

A�X

mðAÞ log 2

X

B�X

mðBÞ
jA \ Bj
jAj

: ð14Þ
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2.4.6 George & Pal’s conflict measure. The total conflict measure proposed by George &

Pal, denoted as TCGP, is defined as follows [56]:

TCGPðmÞ ¼
X

A�X

mðAÞ
X

B�X

mðBÞ 1 �
jA \ Bj
jA [ Bj

� �

: ð15Þ

3 The proposed belief entropy

3.1 Problem description

In the framework of Dempster-Shafer evidence theory, the uncertain information is modeled

not only by mass functions, the FOD is also the source of uncertainty, e.g. the number of ele-

ments in the FOD. However, Dubois & Prade’s weighted Hartley entropy and Deng entropy

measure the uncertain degree of BOEs by only taking into consideration of the mass function

and the cardinality of a proposition, the scale of FOD is totally ignored. Thus these methods

can’t effectively measure the difference of uncertain degree with similar basic probability

assignment on different FODs. A simple example of the limitation of Deng entropy and

weighted Hartley entropy is shown in Example 3.1.

Example 3.1. Consider a target identification problem, assume that two reliable sensors

report the detection results independently. The results are represented by BOEs shown as fol-

lows:

m1 : m1ðfa; bgÞ ¼ 0:4;m1ðfc; dgÞ ¼ 0:6:

m2 : m2ðfa; cgÞ ¼ 0:4;m2ðfb; cgÞ ¼ 0:6:

Recall the Eq (8) of Deng entropy, the uncertainty measure ofm1 andm2 are shown as fol-

lows:

Edðm1Þ ¼ �
X

A�X

m1ðAÞ log 2

m1ðAÞ
2jAj � 1

¼ � 0:4 log 2

0:4

22 � 1
� 0:6 log 2

0:6

22 � 1
¼ 2:5559; ð16Þ

Edðm2Þ ¼ �
X

A�X

m2ðAÞ log 2

m2ðAÞ
2jAj � 1

¼ � 0:4 log 2

0:4

22 � 1
� 0:6 log 2

0:6

22 � 1
¼ 2:5559: ð17Þ

Recall the Eq (12) of Dubois & Prade’s weighted Hartley entropy, the uncertainty measure

ofm1 andm2 are shown as follows:

EDPðm1Þ ¼
X

A�X

m1ðAÞ log 2jAj ¼ 0:4 log 22þ 0:6 log 22 ¼ 1; ð18Þ

EDPðm2Þ ¼
X

A�X

m2ðAÞ log 2jAj ¼ 0:4 log 22þ 0:6 log 22 ¼ 1: ð19Þ

The results calculated by Deng entropy and the weighted Hartley entropy are counterintui-

tive. The two BOEs have the same mass value assignment, but the FOD of the first BOE con-

sists of four targets denoted as a, b, c and d, while the second BOE has only three possible

targets denoted as a, b and c. Intuitively, it is expected that the second BOE has less uncertainty

than the first one. In other words, the uncertain degree ofm1 should be bigger than that ofm2.

Both Deng entropy and weighted Hartley entropy fail to quantify the difference of uncertain

degree among these two BOEs. To address this issue, a modified belief entropy based on Deng

entropy is proposed.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0176832 May 8, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0176832


3.2 The new belief entropy

In the framework of Dempster-Shafer evidence theory, the new belief entropy based on Deng

entropy is shown as follows:

EMdðmÞ ¼ �
X

A�X

mðAÞ log 2

mðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

; ð20Þ

where |A| denotes the cardinality of the focal element A, |X| denotes the cardinality of X which

represents the number of element in FOD. Compared with Deng entropy, the new belief

entropy addresses more information in BOE, including the scale of FOD, denoted as |X|, and

the relative scale of a focal element with respect to FOD, denoted as ((|A| − 1)/|X|).

