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Abstract: Numerical simulation of reinforced concrete structures requires the explicit representation of both the 

concrete and the reinforcement bars, where the two materials are modelled separately using appropriate 

constitutive laws including damage variables for concrete in compression and tension. Even if this way of 

modelling is convenient and satisfactory, it requires a huge computational effort especially in the case of large 

scale applications. The aim of this paper is to develop an alternative model dedicated for the simulation of large 

scale reinforced concrete structures with no need to represent explicitly the steel reinforcements. Based on the 

literature review, the authors developed a fictitious stress-strain relationship for reinforced concrete under 

tension. The model is based on the shape of the slip-adhesion curve between steel and concrete proposed by the 

European Committee for Concrete (C.E.B.) to estimate the crack opening widths. Relationships covering the 

cracked stage up to the yield point of the steel are proposed depending on the material properties of concrete and 

steel, on the reinforcement ratio, as well as on the crack widths. The developed model was successfully 

implemented in the ABAQUS commercial software. The effectiveness and computational efficiency are 

demonstrated through some examples under tensile and bending loadings.   
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1. Introduction

The design process of reinforced concrete (RC) structures is generally governed by the ultimate 

compressive crushing strength of concrete, while the tensile loading is assumed to be carried by steel 

reinforcements. Thus, cracking of concrete under tensile loading is expected to occur already in the 

service state and cannot be avoided in most structural engineering applications.  On the other hand, 

taking into account the contribution of the tensile zone of the concrete, in the cracked stage, to the 

global stiffness of the entire reinforced concrete element is one way to describe more closely the real 

behavior of reinforced concrete structures and so to increase the robustness and capabilities of the 

computational methods.  

Cracking of concrete under tensile loading is a complex phenomenon which leads to progressive 

reduction of the stiffness of the reinforced concrete structural element. The stiffness reduction is 

generally a combination between cracking of concrete under tension and the local loss of the bond 

(adhesion) between steel bar and concrete at a fully cracked section. It is, therefore, of primary 

importance to accurately model and predict the stiffness reduction during the cracked stage for a 

proper design of structural engineering applications. 

Extensive experimental and numerical studies on both small-scale and full-scale RC beams and walls 

have been published in the literature. In these studies the finite element method is the widely used 

approach to predict the behaviour of the RC elements based on 3D continuum mechanics [1-8], among 

others. Usually, there are two main strategies: (1) both the concrete element and the steel 
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reinforcement are modelled separately using 3D solid finite elements using different constitutive laws 

(for concrete and steel), where the imperfectly bond-slip relationship between steel reinforcement and 

concrete is accounted for, (2) the concrete element is modelled using 3D solid finite elements while 

the steel reinforcement is modelled using 1D bar elements, where the interaction between concrete and 

steel reinforcement is modelled as embedded condition. Even if the first strategy is more complex and 

cost expensive, its main advantage by comparison to the former one is the prediction of the relative 

slip between concrete and steel reinforcement.  In both strategies, the well-known concrete damage 

plasticity model (CDPM), available in Abaqus software [9], is widely used to predict the bahaviour of 

concrete under compression and tension, including damage variables for both compression and 

tension, while the steel reinforcements are assumed as isotropic elasto-plastic material model.  

These strategies are generally satisfactory and convenient when dealing with relatively smaller 

individual structural elements (beams, columns). However, in the case of large-scale concrete 

structures (multi-story portal frames, shear walls, etc.) the computational effort would be huge due to 

the explicit detailed modelling of the steel reinforcements as well as the local degradation phenomena 

(progressive cracking of concrete, relative slip between concrete and steel). It can be concluded, 

therefore, that the computational effort is a key point for engineers and modellers in the choice of the 

modelling approach to adopt. 

