
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/295893371

Name	prefix	matching	using	bloom	filter	pre-
searching	for	content	centric	network

ARTICLE		in		JOURNAL	OF	NETWORK	AND	COMPUTER	APPLICATIONS	·	FEBRUARY	2016

Impact	Factor:	2.23	·	DOI:	10.1016/j.jnca.2016.02.008

READS

5

3	AUTHORS,	INCLUDING:

Hyesook	Lim

Ewha	Womans	University

43	PUBLICATIONS			367	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Hyesook	Lim

Retrieved	on:	08	March	2016

https://www.researchgate.net/publication/295893371_Name_prefix_matching_using_bloom_filter_pre-searching_for_content_centric_network?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_2
https://www.researchgate.net/publication/295893371_Name_prefix_matching_using_bloom_filter_pre-searching_for_content_centric_network?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Hyesook_Lim?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Hyesook_Lim?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Ewha_Womans_University?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Hyesook_Lim?enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw%3D%3D&el=1_x_7


Journal of Network and Computer Applications 65 (2016) 36–47
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m
journal homepage: www.elsevier.com/locate/jnca
Name prefix matching using bloom filter pre-searching for content
centric network

Jungwon Lee, Miran Shim, Hyesook Lim n

Department of Electronics Engineering, Ewha Womans University, Seoul, Korea
a r t i c l e i n f o

Article history:
Received 15 August 2015
Received in revised form
9 January 2016
Accepted 16 February 2016
Available online 23 February 2016

Keywords:
Content centric network
Name prefix matching
Bloom filter
Name prefix trie
x.doi.org/10.1016/j.jnca.2016.02.008
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author. Tel.: þ82 2 3277 3403.
ail address: hlim@ewha.ac.kr (H. Lim).
a b s t r a c t

As a new networking paradigm for future Internet, content centric networking (CCN) technology provides a
contents-oriented communication infrastructure for the rapidly increasing amount of data traffic. For the
successful realization of CCN, it is essential to design an efficient forwarding engine that performs high-speed
name lookup. This paper proposes the use of a hashing-based name prefix trie and a Bloom filter. In the
proposed approach, an off-chip hash table storing the nodes of the name prefix trie is only accessed when
the Bloom filter states that the node under querying exists in the trie. In accessing the node depending on the
result of the Bloom filter, we propose two algorithms that have different strategies. The first algorithm
accesses the trie node for every positive result of the Bloom filter, while the second algorithm first attempts
to determine the longest matching length using Bloom filter queries. Trie nodes are accessed from the
possible longest length, and tracked back if there is no match. Simulation results show that the proposed
approach can provide the output face of each input name, with a single node access on average and with two
node accesses in the worst-case using a reasonable size of a Bloom filter.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Emerging Internet applications such as social network services largely share image, video, and music files. As large and repeatedly
requested contents, this traffic is not efficiently transferred in the current Internet, which has a host-based infrastructure. Content centric
network (CCN) is a promising next-generation network designed to solve such issues of the current Internet. The CCN is also known as the
information centric network (ICN) or named data network (NDN). While the current Internet uses host-to-host communication based on
IP addresses, the CCN performs data communication based on content names (Jacobson et al., 2009; Vasilakos et al., 2015; Bari et al., 2012;
Xu et al., 2014; Qiao et al., 2015; Wang et al., 2012; Esteve et al., 2008; Perino and Varvello, 2011). In Jacobson et al. (2009), basic CCN
features are implemented and the resilience and the performance of CCN architecture are compared with the host-based communication
in terms of file transfer, content distribution, and voice calls.

Instead of the concept of source hosts or destination hosts, the CCN uses the concept of content generator and content consumer.
Content generators produce contents, and content consumers receive and consume the contents. Routers perform routing using content
names instead of IP addresses. Unlike conventional routers, CCN routers have an additional role of caching, which stores contents tem-
porarily, and sends them to consumers requesting the contents. In this way, CCN consumers can rapidly acquire the desired contents, and
the same contents are not repeatedly transferred over a network.

CCN uses two types of packets: Interest and Data. The Interest is broadcasted by a consumer. The Data is produced by a content
generator and transmitted by any node hearing the Interest and having the Data. A CCN router has three different tables: Contents Store
(CS), Pending Interest Table (PIT), and Forwarding Information Base (FIB). The CS is a cache storing Data packets. The PIT is used to forward
Data packets, and the FIB is used to forward Interest packets. For wire-speed packet forwarding, it is essential to have efficient lookup
algorithms that perform the longest name matching for every incoming Interest packet.

