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Abstract: - Unsupervised learning (clustering) deals with instances, which have not been pre-classified in any 
way and so do not have a class attribute associated with them. The scope of applying clustering algorithms is to 
discover useful but unknown classes of items. Unsupervised learning is an approach of learning where instances 
are automatically placed into meaningful groups based on their similarity. This paper introduces the 
fundamental concepts of unsupervised learning while it surveys the recent clustering algorithms. Moreover, 
recent advances in unsupervised learning, such as ensembles of clustering algorithms and distributed clustering, 
are described.  
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1   Introduction 
Cluster analysis is an unsupervised learning method 
that constitutes a cornerstone of an intelligent data 
analysis process. It is used for the exploration of 
inter-relationships among a collection of patterns, by 
organizing them into homogeneous clusters. It is 
called unsupervised learning because unlike 
classification (known as supervised learning), no a 
priori labeling of some patterns is available to use in 
categorizing others and inferring the cluster structure 
of the whole data. Intra-connectivity is a measure of 
the density of connections between the instances of a 
single cluster. A high intra-connectivity indicates a 
good clustering arrangement because the instances 
grouped within the same cluster are highly dependent 
on each other. Inter-connectivity is a measure of the 
connectivity between distinct clusters. A low degree 
of interconnectivity is desirable because it indicates 
that individual clusters are largely independent of 
each other. 
    Every instance in the data set is represented using 
the same set of attributes. The attributes are 
continuous, categorical or binary. To induce a 
hypothesis from a given data set, a learning system 
needs to make assumptions about the hypothesis to 
be learned. These assumptions are called biases. 
Since every learning algorithm uses some biases, it 
behaves well in some domains where its biases are 
appropriate while it performs poorly in other 
domains.  
    A problem with the clustering methods is that the 
interpretation of the clusters may be difficult. In 
addition, the algorithms will always assign the data to 
clusters even if there were no clusters in the data. 

Therefore, if the goal is to make inferences about its 
cluster structure, it is essential to analyze whether the 
data set exhibits a clustering tendency. In a 
real-world application there may be errors (called 
noise) in the collected data set due to inaccurate 
measurement or due to missing values therefore a 
pre-processing is needed (e.g. choose a strategy for 
handling missing attribute values). The choice of 
which specific learning algorithm to use is a critical 
step, too. The issue of relating the learning 
algorithms to the type of data and to the nature of the 
problem to be solved still remains an open and 
fundamental problem [21]. An evaluation criterion of 
clustering quality is the unknown attribute prediction 
accuracy. The first step is by taking an unseen 
instance, removing the value of one of its attributes 
and then trying to classify it. The missing attribute on 
the unseen instance is predicted to be the same as the 
value of the attribute on the closest matching 
instance. This value can be then compared to the 
actual value of the removed attribute and so can be 
judged to be correct or not. This process is repeated 
for each attribute. The number of attributes correctly 
predicted is then totaled up and divided by the 
number of attributes in order to give the average 
prediction accuracy.  
    Cluster analysis is a difficult problem because 
many factors (such as effective similarity measures, 
criterion functions, algorithms and initial conditions) 
come into play in devising a well tuned clustering 
technique for a given clustering problem. Moreover, 
it is well known that no clustering method can 
adequately handle all sorts of cluster structures 
(shape, size and density). 