The building codes (C.E.B., Eurocode 2, etc.) suggest to evaluation and to limit the crack opening in 

the service state using simplified formulas, depending on both the mean steel and concrete strains 

between two successive cracks [10-11], to avoid corrosion of the steel reinforcements. On the other 

hand, several experimental and analytical studies dealing with the stiffness of RC elements under 

tension are available in the literature [12,17-21]. A comprehensive review of the relevant existing 

analytical models proposed in the literature to assess the load-mean strain curve of a RC element under 

tension in the cracked stage is given in [12]. These models are mostly based on the relationship 

between the mean RC strain and the steel strain in a fully cracked section.  

The main purpose of this paper is to develop a fast and simplified predictive model to simulate the 

global behaviour of RC structures dedicated to large scale applications with no need to represent 

explicitly the reinforcement bars in the model neither the progressive damage of concrete in tension. 

To this end, a fictitious tension behaviour model for the RC, where the physics involved in the 

reinforced concrete, namely relative slip between concrete and reinforcement, at a fully cracked 

section, as well as the crack opening widths, are explicitly accounted for in the developed fictitious 

constitutive stress-strain relationship. The requirements due to both the simplicity and the predictivity 

(accuracy) of the finite element model are considered of primary importance. The developed model 

was successfully implemented in the Abaqus finite element code to simulate some examples including 

both tensile and bending loadings. 

2. Finite element modelling

2.1. Stiffness of RC in the cracked stage 

When a RC element is subjected to tension, two main stages can be distinguished: (1) linear elastic 

stage (without cracks) and (2) inelastic cracked stage (Fig. 1).  In the first stage, the overall behavior is 

almost linear elastic, until the concrete reaches its tensile strength limit (point A, Fig.1). This stage 

exhibits a much higher stiffness by comparison to the stiffness of the individual steel bar (line OB, 

Fig.1), thanks to the contribution of the tensile stiffness of the concrete to the global stiffness of the 

entire RC element. In the second stage (beyond the point A), as loading of the RC element increases 
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cracks take place progressively in the concrete section and the tensile applied loading is redistributed 

along the entire RC element thanks to the bond-slip shear stress between concrete and steel. The 

cracked stage is characterized by the number of the developed cracks and their opening widths. This 

stage is accompanied with a gradually decrease of the global stiffness of the loaded RC element, until 

it reaches the stiffness of the individual steel bars. 

Fig. 1: Load-mean strain curve of RC under tension [12]. 

The literature review shows that one common point of the existing models dealing with the stiffness of 

RC during the cracked stage is that they are based on the relation between the mean strain of the RC 

(  ) and the steel strain (  ) in a fully cracked cross-section, which can be expressed as follows [12]:  

       (1) 

where   stands for the tension stiffening effect of concrete lying between two successive cracks. 

2.2. Fictitious behaviour of RC under tension 

The proposal of the present paper is to establish the relationship between the applied tension load and 

the mean strain     of the RC element subjected to tension. The constitutive law (stress-strain curve) 

can be obtained by dividing the total tensile load by the equivalent and homogenized concrete cross-

section. Here, the developed model for RC in tension is briefly discussed. The readers can refer to [22, 

23, 27] for a better reading on the theoretical aspects.  

In the present study, the behaviour of a RC under tension is assumed to follow three main stages (Fig. 

2), namely linear elastic stage (branch OA), inelastic cracked stage (branch AC) and elastic cracked 

stage (CB). 

The different relations and computing methods covering the three stages described above are given 

hereafter. 
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2.2.1. Bond-slip relationship (   ) 

The goal of this section is to estimate the mean strain of the RC element induced by the relative slip 

between the steel bars and concrete at a fully cracked cross-section.  

Let’s consider the introduction length    and disturbed length    [13-16] (Fig. 4), such that    

                  [13]. Thus, the effective introduction length is                . 

The equilibrium equation of a steel bar embedded in a concrete block (Fig. 4) can be written as 

follows:  
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The corresponding steel strain can be expressed as follows: 
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The relative slip between steel and concrete can be expressed as follows: 

σcr

Fig. 2: Stress-strain relationship of reinforced concrete under tension 
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                  (5) 

The first and second derivatives of the relation (5) lead to: 
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For a given concrete cross-section between two successive cracks, the concrete stress and strain can be 

expressed respectively as:  
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From the equation (9), it can be written: 

   

  
 

 

    

  

     
      (10) 

By substituting equations (3-4) and (9-10) in the equation (7), we obtain the differential equation (11) 

governing the relative slip g, between steel and concrete: 

   

     
 

     
        (11) 

The expression (11) is used to establish, in the domain           , the different quantities 

                  and      as a function of   along the effective introduction length   .  