A trie is an ordered tree-based data structure, the name of which originates from the word retrieval. We differentiate the term trie from
the tree as follows. In a trie structure, all the descendants of a node have a common prefix of the string associated with that node, while
this is not always true in a tree structure. A name prefix trie (NPT) has been proposed as an extended trie for a name lookup (Wang et al.,

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.02.008
http://dx.doi.org/10.1016/j.jnca.2016.02.008
http://dx.doi.org/10.1016/j.jnca.2016.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.008&domain=pdf
mailto:hlim@ewha.ac.kr
http://dx.doi.org/10.1016/j.jnca.2016.02.008
https://www.researchgate.net/publication/259520964_A_novel_cache_size_optimization_scheme_based_on_manifold_learning_in_Content_Centric_Netorking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/273579247_Information_centric_network_Research_challenges_and_opportunities?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/273652339_NDNBrowser_An_extended_web_browser_for_named_data_networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261245722_Scalable_Name_Lookup_in_NDN_Using_Effective_Name_Component_Encoding?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/254003632_A_reality_check_for_content_centric_networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221325411_Networking_named_content?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221325411_Networking_named_content?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221325155_Towards_a_new_generation_of_information-oriented_internetworking_architectures?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–47 37
2011). The NPT provides an intuitive way for the name lookup with the longest name matching, but has an issue in search performance,
since an FIB table can have many millions of content names and each content name can be excessively long.

The motivation of this paper is to propose a new approach for the longest name matching used in FIB lookups in CCN routers. The proposed
approach is based on the name prefix trie. In order to solve the search performance issue of the NPT, we propose to add an on-chip Bloom filter
which is queried before the access to the NPT, which is stored in an off-chip hash table. As a space-efficient probabilistic data structure used to test
whether an element is a member of a set, Bloom filters have been popularly applied to network algorithms (Song et al., 2005; Tong et al., 2014; Mun
and Lim, 2015; Lim et al., 2014a, 2014b). Since an access to an off-chip memory takes 10–20 times longer than an access to an on-chip memory
(Panda et al., 2000), by pre-searching the on-chip Bloom filter, the off-chip hash table storing trie nodes is only accessed when there is a high
possibility of a matching entry in our proposed approach. The earlier and shorter version of this paper was presented in (Lim et al., 2015).

The performance of our proposed algorithms is evaluated through simulation. Since the format of CCN names is not yet defined, URL
names that have hierarchical characteristics similar to CCN names are used for our simulation (Wang et al., 2011). Memory requirements
for creating a Bloom filter and storing the NPT are also evaluated. Using inputs with 3 times the number of stored URLs, the search
performance is also evaluated.

This paper is organized as follows. Section 2 describes related works such as the name prefix trie, previous name lookup algorithms, and
the Bloom filter theory. Section 3 introduces the building and searching procedures of the proposed algorithms. Section 4 shows the per-
formance evaluation results, and Section 5 concludes the paper.
2. Related works

2.1. Name prefix trie

Each component in a URL is composed of variable-length character strings, and is differentiated by a dot or a slash. For example, the URL of
http://www.youtube.com/user/PewDiePie is composed of 4 components: youtube, com, user, and PewDiePie. In storing the URL into a name
Fig. 1. Name prefix trie.

Table 1
An example of an FIB at CCN routers.

Content name Output face

http://t-online.de 1
http://youtube.com 2
http://google.com 3
http://facebook.com 4
http://visitKorea.or.kr 5
http://warning.or.kr 6
http://google.com.hk 7
http://empowernetwork.com/25e8w 8
http://youtube.com/user/SkydoesMincraft 9
http://youtube.com/user/PewDiePie 10

http://www.youtube.com/user/PewDiePie
http://www.t-online.de
http://www.youtube.com
http://www.google.com
http://www.facebook.com
http://www.visitKorea.or.kr
http://www.warning.or.kr
http://www.google.com.hk
http://www.empowernetwork.com/25e8w
http://www.youtube.com/user/SkydoesMincraft
http://www.youtube.com/user/PewDiePie
https://www.researchgate.net/publication/260113135_Bloom_filter-based_workflow_management_to_enable_QoS_guarantee_in_wireless_sensor_networks?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/270607456_Fast_Hash_Table_Lookup_Using_Extended_Bloom_Filter_An_Aid_to_Network_Processing?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/275618366_Reducing_False_Positives_of_a_Bloom_Filter_using_Cross-Checking_Bloom_Filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/283097812_Name_prefix_matching_using_bloom_filter_pre-searching?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/260712226_On_Adding_Bloom_Filters_to_Longest_Prefix_Matching_Algorithms?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/220305970_On-chip_vs_Off-chip_memory_The_data_partitioning_problem_in_embedded-processor-based_systems?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221289105_Parallel_Name_Lookup_for_Named_Data_Networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–4738
prefix trie, the example name is converted into com/youtube/user/PewDiePie by reversely ordering the components with dots and by differ-
entiating components using a slash.