    Sometimes the quality of the clusters that are 
found can be improved by pre-processing the data. It 
is not uncommon to try to find noisy values and 
eliminate them by a preprocessing step. Another 
common technique is to use post-processing steps to 
try to fix up the clusters that have been found. For 
example, small clusters are often eliminated since 
they frequently represent groups of outliers 
(instances with noise). Alternatively, two small 
clusters that are close together can be merged. 
Finally, large clusters can be split into smaller 
clusters. 
    Outlier detection is one of the major technologies 
in data mining, whose task is to find small groups of 
data objects that are exceptional when compared with 
rest large amount of data. Outlier mining has strong 
application background in telecommunication, 
financial fraud detection, and data cleaning, since the 
patterns lying behind the outliers are usually 
interesting for helping the decision makers to make 
profit or improve the service quality. In recent years, 
outliers themselves draw much attention, and outlier 
detection is studied intensively by the data mining 
community [4; 30]. 
    The missing value problem can occur due to some 
occasional sensor failures. One simple but wasteful 
method to cope with this problem is to throw away 
the incomplete attribute vectors. Another more 
logical method is the missing attribute’s values for 
numeric attributes to instantiate with the median 
value of that attribute across all training instances. 
Missing attribute values for categorical attributes can 
be replaced by the mode value for that attribute 
across all training instances. Comparisons of various 
methods for dealing with missing data are found in 
[20]. 
    Usually, from statistical point of view, instances 
with many irrelevant input attributes provide little 
information. Hence, in practical applications, it is 
wise to carefully choose which attributes to provide 
to the learning algorithm. Different algorithms have 
been developed for this purpose. For example, this 
can be accomplished by discarding attributes that 
show little variation or that are highly correlated with 
other attributes [35]. 
    Generally, clustering algorithms can be 
categorized into partitioning methods, hierarchical 
methods, density-based methods, grid-based 
methods, and model-based methods. An excellent 
survey of clustering techniques can be found in (Jain 
et al., 1999). Thus, in this work apart from the brief 
description of the clustering techniques we refer to 
some more recent works than those in Jain’s article as 
well as few articles that were not referred by Jain. 
The reader should be cautioned that a single article 

couldn’t be a comprehensive review of all learning 
algorithms. Rather, our goal is to provide a 
representative sample of the research in each of 
learning technique. In each of the areas, there are 
many other papers that describe relevant work. Some 
typical applications of the clustering in many fields 
can be found in (Han & Kamber, 2001). 
    Partitioning algorithms that construct various 
partitions and then evaluate them by some criterion 
are described in section 2. Hierarchical algorithms 
that create a hierarchical decomposition of the 
instances using some criterion are covered in section 
3. The section 4 explains the density-based 
algorithms that are based on connectivity and density 
functions. The section 5 describes the grid-based 
methods, which are based on a multiple-level 
granularity structure. The model-based algorithms 
are covered in section 6, while, recent advances in 
clustering techniques, such as ensembles of 
clustering algorithms, are described in section 7. The 
final section concludes this work. 
 
 
2   Partitioning Methods 
Partitioning methods are divided into two major 
subcategories, the centroid and the medoids 
algorithms. The centroid algorithms represent each 
cluster by using the gravity centre of the instances. 
The medoid algorithms represent each cluster by 
means of the instances closest to the gravity centre.  
    The most well-known centroid algorithm is the 
k-means [21]. The k-means method partitions the 
data set into k subsets such that all points in a given 
subset are closest to the same centre. In detail, it 
randomly selects k of the instances to represent the 
clusters. Based on the selected attributes, all 
remaining instances are assigned to their closer 
centre. K-means then computes the new centers by 
taking the mean of all data points belonging to the 
same cluster. The operation is iterated until there is 
no change in the gravity centres. If k cannot be 
known ahead of time, various values of k can be 
evaluated until the most suitable one is found. The 
effectiveness of this method as well as of others relies 
heavily on the objective function used in measuring 
the distance between instances. The difficulty is in 
finding a distance measure that works well with all 
types of data. There are several approaches to define 
the distance between instances [21]. 
    Generally, the k-means algorithm has the 
following important properties: 1. It is efficient in 
processing large data sets, 2. It often terminates at a 
local optimum, 3. The clusters have spherical shapes, 
4. It is sensitive to noise. The algorithm described 