In the present study, we limit ourselves to a value of relative slip     (Fig. 3). If we consider the 

effective introduction length         , the solution of the differential equation (11) is given by 

[1,5]: 

                           (12) 

where:   
  

       

      
;     

   

     
 ;    

  

  
 

Using the variable       , the variation of the bond slip shear stress along   can be written as: 

        
                      (13) 

By substituting the expression of      in the equation (2) and by means the mean value along   , we 

obtainthe mean strain in both  the steel bar (     )  and in the concrete (     ) at the first crack as 

follows [22]:  

                  
   

 
      ,       

  

  
      (14) 

                               
   

    (15) 
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2.2.2. Linear elastic stage (branch OA) 

Before crack initiation, the behaviour of the RC element is regarded as homogeneous linear elastic 

material model and the equilibrium equation under tension leads to:  

                     (16) 

where   
  

  

The mean concrete strain is obtained from the equation (11) as follows: 

           
  

  
 

  

 
 

       

    
 (17) 

where        
  

   
  and        

2.2.3. Inelastic cracked stage (branch AC) 

This stage starts at the onset of the first crack. This is likely to appear in a section corresponding to the 

weakest point of the concrete in tension, leading to a variation of the tensile strength of the concrete 

along the entire RC element. Moving away from either side of this first crack, the applied tensile force 

(  ) is progressively transmitted to the concrete thanks to the steel-concrete adhesion. Further cracks 

appear progressively as the tensile loading increases. This stage (branch AC) stops when the cracking 

becomes stable (number of cracks is stable).  

The literature dealing with the progressive formation of the concrete cracks [22,23,27] reports the 

idealized crack propagation shown in Fig. 5. From this figure, it can be observed that as long as the 

number of cracks remains lower that     (Fig. 5a), the introduction length    may change. Beyond, 

every formation of new crack takes place at equidistance (denoted  ) between two successive cracks 

(Fig. 5b). 

Fig. 5: Idealized progressive formation of cracks 
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In this stage, one distinguishes two cases: 

a) Case 1:       

Here, it is assumed that the relative slip between steel and concrete is lower than the value   

corresponding to the maximum bond-shear stress    (Fig. 3), such that: 

     
 

  
 
 

 (18) 

The parameter   is ranged from 0.25 to 0.40 according the concrete confinement [10]. 

The parameter   denotes the spacing between two successive cracks before the stabilization state of 

the crack propagation, such that       (where         ). At the relative slip   ,    is denoted   

and the introduction length              . 

In the following, (     and (     denote respectively the first crack and the last crack. During the 

propagation of cracks, at the crack number   the cracking concrete stress can be expressed as (by 

assuming                            : 

            (19) 

    
      

  
 (20) 

In this way, the first crack must take place inside the interval             . Just before the crack  , with 

the help of the equation (17) it can be written:  

    
    

     
 

      

       
 

  

  
    (21) 

where     
      

       

The mean crack spacing   is taken equal to 1.5 times the effective introduction length at the last main 

crack (    ) [24] to allow the formation of all cracks:  

        (22) 

where    1.45 – 1.55 

     
 

     
 
         

          
           

 (23) 

Thanks to the mean strain, in the concrete, at a fully cracked section      (see equation (15) and 

mean strain (    ) of the concrete between two successive cracks calculated using the relation (20), it 

can be written: 

                    (24) 

             (25) 
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The effective introduction lengths at the first crack,     and    may be calculated, respectively as 

follows (Fig. 6): 

Fig. 6: Formation of the first crack and idealized effective length 

(dashed line: distribution of the bond-slip stress) 
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                (27) 

The mean strain of the RC element (Fig. 7) for the total introduction length   , can be calculated as the 

sum of the different relative displacements (    ,     ) divided by its total length (L):   

    
   

 
 

         

 
 (28) 

Finally, the mean strain of the RC element (Fig. 7) for the total introduction length       , is 

obtained using the relation (15).  