The exponential factor e
jAj� 1

jXj in the new belief entropy represents the uncertain information

in a BOE that has been ignored by Deng entropy and some other uncertainty measures such as

the confusion measure, the dissonance measure, the weighted Hartley entropy, the discord

measure and the strife measure. More importantly, by involving the scale of FOD in the pro-

posed belief entropy, the new uncertainty measure now can effectively quantify the difference

among different BOEs even if the same mass value is assigned on different FODs. In addition,

the new information exponential factor doesn’t affect the merit of Deng entropy, which will be

discussed in detail in the ensuing part of this paper.

With the new belief entropy, recall Example 3.1, the new belief entropy for these two BOEs

is calculated as follows:

EMdðm1Þ ¼ �
X

A�X

m1ðAÞ log 2

m1ðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

¼ � 0:4 log 2

0:4

22 � 1
e

2 � 1

4

� �

� 0:6 log 2

0:6

22 � 1
e

2 � 1

4

� �

¼ 2:1952;

ð21Þ

EMdðm2Þ ¼ �
X

A�X

m2ðAÞ log 2

m2ðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

¼ � 0:4 log 2

0:4

22 � 1
e

2 � 1

3

� �

� 0:6 log 2

0:6

22 � 1
e

2 � 1

3

� �

¼ 2:0750:

ð22Þ

The comparison results of different uncertainty measures for Example 3.1 are shown in

Table 1. It can be concluded that both Dubois & Prade’s weighted Hartley entropy and Deng

entropy can’t measure the difference of uncertain degree between these two BOEs, while the

new belief entropy can effectively measure the different uncertain degree by taking into con-

sideration of more available information in the BOE. In addition, according to Table 1, the

first BOE m1 has a higher uncertain degree with the new belief entropy, this is reasonable

because the FOD ofm1 consists of four candidate targets which means a larger information

volume than the second BOEm2. The efficiency of the new belief entropy is not available in

the weighted Hartley entropy and Deng entropy.

Table 1. Uncertainty measure of Example 3.1 with different methods.

BOEs Weight Hartley entropy [51] Deng entropy [54] The modified belief entropy

m1 1 2.5559 2.1952

m2 1 2.5559 2.0750

https://doi.org/10.1371/journal.pone.0176832.t001

Modified belief entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0176832 May 8, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0176832.t001
https://doi.org/10.1371/journal.pone.0176832


3.3 Property of the new belief entropy

Some properties of the new belief entropy are presented in this section, including the range of

the new measure and its compatibility with Shannon entropy.

Property 1. Mathematically, the value range of the new belief entropy is (0, +1).

Proof. According to Dempster-Shafer evidence theory, a focal element A consists at least

one element and the superior limit of its element number is the scale of FOD, while a FOD O

(the X in Eq (20)) consists at least one element and there is no superior limit, thus the range of

|A| and |X| are the same, denoted as [1, +1). The range of a mass function m(A) is (0, 1].

Recall Eq (20), where |A| 2 [1, +1), |X| 2 [1, +1),m(A) 2 (0, 1]. Thus the range of the

new belief entropy can be denoted as EMd(m) 2 (0, +1).

Property 2. The new belief entropy can degenerate to the Shannon entropy when the mass

function is Bayesian.

Proof: Recall Eq (20), if the mass function m(A) is Bayesian, then the mass value (BPA) is

assigned only on single element subset, then |A|�1. In this case, the new belief entropy can

degenerate to the following equation:

EMdðmÞ ¼ �
X

A�X

mðAÞ log 2

mðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

¼ �
X

A�X

mðAÞ log 2

mðAÞ
21 � 1

e
1 � 1

jXj

� �

¼ �
X

A�X

mðAÞ log 2mðAÞ: ð23Þ

Eq (23) is in consistent with Eqs (9) and (7) when the mass function is Bayesian, because a

mass function m(A) can degenerate to a Bayesian probability pi in the sense of the probability

consistency.

4 Numerical example and discussion

In order to show the rationality and merit of the proposed belief entropy, some numerical

examples are presented in this section. In Section 4.1, the compatibility of the new belief

entropy with Shannon entropy and Deng entropy is verified with some simple numerical

examples. In the Section 4.2, the superiority of the new belief entropy compared with some

other uncertainty measures is presented.