above is classified as a batch method because it 
requires that all the data should be available in 
advance. However, there are variants of the k-means 
clustering process, which gets around this limitation 
[21]. Choosing the proper initial centroids is the key 
step of the basic K-means procedure.  
    The k-modes algorithm [20] is a recent partitioning 
algorithm and uses the simple matching coefficient 
measure to deal with categorical attributes. The 
k-prototypes algorithm [20], through the definition of 
a combined dissimilarity measure, further integrates 
the k-means and k-modes algorithms to allow for 
clustering instances described by mixed attributes. 
More recently, in [6] another generalization of 
conventional k-means clustering algorithm has been 
presented. This new one applicable to ellipse-shaped 
data clusters as well as ball-shaped ones without 
dead-unit problem, but also performs correct 
clustering without pre-determining the exact cluster 
number. 
    Traditional clustering approaches generate 
partitions; in a partition, each pattern belongs to one 
and only one cluster. Hence, the clusters in a hard 
clustering are disjoint. Fuzzy clustering extends this 
notion to associate each pattern with every cluster 
using a membership function. Larger membership 
values indicate higher confidence in the assignment 
of the pattern to the cluster. One widely used 
algorithm is the Fuzzy C-Means (FCM) algorithm 
[32], which is based on k-means. FCM attempts to 
find the most characteristic point in each cluster, 
which can be considered as the “center” of the cluster 
and, then, the grade of membership for each instance 
in the clusters.  
    Other soft clustering algorithms have been 
developed and most of them are based on the 
Expectation-Maximization (EM) algorithm [26]. 
They assume an underlying probability model with 
parameters that describe the probability that an 
instance belongs to a certain cluster. The strategy in 
this algorithm is to start with initial guesses for the 
mixture model parameters. These values are then 
used to calculate the cluster probabilities for each 
instance. These probabilities are in turn used to 
re-estimate the parameters, and the process is 
repeated. A drawback of such algorithms is that they 
tend to be computationally expensive. Another 
problem found in the previous approach is called 
overfitting. This problem might be caused by two 
reasons. On one hand, a large number of clusters may 
be specified. And on the other, the distributions of 
probabilities have too many parameters. In this 
context, one possible solution is to adopt a fully 
Bayesian approach, in which every parameter has a 
prior probability distribution. 

    Hierarchical algorithms that create a hierarchical 
decomposition of the instances are covered in the 
following section. 
 
 
3 Hierarchical Clustering 
The hierarchical methods group data instances into a 
tree of clusters. There are two major methods under 
this category. One is the agglomerative method, 
which forms the clusters in a bottom-up fashion until 
all data instances belong to the same cluster. The 
other is the divisive method, which splits up the data 
set into smaller cluster in a top-down fashion until 
each cluster contains only one instance. Both divisive 
algorithms and agglomerative algorithms can be 
represented by dendrograms. Both agglomerative and 
divisive methods are known for their quick 
termination. However, both methods suffer from 
their inability to perform adjustments once the 
splitting or merging decision is made. Other 
advantages are: 1) does not require the number of 
clusters to be known in advance, 2) computes a 
complete hierarchy of clusters, 3) good result 
visualizations are integrated into the methods, 4) a 
“flat” partition can be derived afterwards (e.g. via a 
cut through the dendrogram). 
    Hierarchical clustering techniques use various 
criteria to decide “locally” at each step which clusters 
should be joined (or split for divisive approaches). 
For agglomerative hierarchical techniques, the 
criterion is typically to merge the “closest” pair of 
clusters, where “close” is defined by a specified 
measure of cluster proximity. There are three 
definitions of the closeness between two clusters: 
single-link, complete-link and average-link. The 
single-link similarity between two clusters is the 
similarity between the two most similar instances, 
one of which appears in each cluster. Single link is 
good at handling non-elliptical shapes, but is 
sensitive to noise and outliers. The complete-link 
similarity is the similarity between the two most 
dissimilar instances, one from each cluster. Complete 
link is less susceptible to noise and outliers, but can 
break large clusters, and has trouble with convex 
shapes. The average-link similarity is a compromise 
between the two. 
    Some of the hierarchical clustering algorithms are: 
Balanced Iterative Reducing and Clustering using 
Hierarchies – BIRCH [39], Clustering Using 
REpresentatives – CURE [18] and CHAMELEON 
[23]. 
    BIRCH [39] uses a hierarchical data structure 
called CF-tree for partitioning the incoming data 
points in an incremental and dynamic way. CF-tree is 