Fig. 7: Distribution of steel and concrete mean strains along the RC element for g(l0) < g1: 
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b) Case 2:        

Here,   is used to define the total number of cracks long the entire length of the RC element. This 

second case starts at the crack number     for an even number of cracks and         for an odd 

number of cracks. 

At the stabilization of the crack formation, the effective introduction length     decreases. The length 

    is denoted    , where the subscript “a” is used to define the stabilization of cracks, such that: 

  
                    (29) 

    
  

 
      (30) 

where          and           

The introduction length     and the steel strain    at a fully cracked section are substituted 

respectively by      and      , such that:   

        
 

     
           

         
   (31) 

where        stands to the mean steel strain at a fully cracked section, in the crack stabilization state, 

corresponding to the effective introduction length      (Fig. 8). 

Fig. 8: Distribution of steel and concrete mean strains along the RC element for g(l0) < g1: 

Case when        

Finally, the mean steel and mean concrete strains, in the stabilized cracked state, are calculated, 

respectively, as follows:  

     
                 

   

 
           (32) 

     
               

   

      (33) 
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It is worth noting that, the second order Lagrange Polynomial is used to compute the shape of the 

stress-strain curve covering this stage (branch AC).  

2.2.4. Elastic cracked stage (branch CB) 

This stage is characterized by the stability of cracking (the number of cracks likely to form is stable). 

As the tensile loading   increases, the opening width of cracks increases. The stress-strain behaviour 

in this stage is assumed to increase linearly up to the yield point of the steel bars.  

The general flowchart of the computational model is given in Fig. 9. 

 

 
 

 

 
 

 

   

  

Fig. 9: General flowchart of the calculation model 
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3. Numerical applications

3.1.  Simulation of RC prisms under tension 

The first example, described in Fig. 10, is a reinforced concrete prism subjected to tensile loading at 

the two ends. The RC prism consists of a cross-section of 22500 mm
2
 reinforced using 4 steel bars of 

12 mm diameter each, leading to a volume fraction steel rebars of 2%. A detailed experimental study 

of this example, including the development of an analytical model, has been presented earlier by 

Espion et al. [12]. 

Fig. 10: Geometrical description of the studied RC prism (dimensions in mm) 

The global tensile behaviour (load-displacement curve) of the prism is studied numerically and 

compared to the experimental data from [12].  

The prism is modeled using two finite element models (with and without explicit representation of the 

steel reinforcements): 

- Model 1: the concrete is modelled using 3D solid elements based on the concrete damage-

plasticity model (CDPM) supported in the Abaqus software, including damage variables in 

tension. While the steel bars are modelled using truss elements, which are embedded in the 

concrete, and regarded as isotropic elastoplastic material model (Fig. 11a); 

- Model 2: only the concrete is modelled using 3D solid elements (Fig. 11b) and assumed to 

obey to the developed fictitious stress-strain behaviour under tension (the steel reinforcements 

are not modelled but their contribution is taken into account implicitly through the fictitious 

stress-strain curve).   

The material properties of the steel reinforcements are: Es = 200 GPa,  =0.3 and the yield stress   = 

400 MPa. The concrete properties are: Ec = 31.6 GPa,  =0.13,    =1.4 MPa,    =34.5 MPa. 

150 

150 
1500 
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Fig. 11: The different FE models: (a) concrete prism with steel reinforcement (model 1), (b) fictitious 

concrete prism without steel reinforcement (model 2) and (c) FE mesh of the prism 

The numerically-predicted load-displacement curves using both the model 1 and model 2 are 

compared to the mean experimental curve from [12] (Fig. 12). In addition, the load-displacement 

curve from the steel bars (4 bars) is plotted for comparison purpose. It can be seen from Fig. 12 that 

both models 1 and 2 predict well the global behaviour of the RC prism. However, it was observed that 

the convergence quickness of the model 2 is better as compared to the model 1.  