4.1 Compatibility with Shannon entropy

Example 4.1. Consider a target identification problem, if the target reported by the sensor is a
with one hundred percent belief, then the mass function can be denoted asm({a}) = 1 in the

frame of discernment X = {a}.

Shannon entropy H, Deng entropy Ed and the new belief entropy EMd are calculated respec-

tively as follows:

HðmÞ ¼ � 1� log 21 ¼ 0;

EdðmÞ ¼ � 1� log 2

1

21 � 1
¼ 0;

EMdðmÞ ¼ � 1� log 2

1

21 � 1
e

1 � 1

1

� �

¼ 0:

It is obvious that the uncertain degree for a certain event is zero. So the values of Shannon

entropy, Deng entropy and the new belief entropy are all zero.

Example 4.2. Consider the mass function m({a}) =m({b}) =m({c}) =m({d}) =m({e}) = 0.2

in the frame of discernment X = {a, b, c, d, e}.

Modified belief entropy
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Shannon entropy H, Deng entropy Ed and the new belief entropy EMd are calculated respec-

tively as follows:

HðmÞ ¼ ð� 0:2� log 20:2Þ � 5 ¼ 2:3219;

EdðmÞ ¼ � 0:2� log 2

0:2

21 � 1

� �

� 5 ¼ 2:3219;

EMdðmÞ ¼ � 0:2� log 2

0:2

21 � 1
e

1 � 1

5

� �� �

� 5 ¼ 2:3219:

According to Example 4.1 and 4.2, if the mass value is only assigned on the single element,

the result of the new belief entropy is consistent with Shannon entropy and Deng entropy. The

compatibility of the new belief entropy with Shannon entropy and Deng entropy verifies the

effectiveness and rationality of the proposed belief entropy.

4.2 Superiority of the new belief entropy

In this section, the numerical examples are no longer appropriate for Shannon entropy, so the

comparison is between the proposed belief entropy and some other uncertainty measures in

Dempster-Shafer framework.

Example 4.3. Consider the mass function m({a, b, c, d, e}) = 1 in the frame of discernment

X = {a, b, c, d, e}.
Deng entropy Ed and the new belief entropy EMd are calculated as follows:

EdðmÞ ¼ � 1� log 2

1

25 � 1
¼ 4:9542;

EMdðmÞ ¼ � 1� log 2

1

25 � 1
e

5 � 1

5

� �

¼ 3:8000:

The result shows that both Deng entropy and the new belief entropy of this vacuous mass

function are bigger than that in Example 4.2. This is because the vacuous mass function in

Example 4.3 means the information is totally unknown for the system, but the Bayesian mass

function in Example 4.2 shows that the probability is equally distributed in the system. More

information is available in Example 4.2 than the vacuous mass function in Example 4.3, so the

uncertain degree in Example 4.2 should be smaller than that of the vacuous mass function. In

addition, in Example 4.3, the uncertain degree indicated by the new belief entropy is smaller

than that of Deng entropy, this is achieved by taking into consideration of the scale of the FOD

in the BOE. That is to say, by taking into consideration of more available information, the

uncertain degree measured by the new belief entropy is significantly decreased in comparison

with Deng entropy. It’s also safe to say that the new belief entropy can be more accurate for

uncertainty measure in this case.

In order to test the capacity and superiority of the new belief entropy, recall the example in

[54] as the following example.

Example 4.4. Consider the mass function m({6}) = 0.05,m({3, 4, 5}) = 0.05,m(T) = 0.8 and

m(X) = 0.1 in a FOD X = {1, 2, . . ., 14, 15} with fifteen elements denoted as Element 1, . . ., and

Element 15. T represents a variable subset with the number of element changes from Element

1 to Element 14, as is shown in Table 2.

Deng entropy Ed and the modified belief entropy EMd are calculated with a changed propo-

sition T, the results are shown in Table 2 and Fig 1.

Modified belief entropy
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Table 2. Modified Deng entropy with a variable element in T.