Table 1 shows an example of an FIB with 10 arbitrary content names and corresponding output faces. Fig. 1 shows the name prefix trie
(NPT) constructed for the example.

Each black node represents a content name and stores an output face, to which inputs matching the content name have to be forwarded,
while white nodes are created in the path to a black node from the root node. The NPT accommodates variable-length components and
variable-length names as shown. The depth of an NPT is determined by the content name that has the most number of components.

Similar to the search in a binary trie for an IP address lookup, the search in an NPT starts from the root node, and sequentially follows
the child pointer that has the matching component with a given input. When there is no matching component to follow, the search
procedure is completed and returns the best matching name, which is the most recent matching name. For example, assume that an input
youtube.com/user/musicbox is given. The input name that needs to be searched from the NPT is com/youtube/user/musicbox. At the node of
com/youtube/user, since there is no edge to follow, the search is over and returns the output face 2, which is the output face of com/
youtube. Assuming that the NPT is stored in an off-chip memory, the number of off-chip node accesses of this example is 4, counting the
root node, com, com/youtube, and com/youtube/user.

The name lookup using the name prefix trie has an issue of search performance. Since the search is sequentially performed starting
from the root node, and since the name lengths can be excessively long, the search performance in an NPT is not sufficient for a wire-speed
name lookup. In Wang et al. (2013a), a high-speed name lookup engine implemented in GPU (Graphic Processor Unit) platform using
name component encoding was introduced.
2.2. Previous name lookup algorithms

A parallel search algorithm (Wang et al., 2011) divides an NPT into a multiple number of modules, considering the accessing probability
of a module, and performs a parallel search for the modules. However, it is difficult to estimate the accessing probability for dynamically
changed input streams, and the parallel search involves high hardware complexity.

To improve the search performance of an NPT, in So et al. (2013), it is proposed to start the search, either from the level with the most
number of components or the level with an accumulated number of components equal to 75% of the total number. Depending on the
result of the first level access, the search can proceed to a shorter level or a longer level. This algorithm has a problem of prefix-seeking, in
which the search should be continued until a matching entry is found or a root node is visited, when there is no matching entry.

The name filter algorithm (Wang et al., 2013) uses 2-stage FIB lookups, inwhich both stages are composed of Bloom filters. Because of the false
positive problem of a Bloom filter, which produces inaccurate results, this algorithm proposes the control of the false positive rate less than 10�8

by increasing the sizes of Bloom filters.
The adaptive Bloom filter algorithm (Quan et al., 2014) uses a Bloom filter, a hash table, and a name prefix trie. In this algorithm, each

content name is separated by a B-prefix part and a T-Suffix part. The length of the B-prefix part is fixed and the remaining components are
included in the T-suffix. The B-prefix part is implemented using a Bloom filter and a hash table, and the T-suffix part is implemented using
an NPT. When there is a matching entry in the B-prefix part, the NPT search is performed at the T-suffix part. The performance of the
algorithm depends on the selection of the B-prefix length for each given set of content names.
Fig. 2. Hashing-based NPT.

http://www.youtube.com/user/musicbox
http://www.com/youtube/user
https://www.researchgate.net/publication/262174122_GPU-accelerated_name_lookup_with_component_encoding?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261462410_NameFilter_Achieving_fast_name_lookup_with_low_memory_cost_via_applying_two-stage_Bloom_filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/260712191_Scalable_Name_Lookup_with_Adaptive_Prefix_Bloom_Filter_for_Named_Data_Networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221289105_Parallel_Name_Lookup_for_Named_Data_Networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261161217_Named_data_networking_on_a_router_Fast_and_DoS-resistant_forwarding_with_hash_tables?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–47 39
2.3. Bloom filter theory

A Bloom filter (Bloom, 1970) is a bit-vector representing the membership information of a set of elements. A Bloom filter that
represents a set S¼ fx1; x2;…; xng of n elements is described by an array of m bits, initially all set to 0. The Bloom filter supports two
operations: programming and querying. In programming, for an element xi (for i¼ 1;…;n) in the set S, k different hash indices are
computed, where 0rhjðxiÞom for j¼ 1;…; k. All the bit-locations corresponding to k hash indices are then set as 1 in the Bloom filter. In
other words, each bit of a Bloom filter corresponds to a hash index, and instead of storing the data itself in the hashing index, the
corresponding bit of a Bloom filter is set to 1 to represent the existence of the data.