Fig. 12: The numerically-predicted load-displacement curves versus the experimental curve 
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3.2. Simulation of RC beam under 

bending 

This example involves both experimental and 

numerical simulation of bending behaviour of a 

RC beams. The geometrical 

descriptions of the RC beams as well as the 

reinforcement layout are given in Fig. 13. It is 

spanned 300 cm and has a cross-section of 15 

cm x 28 cm. The test has been performed 

under four-point bending test according 

to the set-up depicted in Fig. 14.   

Fig. 13: Geometrical description of the tested RC beams and steel reinforcement layout. 

The total applied load was recorded versus the mid-span deflection which is measured using LVDT 

transducer (Fig. 13).  
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Fig. 14: Experimental set-up of the RC beam under bending 

As in the case of the first example, the numerical simulations were run in two ways: 

- Model 1: the RC beam was modelled using 3D continuum mechanics and the streel 

reinforcements (longitudinal bars and stirrups)  were explicitly represented in the model (Fig. 

15a); 

- Model 2: the RC beam was modelled without the steel reinforcements (Fig. 15b). 

In the two models, the concrete was meshed using 3D hexahedral finite elements, as shown in Fig. 

15c.  

The material properties of the steel reinforcements are: Es = 210 GPa,  =0.3 and the yield stress   = 

500 MPa. The concrete properties are: Ec = 30 GPa,  =0.13,    =2.1 MPa,    = 35 MPa. 

The global behaviour of the RC beams was studied and the numerically-predicted load-mid-span 

deflection curves are compared against the mean experimental curve, showing a fairly good agreement 

(Fig. 16). It can be seen that both the model 1 and model 2 predict well the global bending behaviour.  

It can be observed also from Fig. 16 that the initial global stiffness of the beam (up to about 7 mm 

deflection) exhibits a slight reduction due to the formation of concrete cracks. The global yielding 

takes place at about 18 mm deflection and the stiffness of the RC beam held almost constant until 

complete failure. The main advantages of the model 2 as compared to the model 1 are the quickness 

and the less pretreatment effort that it requires. 

(a) 

(b) 

(c) 
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Fig. 15: The different FE models: (a) concrete prism with steel reinforcement (model 1), (b) fictitious 

concrete prism without steel reinforcement (model 2) and (c) FE mesh of the prism 

Fig. 16: Numerically-predicted load-deflection curves versus experiments 

The tests have been conducted until failure. Cracking of the concrete in the tensile zone the beams 

(lower face) located between the two loading points (Fig. 17a) was the main observed failure mode. It 

can be also seen that the model 1 predicts well the formation of the concrete cracks (Fig. 17b). Both 

experimental observation and numerical simulation show that cracks take place, progressively, as 

bending load increases, until a certain loading level where compressive damage occurs.  

(a) Experimental 
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(b) Numerical (one half of the model 1)  

Fig. 17: Experimental and numerical concrete crack formation at the lower face of the RC beam 

4. Conclusion

Nowadays, the evaluation of the contribution of the concrete stiffness to the reinforced concrete 

tension element during the cracking stage is becoming increasingly popular. The building codes 

suggest designing the RC element in such a way to limit the crack opening widths in order to avoid 

corrosion of steel reinforcements. Several computational models dedicated to the prediction of the 

tensile stiffness of the RC elements are available in the literature. However, up to now, these models 

are not explored within the actual context of more and more intensive use of numerical simulation 

using the finite element method. The aim of this paper was to develop a simplified and fast predictive 

model to simulate the load-displacement behaviour of RC structures without the need to model the 

steel reinforcement.  

A finite element model that takes into account the degradation of the tensile stiffness of reinforced 

concrete during the cracking stage has been presented and evaluated for RC prism under tension and 

RC beam under bending. The model is quite simple and requires much less computational effort 

because it does not require the explicit representation of the steel reinforcement to evaluate the global 

behaviour of RC elements. 