a height-balanced tree, which stores the clustering 
features and it is based on two parameters: branching 
factor B and threshold T, which refer to the diameter 
of a cluster (the diameter (or radius) of each cluster 
must be less than T). A CF tree is built as the data is 
scanned. As each data point is encountered, the CF 
tree is traversed, starting from the root and choosing 
the closest node at each level. When the closest “leaf” 
cluster for the current data point is finally identified, 
a test is performed to see if adding the data item to the 
candidate cluster will result in a new cluster with a 
diameter greater than the given threshold, T. BIRCH 
can typically find a good clustering with a single scan 
of the data and improve the quality further with a few 
additional scans. It can also handle noise effectively. 
Moreover, because BIRCH is reasonably fast, it can 
be used as a more intelligent alternative to data 
sampling in order to improve the scalability of other 
clustering algorithms. However, BIRCH has one 
drawback: it may not work well when clusters are not 
“spherical” because it uses the concept of radius or 
diameter to control the boundary of a cluster. In 
addition, it is order-sensitive as it may generate 
different clusters for different orders of the same 
input data. Bubble and Bubble-FM [13] clustering 
algorithms are extensions of BIRCH to general 
metric spaces (categorical values in attributes).  
    In CURE, instead of using a single centroid to 
represent a cluster, a constant number of 
representative points are chosen to represent a 
cluster. The number of points chosen, is a parameter, 
c, but it was found that a value of 10 or more worked 
well. The similarity between two clusters is measured 
by the similarity of the closest pair of the 
representative points belonging to different clusters. 
Unlike centroid/medoid based methods, CURE is 
capable of finding clusters of arbitrary shapes (e.g. 
ellipsoidal, spiral, cylindrical, non-convex) and sizes, 
as it represents each cluster via multiple 
representative points. Shrinking the representative 
points towards the centroid helps CURE in avoiding 
the problem of noise present in the single link 
method. However, it cannot be applied directly to 
large data sets. For this reason, CURE takes a random 
sample and performs the hierarchical clustering on 
the sampled data points.  
    ROCK [17], is another clustering algorithm for 
categorical data using the Jaccard coefficient to 
measure similarity. It accepts as input the set S of n 
sampled points to be clustered (that are drawn 
randomly from the original data set), and the number 
of desired clusters k. ROCK samples the data set in 
the same manner as CURE. 
    CHAMELEON [23] finds the clusters in the data 
set by using a two-phase algorithm. In the first step it 

generates a k-nearest neighbor graph [12] that 
contains links only between a point and its k-nearest 
neighbors. After, CHAMELEON uses a 
graph-partitioning algorithm to cluster the data items 
into a large number of relatively small sub-clusters. 
During the second phase, it uses an agglomerative 
hierarchical clustering algorithm to find the genuine 
clusters by repeatedly combining together these 
sub-clusters. None cluster can contain less than a user 
specific number of instances. 
    More recently, a novel incremental hierarchical 
clustering algorithm (GRIN) for numerical data sets 
based on gravity theory in physics is presented in [7]. 
One main factor that makes the GRIN algorithm able 
to deliver favorite clustering quality is that the 
optimal parameters settings in the GRIN algorithm 
are not sensitive to the distribution of the data set. 
 
 
4   Density-based Clustering 
Density-based clustering algorithms try to find 
clusters based on density of data points in a region. 
The key idea of density-based clustering is that for 
each instance of a cluster the neighborhood of a given 
radius (Eps) has to contain at least a minimum 
number of instances (MinPts). One of the most well 
known density-based clustering algorithms is the 
DBSCAN [9]. DBSCAN separate data points into 
three classes (Fig. 2): 

• Core points. These are points that are at the 
interior of a cluster. A point is an interior 
point if there are enough points in its 
neighborhood.  

• Border points. A border point is a point that 
is not a core point, i.e., there are not enough 
points in its neighborhood, but it falls within 
the neighborhood of a core point.  

• Noise points. A noise point is any point that 
is not a core point or a border point. 