Querying is performed to test whether an input y is a member of the set. For an input y, k hash indices are generated using the same
hash functions that were used to program the filter. The bit-locations in the Bloom filter corresponding to the hash indices are checked. If
any one of the locations is 0, then y is definitely not a member of set S, and it is termed negative. If all the locations corresponding to hash
indices were 1, then the input may be a member of the set, and it is termed positive.

However, it is possible that these locations would have been set by some other elements in the set. This type of positive result is termed
a false positive. For an element y that is not in S (y=2S) under querying, the false positive probability f can be calculated as (Lim et al., 2014a)

f ¼ ð1�pÞk ¼ 1� 1� 1
m

� �kn
 !k

: ð1Þ

For a given ratio ofm=n, it is known that the false positive probability is minimized when the number of hash functions k has the following
relationship (Dharmapurikar et al., 2006):

k¼ m

2⌈log 2n⌉
ln 2 ð2Þ

On the whole, a Bloom filter may produce false positives but not false negatives. The false positive rate of a Bloom filter can be controlled
sufficiently small by increasing the Bloom filter size, but cannot be completely removed.
3. Proposed algorithms

3.1. Hashing-based NPT (Hashing-NPT)

The aim of this paper is to improve the search performance of a name prefix trie(NPT) using Bloom filters. As the first step, we need to
apply hashing in constructing the NPT, and we describe a hashing-based NPT algorithm in this section. Fig. 2 shows the hash table
constructed for the name prefix trie shown in Fig. 1. Every node in a name prefix trie is stored into a hash table. Note that in storing a node
at the level-i of the NPT, the i components from the root node to the level-i are concatenated, and the concatenated string is used as a hash
key to obtain a hash index. The concatenated string that has a variable length should be converted into a fixed-length string, since each
entry of the hash table has a fixed width. The converted fixed-length string is stored in the hash entry corresponding to the hash index.
(The hash entry shown in Fig. 2 has a concatenated string instead of converted fixed-length string for simplicity.) In storing the Lth

component, where L is the length of a content, the output face corresponding to the content name is also stored.
The procedure to store a content name in the hash table for the hashing-based NPT algorithm is shown in Algorithm 1. This procedure

is repeated for all the content names stored in an FIB.

Algorithm 1. Storing a content name in the hash table in hashing-based NPT algorithm.

https://www.researchgate.net/publication/275618366_Reducing_False_Positives_of_a_Bloom_Filter_using_Cross-Checking_Bloom_Filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/220424808_SpaceTime_Trade-Offs_in_Hash_Coding_with_Allowable_Errors?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/3335174_Longest_prefix_matching_using_bloom_filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–4740
Algorithm 2. Searching a content name in hashing-based NPT.
Fig. 3. Proposed name prefix trie with a BF (NPT-BF).
The search procedure used to determine the best matching name (BMN) in the hashing-based NPT algorithm is shown in Algorithm 2.
For the content name in each Interest packet, the concatenated string of i components (for 1r ir I, where I is the length of the input
name) is used to obtain a hash index. The concatenated string is also converted into a fixed length string, for comparison with the string
stored in the hash entry corresponding to the hash index. If there is a matching entry, the search procedure continues, using the con-
catenated string of the first through the ðiþ1Þ th components. This procedure is repeated, until there is no matching entry, or until the
search reaches the level equal to the length of the input content name. Since the output face of the longest matching entry should be
returned, the output face of the current matching entry should be remembered in the search procedure. Note that in a trie structure, if
there is no entry matching the current string of concatenated components, there is also no matching entry in longer levels. Hence, the
search is immediately over.



J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–47 41
For example, assume the same input as in the NPT search com/youtube/user/musicbox. The search procedure finds out matching hash
entries with com, comyoutube, and comyoutubeuser, but no matching entry with comyoutubeusermusicbox. Hence, the search is over and
returns the output face 2, which is the output face of comyoutube. The number of hash table accesses of this example is 4.