Cases Deng entropy The modified Deng entropy

T = {1} 2.6623 2.5180

T = {1, 2} 3.9303 3.7090

T = {1, 2, 3} 4.9082 4.6100

T = {1, . . ., 4} 5.7878 5.4127

T = {1, . . ., 5} 6.6256 6.1736

T = {1, . . ., 6} 7.4441 6.9151

T = {1, . . ., 7} 8.2532 7.6473

T = {1, . . ., 8} 9.0578 8.3749

T = {1, . . ., 9} 9.8600 9.1002

T = {1, . . ., 10} 10.6612 9.8244

T = {1, . . ., 11} 11.4617 10.5480

T = {1, . . ., 12} 12.2620 11.2714

T = {1, . . ., 13} 13.0622 11.9946

T = {1, . . ., 14} 13.8622 12.7177

https://doi.org/10.1371/journal.pone.0176832.t002

Fig 1. Comparison between the modified belief entropy and Deng entropy.

https://doi.org/10.1371/journal.pone.0176832.g001
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Table 2 and Fig 1 show that the modified belief entropy is smaller than Deng entropy. This

is reasonable, because more information in the BOE is taken into consideration within the

modified belief entropy. The proposed method has a less information loss than Deng entropy.

Fig 2 shows the results of comparison between the modified belief entropy and some other

typical uncertainty measures in Dempster-Shafer framework.

In Fig 2, the uncertain degree measured by Hohle’s confusion measure never changes with

the variation of the element number in proposition T, thus it cannot measure the variance of

uncertain degree in this case. Similar to Hohle’s confusion measure, Yager’s dissonance mea-

sure has a limited capacity of uncertainty measure in this case, both of these two methods can’t

measure the change in proposition T. The uncertain degree measured by Klir & Ramer’s dis-

cord measure, Klir & Parviz’s strife measure and George & Pal’s conflict measure is decreasing

with the increasing of the element number in the proposition T. Thus, the confusion measure,

the dissonance measure, the discord measure, the strife measure and the conflict measure can’t

effectively measure the rising of the uncertain degree along with the increasing of the element

number in the proposition T.

Fig 2. Comparison among different uncertainty measures.

https://doi.org/10.1371/journal.pone.0176832.g002
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It seems that the uncertain degree measured by Dubois & Prade’s weighted Hartley entropy,

Deng entropy and the modified belief entropy is rising significantly along with the increasing

of the element number in proposition T. However, the weighted Hartley entropy and Deng

entropy can’t distinguish the different uncertain degree among BOEs with similar BPAs on dif-

ferent FODs, as is shown in Example 3.1. More importantly, by taking into consideration of

the scale of the FOD and the cardinality of each proposition simultaneously, the uncertain

degree measured by the modified belief entropy is significantly decreased in comparison with

Deng entropy. The proposed modified belief entropy takes advantage of more valuable infor-

mation in BOE, which ensures it to be more reasonable and effective for uncertainty measure

in Dempster–Shafer framework.

5 A case study

In order to show the effectiveness and the application prospect of the modified belief entropy,

the case study in [69] and the fault diagnosis method in [10] are recalled in this section. While

performing the fault diagnosis method in [10], this paper changes Deng entropy into the new

belief entropy.

Recall the example in [69]. Three fault types are denoted as F1, F2 and F3, the fault hypothe-

sis set is Θ = {F1, F2, F3}, three sensors report the diagnosis results independently, the diagnosis

results are modelled as BOEs, denoted as E1, E2 and E3, the BPAs of the diagnosis results are

shown in Table 3.

Based on the sensor reports in Table 3, which one is the fault that happens now, F1, F2 or

F3? With Dempster’s rule of combination in Eq (5), the combination results of sensor reports

are shown in Table 4. It’s hard to judge which fault has been occurred, because the combina-

tion results obtained by the conventional Dempster’s rule of combination are very close.