     
    To find a cluster, DBSCAN starts with an arbitrary 
instance (p) in data set (D) and retrieves all instances 
of D with respect to Eps and MinPts. The algorithm 
makes use of a spatial data structure - R*tree [24] - to 
locate points within Eps distance from the core points 
of the clusters. 
    An incremental version of DBSCAN (incremental 
DBSCAN) is presented in [10]. It was proven that 
this incremental algorithm yields the same result as 
DBSCAN. In addition, another clustering algorithm 
(GDBSCAN) generalizing the density-based 
algorithm DBSCAN is presented in [31]. GDBSCAN 
can cluster point instances to both, their numerical 
and their categorical attributes. Moreover, in [37] the 



PDBSCAN, a parallel version of DBSCAN is 
presented. Furthermore, DBCLASD (Distribution 
Based Clustering of Large Spatial Data sets) 
eliminates the need for MinPts and Eps parameters 
[38]. DBCLASD incrementally augments an initial 
cluster by its neighboring points as long as the nearest 
neighbor distance set of the resulting cluster still fits 
the expected distance distribution. While the distance 
set of the whole cluster might fit the expected 
distance distribution, this does not necessarily hold 
for all subsets of this cluster. Thus, the order of 
testing the candidates is crucial. In [2] a new 
algorithm (OPTICS) is introduced, which creates an 
ordering of the data set representing its density-based 
clustering structure. It is a versatile basis for 
interactive cluster analysis.  
    Another density-based algorithm is the 
DENCLUE [19]. The basic idea of DENCLUE is to 
model the overall point density analytically as the 
sum of influence functions of the data points. The 
influence function can be seen as a function, which 
describes the impact of a data point within its 
neighbourhood. Then, by determining the maximum 
of the overall density function can identify clusters. 
The algorithm allows a compact mathematical 
description of arbitrarily shaped clusters in 
high-dimensional data sets and is significantly faster 
than the other density based clustering algorithms. 
Moreover, DENCLUE produces good clustering 
results even when a large amount of noise is present. 
As in most other approaches, the quality of the 
resulting clustering depends on an adequate choice of 
the parameters. In this approach, there are two 
important parameters, namely σ and ξ. The parameter 
σ determines the influence of a point in its 
neighborhood and ξ describes whether a 
density-attractor is significant. Density-attractors are 
local maxima of the overall density function. 
    FDC algorithm (Fast Density-Based Clustering) is 
presented in [40] for density-based clustering defined 
by the density-linked relationship. The clustering in 
this algorithm is defined by an equivalence 
relationship on the objects in the database. The 
complexity of FDC is linear to the size of the 
database, which is much faster than that of the 
algorithm DBSCAN.  
    More recently, the algorithm SNN (Shared Nearest 
Neighbors) [8] blends a density based approach with 
the idea of ROCK. SNN sparsifies similarity matrix 
by only keeping K-nearest neighbors, and thus 
derives the total strength of links for each x. 
 
 
 

5   Grid-based Clustering 
Grid-based clustering algorithms first quantize the 
clustering space into a finite number of cells 
(hyper-rectangles) and then perform the required 
operations on the quantized space. Cells that contain 
more than certain number of points are treated as 
dense and the dense cells are connected to form the 
clusters. Some of the grid-based clustering 
algorithms are: STatistical INformation Grid-based 
method – STING [36], WaveCluster [33], and 
CLustering In QUEst – CLIQUE [1]. 
    STING [36] first divides the spatial area into 
several levels of rectangular cells in order to form a 
hierarchical structure. The cells in a high level are 
composed from the cells in the lower level. It 
generates a hierarchical structure of the grid cells so 
as to represent the clustering information at different 
levels. Although STING generates good clustering 
results in a short running time, there are two major 
problems with this algorithm. Firstly, the 
performance of STING relies on the granularity of 
the lowest level of the grid structure.  Secondly, the 
resulting clusters are all bounded horizontally or 
vertically, but never diagonally. This shortcoming 
might greatly affect the cluster quality. 
    CLIQUE [1] is another grid-based clustering 
algorithm. CLIQUE starts by finding all the dense 
areas in the one-dimensional spaces corresponding to 
each attribute. CLIQUE then generates the set of 
two-dimensional cells that might possibly be dense, 
by looking at dense one-dimensional cells, as each 
two-dimensional cell must be associated with a pair 
of dense one-dimensional cells. Generally, CLIQUE 
generates the possible set of k-dimensional cells that 
might possibly be dense by looking at dense (k - 1) 
dimensional cells. CLIQUE produces identical 
results irrespective of the order in which the input 
records are presented. In addition, it generates cluster 
descriptions in the form of DNF expressions [1] for 
ease of comprehension. Moreover, empirical 
evaluation shows that CLIQUE scales linearly with 
the number of instances, and has good scalability as 
the number of attributes is increased.  
    Unlike other clustering methods, WaveCluster 
[33] does not require users to give the number of 
clusters. It uses a wavelet transformation to transform 
the original feature space. In wavelet transform, 
convolution with an appropriate function results in a 
transformed space where the natural clusters in the 
data become distinguishable. It is a very powerful 
method, however, it is not efficient in high 
dimensional space. 
 