This paper proposes to improve the search performance of the hashing-based NPT algorithm using a Bloom filter. We propose two
algorithms: NPT-BF and NPT-BF-Chaining. Both algorithms have the same structure, consisting of an on-chip Bloom filter and an off-chip
hash table. However, they have different search strategies.

3.2. Name prefix trie with a bloom filter (NPT-BF)

The NPT-BF is shown in Fig. 3. A Bloom filter is queried before the hash table access; this Bloom filter reduces unnecessary hash table
accesses by producing negative results when there is no matching entry.

Algorithm 3. Searching a content name in NPT-BF.
The search procedure of the proposed NPT-BF algorithm is shown in Algorithm 3. The Bloom filter is queried first using the con-
catenated string of i components (for 1r ir I, where I is the length of the input name). If the Bloom filter produces a positive result, the
hash table is accessed. If a matching entry is found in the hash table, the Bloom filter query is continued using ðiþ1Þ components.
However, if no matching entry is found, which means that the Bloom filter positive result is false, the search is finished and returns the
currently remembered output face. Otherwise, if the Bloom filter produces a negative result, the search is also finished, and returns the
currently remembered output face.

For example, assume the same input youtube.com/user/musicbox. The Bloom filter produces positive results with com, comyoutube,
and comyoutubeuser, and hence the hash table is accessed for these 3 nodes. However, the Bloom filter produces a negative result with
comyoutubeusermusicbox. Hence, the search is over without accessing the hash table and returns the output face 2, which is the output
face of comyoutube. The number of hash table accesses of this example is 3, which is one smaller than the hashing-NPT, since the hash
table is not accessed for the negative result of the Bloom filter.

http://youtube.com/user/musicbox


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–4742
In summary, the difference between NPT-BF and the hashing-NPT is that the search can be immediately finished when the Bloom filter
produces a negative result in NPT-BF, without accessing the hash table. Hence, NPT-BF can improve the search performance of the
hashing-NPT, which is measured by the number of off-chip hash table accesses.

3.3. Name prefix trie with a bloom filter chaining (NPT-BF-Chaining)

The NPT-BF-Chaining algorithm utilizes the fact that the false positive probability of a Bloom filter can be controlled to be sufficiently
low by increasing the Bloom filter size. In this algorithm, if a Bloom filter produces a positive result, the Bloom filter querying continues to
the next level without accessing the hash table. If the Bloom filter produces a negative result, since it is always true, the search procedure
moves one level back, which is the level of the last positive. The off-chip hash table is accessed at this level. If there is a matching entry
with an output face, the search is completed and returns the output face. If there is no matching entry, it can be one of the two cases: the
Bloom filter positive result is false, or the Bloom filter positive is true but the node is an internal node without an output face. In these
cases, backtracking should occur, until a matching entry with an output face is found in the hash table. The overall architecture of the NPT-
BF-Chaining is shown in Fig. 4.

Algorithm 4. Searching in NPT-BF-Chaining.
The search procedure of NPT-BF-Chaining is summarized in Algorithm 4. While the building procedure of the NPT-BF-Chaining is the
same as that of NPT-BF, the search procedure differs, whereby the Bloom filter queries are sequentially performed until a negative result
occurs. The search procedure of the NPT-BF-Chaining algorithm has two steps. The first step involves querying the Bloom filter
sequentially for positive results. The first step continues until a Bloom filter negative result occurs or all the components of the input name
are used.

The off-chip hash table is accessed in the second step. The negative result of a Bloom filter at level i means that there is no string in the
hash table matching to the concatenated string of i components. Since there was a positive result in level ði�1Þ, the hash table is accessed



Table 2
Number of content names at each level.

Level 10 k 50 k 100 k 300 k

1 0 0 0 0
2 501 3943 9557 55,473
3 1429 8325 18,471 65,379
4 2059 11,284 23,579 62,189
5 2392 11,860 22,562 54,417
6 1693 7274 13,501 32,642
7 975 3964 6962 17,080
8 533 1868 3000 7151
9 216 783 1267 2970
10 100 338 554 1351
Longer 102 361 545 1337

Total 10,000 50,000 100,000 300,000

Table 3
Data structures of hash entry.

Field Length (bits)

Stored string 64
Output face 8

Fig. 4. Proposed name prefix trie with a BF chaining (NPT-BF-Chaining).

J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–47 43
for the concatenated string of ði�1Þ components. (In case where the first step is finished because all the components of the input are used,
the hash table should be accessed from level i.)