As an alternative to the existing computational models, the mean stain of the RC is obtained thanks to 

the relative slip between steel and concrete at a fully cracked section. During the formation of cracks, 

the redistribution of both the applied tensile load and the bond shear stress along the steel 

reinforcement bar are evaluated. 

The developed model has been successfully implemented in the Abaqus commercial software and 

successfully applied to study RC element under tensile and bending loadings. The model gives a fairly 

good agreement as compared to the experimental predictions. The main novelty of the developed 

model with regard to the existing literature is that there is no need to model the steel reinforcement 

neither the damage evolution of concrete under tension (as the case in the existing models). Thanks to 

these characteristics, economical (with regard to the computational effort) simulations are obtained 

without any divergence problem related to the management of the progressive damage of concrete in 

tension. 

The model, however, needs some complementary verification/developments, namely for its 

application to full-scale examples. For example, the study of some influential parameters, namely the 

steel reinforcement ratio, which is an interesting and necessary perspective for the model. Also the 
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validity domain of the model needs further investigations before obtaining a robust and efficient 

general computational finite element model.  
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Annex 1: 

Nomenclature 

     : concrete average tensile strength  

g : relative slip between steel and concrete (g = uc - us) 

   : value of the slip corresponding to the peak of the steel-concrete adhesion law (CEB) 

 : bond slip shear between steel and concrete

  : maximum  bond slip shear between steel and concrete

n : equivalence coefficient n = Es/Ec 
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p : total  perimeter of steel reinforcement 

    : respectively elongation of concrete and steel 

     : respectively, steel and concrete cross-sections 

     : respectively concrete and steel elastic moduli 

  : external applied tensile force, 

   : tensile force in the cracked stage 

  : exponent of the slip-adhesion law proposed by the model code CEB 1990 

  : total number of main cracks in the RC element 

  : steel reinforcement ratio 

  : concrete normal stress  
   : concrete effective tensile strength 
   : concrete tensile strength at the ith crack 
  : steel yield strength 
   : steel tensile stress 
   : normal stress of the steel at the last crack γ 

   : normal stress of the steel at the crack 

   : normal stress of steel at the appearance of the first crack 
   (or   ) : tension stiffening effect of concrete lying between two successive cracks 
  : total length of the considered RC element  
   : sum of the lengths (l0) of the disturbed zones of the RC element 
   : length or sum of the lengths of the homogenized zones of the RC element 
   : sum of the total introduction lengths (lt) of the RC element 
  : disturbed length on either side of a crack         

    : effective introduction length at crack stabilization (      ) when g (l0) <g1 
  : effective introduction length when the slip g at the distance l0 remains lower than g1 (with 
       ) 
   : total introduction length 
                , total introduction length when sliding at distance l0 of the crack is lower than g1 
(with       ) 
     : total introduction length at crack stabilization (      )) when g (l0) <g1 
    : length (noted with an index r) relative to the appearance of the first crack corresponding to the 
length l1. 
     : total introduction length (with an index r) relative to the appearance of the first crack 
corresponding to the length lt1. 
  : steel elastic strain limit 
  : mean strain of the RC element 
     : respectively, steel and concrete strains 
   : steel strain in the cracked stage 

      : steel strain in the cracked stage corresponding to the introduction length     . 

     : mean steel strain at crack stabilization corresponding to average crack spacing    
    ,     : respectively mean steel and concrete strains corresponding along the introduction length 
  
     ,       : respectively mean steel and concrete strains corresponding along the introduction 
length    

     ,      : respectively mean steel and concrete strains corresponding along the introduction 
length    
      ,       1: respectively mean steel and concrete strains corresponding along the introduction 
length     

       : respectively steel and concrete strains at the first crack 
    : distance between two successive cracks corresponding, respectively, to the introduction 
lengths    and     

                average spacing between two successive cracks at the crack stabilization state 
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              average spacing between two successive cracks at the crack stabilization state 
corresponding to the introduction length    