 



6   Model based Methods 
AutoClass [5] uses the Bayesian approach, starting 
from a random initialization of the parameters, 
incrementally adjusts them in an attempt to find their 
maximum likelihood estimates. Moreover, in [28] it 
is assumed that, in addition to the observed or 
predictive attributes, there is a hidden variable. This 
unobserved variable reflects the cluster membership 
for every case in the data set. Therefore, the 
data-clustering problem is also an example of 
supervised learning from incomplete data due to the 
existence of such a hidden variable [22]. Their 
approach for learning has been called RBMNs 
(Recursive Bayesian Multinets). 
    Another model based method is the SOM net [25]. 
The SOM net can be thought of as two layers neural 
network. Each neuron is represented by 
n-dimensional weight vector, m = (m1, … , mn), 
where n is equal to the dimension of the input 
vectors. The neurons of the SOM are themselves 
cluster centers; but to accommodate interpretation 
the map units can be combined to form bigger 
clusters. The SOM is trained iteratively. In each 
training step, one sample vector x from the input data 
set is chosen randomly, and the distance between it 
and all the weight vectors of the SOM is calculated 
using a distance measure, e.g., Euclidean distance. 
After finding the Best-Matching Unit (the neuron 
whose weight vector is closest to the input vector), 
the weight vectors of the SOM are updated so that the 
Best-Matching Unit is moved closer to the input 
vector in the input space. The topological neighbors 
of the BMU are also treated in a similar way. An 
important property of the SOM is that it is very 
robust. The outlier can be easily detected from the 
map, since its distance in the input space from other 
units is large. The SOM can deal with missing data 
values, too. 
    Many applications require the clustering of large 
amounts of high dimensional data. However, most 
automated clustering techniques do not work 
effectively and/or efficiently on high dimensional 
data, i.e. they are likely to miss clusters with certain 
unexpected characteristics. There are various reasons 
for this. First, it is difficult to find the necessary 
parameters for tuning the clustering algorithms to the 
specific applications characteristics. Second, it is 
hard to verify and interpret the resulting high 
dimensional clusters and third, often the concept of 
clusters inspired from low dimensional cases cannot 
be extended to high dimensional cases. A solution 
could be instead of integrating all the requirements 
into a single algorithm, to try to build a combination 
of clustering algorithms (ensembles of clustering 

algorithms). 
 