In order to handle this problem, in [10], a fault diagnosis method based on Deng entropy is

proposed, the reliability of sensor data will be modelled as a weight of each BOE. Follow the

fault diagnosis method in [10], the weight of the ith BOE (i = 1, 2, 3) is defined as the product

of a static reliability ws(i) and a dynamic reliability wd(i), denoted as follows [10]:

wðiÞ ¼ wsðiÞ � wdðiÞ; ð24Þ

where the static reliability ws(i) of each BOE is listed in Table 5, and the dynamic reliability

wd(i) is defined as follows [10]:

wdðiÞ ¼ CrdðiÞ �
EdðmiÞ

max ðEdðmiÞÞ
; ð25Þ

Table 3. BPAs of the case study [69].

Sensor report {F1} {F2} {F2, F3} Θ
E1: m1(�) 0.60 0.10 0.10 0.20

E2: m2(�) 0.05 0.80 0.05 0.10

E3: m3(�) 0.70 0.10 0.10 0.10

https://doi.org/10.1371/journal.pone.0176832.t003

Table 4. Fused results with only Dempster’s rule of combination.

{F1} {F2} {F2, F3} Θ
Fused results 0.4519 0.5048 0.0336 0.0096

https://doi.org/10.1371/journal.pone.0176832.t004
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where Crd(i) is the credibility degree of the ith BOE E1, Ed(i) is Deng entropy of the ith BOE

E1, max(Ed(i)) is the maximum of Deng entropy value among all the BOEs. The value of Crd(i)
and Ed(i) of each BOE in [10] is shown in Table 5.

Based on Eqs (24) and (25), the weight of each BOE based on the new belief entropy EMd(i)
is defined as follows:

w0ðiÞ ¼ wsðiÞ � CrdðiÞ �
EMdðmiÞ

max ðEMdðmiÞÞ
: ð26Þ

The modified belief entropy of each BOE is calculated as follows:

EMdðm1Þ ¼ �
X

A�X

m1ðAÞ log 2

m1ðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

¼ � 0:6 log 2

0:6

21 � 1
e

1 � 1

3

� �

� 0:1 log 2

0:1

21 � 1
e

1 � 1

3

� �

� 0:1 log 2

0:1

22 � 1
e

2 � 1

3

� �

� 0:2 log 2

0:2

23 � 1
e

3 � 1

3

� �

¼ 2:0505;

EMdðm2Þ ¼ �
X

A�X

m2ðAÞ log 2

m2ðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

¼ � 0:05 log 2

0:05

21 � 1
e

1 � 1

3

� �

� 0:8 log 2

0:8

21 � 1
e

1 � 1

3

� �

� 0:05 log 2

0:05

22 � 1
e

2 � 1

3

� �

� 0:1 log 2

0:1

23 � 1
e

3 � 1

3

� �

¼ 1:2617;

EMdðm3Þ ¼ �
X

A�X

m3ðAÞ log 2

m3ðAÞ
2jAj � 1

e
jAj � 1

jXj

� �

¼ � 0:7 log 2

0:7

21 � 1
e

1 � 1

3

� �

� 01 log 2

0:1

21 � 1
e

1 � 1

3

� �

� 0:1 log 2

0:1

22 � 1
e

2 � 1

3

� �

� 0:1 log 2

0:1

23 � 1
e

3 � 1

3

� �

¼ 1:6517:

Now, it’s clear that max(EMd(mi)) = EMd(m1) = 2.0505. Based on Eq (26), the weight of each

BOE based on the modified belief entropy is calculated as follows:

w0ð1Þ ¼ wsð1Þ � Crdð1Þ �
EMdðm1Þ

EMdðm1Þ
¼ 1� 1�

2:0505

2:0505
¼ 1;

w0ð2Þ ¼ wsð2Þ � Crdð2Þ �
EMdðm2Þ

EMdðm1Þ
¼ 0:2040� 0:5523�

1:2617

2:0505
¼ 0:0693;

w0ð3Þ ¼ wsð3Þ � Crdð3Þ �
EMdðm3Þ

EMdðm1Þ
¼ 1� 0:9660�

1:6517

2:0505
¼ 0:7781:

Table 5. Parameter of the case study [10].

E1 E2 E3

ws(i) 1.0000 0.2040 1.0000

Crd(i) 1.0000 0.5523 0.9660

Ed(i) 2.2909 1.3819 1.7960

https://doi.org/10.1371/journal.pone.0176832.t005
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With a normalization step, the weight of each BOE is as follows:

w00ð1Þ ¼
w0ð1Þ

w0ð1Þ þ w0ð2Þ þ w0ð3Þ
¼ 0:5143;

w00ð2Þ ¼
w0ð2Þ

w0ð1Þ þ w0ð2Þ þ w0ð3Þ
¼ 0:0375;

w00ð3Þ ¼
w0ð3Þ

w0ð1Þ þ w0ð2Þ þ w0ð3Þ
¼ 0:4212:

Now, the BBAs in Table 3 can be modified with the normalized weight of each BOE, the

weighted BBA of each propostion is calculated as follows:

mðfF1gÞ ¼ w00ð1Þ � 0:6þ w00ð2Þ � 0:05þ w00ð3Þ � 0:7 ¼ 0:6215;

mðfF2gÞ ¼ w00ð1Þ � 0:1þ w00ð2Þ � 0:8þ w00ð3Þ � 0:1 ¼ 0:1263;

mðfF2; F3gÞ ¼ w00ð1Þ � 0:1þ w00ð2Þ � 0:05þ w00ð3Þ � 0:1 ¼ 0:0981;

mðYÞ ¼ w00ð1Þ � 0:2þ w00ð2Þ � 0:1þ w00ð3Þ � 0:1 ¼ 0:1541:

Recall Dempster’s rule of combination in Eq (5), since there are three independent BOEs,

so each weighted BPA will be fused two times with itself, the calculation is shown as follows:

mðfF1gÞ ¼ ðm�mÞ �mðfF1gÞ ¼ 0:8951;mðfF2gÞ ¼ ðm�mÞ �mðfF2gÞ ¼ 0:0738;

mðfF2; F3gÞ ¼ ðm�mÞ �mðfF2; F3gÞ ¼ 0:0240;mðfYgÞ ¼ ðm�mÞ �mðfYgÞ ¼ 0:0071:

The fused results with the proposed uncertainty measure are compared with some other

methods, as is shown in Table 6. Intuitively, F1 is the fault type because both the first BOE E1

and the third BOE E3 have a big belief (no less than 60%) on F1, while the second BOE E2 may

come from an abnormal sensor in comparison with the other two BOEs. The fused result of

Yuan et al’s method with the new measure is compatible with Fan et al’s method and Yuan

et al’s method (with Deng entropy), although these three methods can overcome the shortage

of Dempster’s rule of combination and lead to the right conclusion, Yuan et al’s method with

the new measure has the highest belief (89.51%) on the conclusion that F1 is the fault.

The case study demonstrates the effectiveness of the new belief entropy. In addition, the

case study shows a promising application prospect of the new uncertainty measure.

6 Conclusions

In information processing, each tiny piece of information is valuable. The uncertain informa-

tion should be addressed cautiously, especially when there is limited available information. In

this paper, a new belief entropy based on Deng entropy is proposed. The proposed method

takes full advantage of uncertain information in BOE, including the mass function, the cardi-

nality of the proposition and the scale of FOD. By addressing more available information of

Table 6. Fault diagnosis result with different methods.

{F1} {F2} {F2, F3} Θ
Only Dempster’s rule of combination 0.4519 0.5048 0.0336 0.0096

Fan et al’s method [69] 0.8119 0.1096 0.0526 0.0259

Yuan et al’s method. [10] 0.8948 0.0739 0.0241 0.0072

Yuan et al’s method with the proposed measure 0.8951 0.0738 0.0240 0.0071

https://doi.org/10.1371/journal.pone.0176832.t006
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BOEs, the difference of uncertain degree that can’t be addressed by some other uncertainty

measures now can be distinguished successfully. Numerical examples show that the new belief

entropy can quantify the uncertain degree of BOE more accurately. The case study demon-

strates the effectiveness and the application prospect of the new measure. Further study of this

work will be focused on the application of the proposed measure. The new belief entropy pro-

vides a promising way to measure the uncertain degree in decision making, fault diagnosis,

pattern recognition, risk analysis and so on.
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