 
7   Ensembles of Clustering Algorithms 
The theoretical foundation of combining multiple 
clustering algorithms is still in its early stages. In fact, 
combining multiple clustering algorithms is a more 
challenging problem than combining multiple 
classifiers. In [29] the reason that impede the study of 
clustering combination has been identified as various 
clustering algorithms produce largely different 
results due to different clustering criteria, combining 
the clustering results directly with integration rules, 
such as sum, product, median and majority vote can 
not generate a good meaningful result. 
    Cluster ensembles can be formed in a number of 
different ways [34], such as (1) the use of a number of 
different clustering techniques (either deliberately or 
arbitrarily selected). (2) The use of a single technique 
many times with different initial conditions. (3) The 
use of different partial subsets of features or patterns. 
In [11] a split-and-merge strategy is followed. The 
first step is to decompose complex data into small, 
compact clusters. The K-means algorithm serves this 
purpose; an ensemble of clustering algorithms is 
produced by random initializations of cluster 
centroids. Data partitions present in these clusterings 
are mapped into a new similarity matrix between 
patterns, based on a voting mechanism. This matrix, 
which is independent of data sparseness, is then used 
to extract the natural clusters using the single link 
algorithm.  
    More recently, the idea of combining multiple 
different clustering algorithms of a set of data 
patterns based on a Weighted Shared nearest 
neighbors Graph WSnnG is introduced in [3]. 
    Due to the increasing size of current databases, 
constructing efficient distributed clustering 
algorithms has attracted considerable attention. 
Distributed Clustering assumes that the objects to be 
clustered reside on different sites. Instead of 
transmitting all objects to a central site (also denoted 
as server) where we can apply standard clustering 
algorithms to analyze the data, the data are clustered 
independently on the different local sites also 
denoted as clients). In a subsequent step, the central 
site tries to establish a global clustering based on the 
local models, i.e. the representatives. Generally, as 
far as distributed clustering is concerned, there are 
different scenarios: 

• Feature-Distributed Clustering (FDC), 
consists in combining a set of clusterings 
obtained from clustering algorithm having 
partial view of the data features.  



• Object-Distributed Clustering (ODC),
consists in combining clusterings obtained
from clustering algorithm that have access to
the whole set of data features and to a limited
number of objects.

• Feature/Object-Distributed Clustering 
(FODC), consists in combining clusterings
obtained from clustering algorithm having
access to limited number of objects and/or
features of the data.

8   Conclusion 
We should remark that the list of references is not a 
comprehensive list of papers discussing unsupervised 
methods: our aim was to produce a critical review of 
the key ideas, rather than a simple list of all 
publications which had discussed or made use of 
those ideas.  Despite this, we hope that the references 
cited cover the major theoretical issues, and provide 
routes into the main branches of the literature dealing 
with such methods. 
    Generally, we will say that partitioning algorithms 
typically represent clusters by a prototype. An 
iterative control strategy is used to optimize the 
whole clustering such that, e.g., the average or 
squared distances of instances to its prototypes are 
minimized. Consequently, these clustering 
algorithms are effective in determining a good 
clustering if the clusters are of convex shape, similar 
size and density, and if the number of clusters can be 
reasonably estimated. 
    In general, the disability to identify the appropriate 
number of clusters is one of the most fundamental 
shortcomings of non-hierarchical techniques [15]. 
Hierarchical clustering algorithms decompose the 
data set into several levels of partitioning which are 
usually represented by a dendrogram – a tree which 
splits the data set recursively into smaller subsets. 
Although hierarchical clustering algorithms can be 
very effective in knowledge discovery, the cost of 
creating the dendrograms is prohibitively expensive 
for large data sets. 
    Density-based approaches apply a local cluster 
criterion and are very popular for the purpose of data 
set mining. Clusters are regarded as regions in the 
data space where the instances are dense, and they are 
separated by regions of low instance density (noise). 
These regions may have an arbitrary shape and the 
points inside a region may be arbitrarily distributed. 
A performance comparison [38] shows that 
DBSCAN is slightly faster than DBCLASD and 
both, DBSCAN and DBCLASD are much faster than 

hierarchical clustering algorithms and partitioning 
algorithms. 
    Generally, grid-based clustering algorithms first 
separate the clustering space into a finite number of 
cells (hyper-rectangles) and then perform the 
required operations on the quantized space. Cells that 
contain more than certain number of points are 
treated as dense and the dense cells are connected to 
form the clusters. 
    A solution for better results could be instead of 
integrating all the requirements into a single 
algorithm, to try to build a combination of clustering 
algorithms. However, the theoretical foundation of 
combining multiple clustering algorithms is still in its 
early stages and thus more work is needed in this 
direction. In addition, one can also study the impact 
of the coordinated sub-sampling strategies on the 
performance and quality of object distributed 
clustering. The question is to determine what types of 
overlap and object ownership structures lend 
themselves particularly well for knowledge reuse. 
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