Three cases can be encountered when accessing the hash table: a matching node with an output face, no node, or an internal node
without an output face. If a matching entry with an output face is encountered in the hash table, the search procedure is completed and
returns the output face of the corresponding entry. Otherwise, if there is no node, then the positive of the Bloom filter is a false positive,
which causes backtracking. Otherwise, if an internal node without an output face is encountered, then the positive result of the Bloom
filter is true, but back-tracking should also occur. This problem is solved by pre-computing the output face of the best matching name into
every internal node. The best matching name is the name in the direct ancestor of each internal node. In the performance evaluation
section, we will show the simulation results for both cases: with and without the pre-computation.

For example, assume the same input youtube.com/user/musicbox. The Bloom filter produces positive results with com, comyoutube,
and comyoutubeuser, but a negative result with comyoutubeusermusicbox. When the Bloom filter produces the negative result, the hash
table is accessed for the last positive result, which is comyoutubeuser. Since it is an empty node without an output face, a back-tracking
occurs. The hash entry of comyoutube is accessed, and the search is over by returning the output face 2. The number of hash table accesses
of this example is 2. If the output face of comyoutube were pre-computed at the node of comyoutubeuser, the number of hash table
accesses could be 1.

http://www.youtube.com/user/musicbox


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–4744
In summary, the NPT-BF-Chaining algorithm postpones the access to the hash table until the Bloom filter produces a negative result,
while the NPT-BF algorithm accesses the off-chip hash table for every positive result of the Bloom filter. In other words, the NPT-BF-
Chaining algorithm firstly determines the possible longest length matching an input string by using Bloom filter queries. If the false
positive rate is controlled to be sufficiently low by properly sizing the Bloom filter, it can provide high-speed search performance. It is
shown through simulation that the NPT-BF-Chaining algorithm provides a name lookup using a single off-chip hash table access on
average.
4. Performance evaluation

Performance evaluation has been carried out using URL names, since URL names have a hierarchical structure similar to content names.
Among the 1 million names provided in ALEXA (Alexa,), four sets with sizes of 10,000, 50,000, 100,000, and 300,000 names are extracted
for our simulation. For these sets, NPT, hashing-NPT, NPT-BF, and NPT-BF-Chaining algorithms are constructed using Cþþ language.

Table 2 shows the number of content names according to the number of components in each name. The number of components in each
name determines the level at which the content name is located in a name prefix trie. Each set is named using the number of elements in
the set, such as 10 k, 50 k, 100 k, and 300 k.

Table 3 shows the data structure of the off-chip hash table storing nodes of the name prefix trie. We assume that a perfect hash
function is given in storing and accessing trie nodes in the hash table. Each string stored into a NPT node is converted into a 64-bit string
by the hash function, and hence each hash entry has a 9-byte width as shown in Table 3.

Table 4 shows the characteristics of name prefix tries constructed for each set. The number of entries in the hash table, N0 is fixed as
2⌈log 2 N⌉, where N is the number of nodes in a name prefix trie. Using the data structure shown in Table 3, the off-chip memory
Table 4
Trie characteristics.

Characteristic 10 k 50 k 100 k 300 k

No. of names 10,000 50,000 100,000 300,000
Trie depth 21 21 30 32
No. of nodes (N) 39,388 178,030 336,314 794,866
No. of entries (N0) 216 218 219 220

Hash table size (KB) 576 2304 4608 9216

Table 5
Search performance: 10 k.

Metric NPT Hashing-NPT NPT-BF NPT-BF-Chaining (w/o pre-comp) NPT-BF-Chaining (w pre-comp)

BF size – – 4N0 8N0 16N0 4N0 8N0 16N0 4N0 8N0 16N0

BF mem (KB) – – 32 64 128 32 64 128 32 64 128
No. of false pos – – 308 19 0 318 19 0 318 19 0
Wst false pos – – – – – 2 1 0 2 1 0
Avg node acc 4.84 4.05 3.85 3.84 3.84 1.68 1.67 1.67 0.98 0.97 0.97

Table 6
Search performance: 50 k.

Metric NPT Hashing-NPT NPT-BF NPT-BF-Chaining (w/o pre-comp) NPT-BF-Chaining (w pre-comp)

BF size – – 4N0 8N0 16N0 4N0 8N0 16N0 4N0 8N0 16N0

BF mem (KB) – – 128 256 512 128 256 512 128 256 512
No. of false pos – – 2242 153 4 2406 153 4 2406 153 4
Wst false pos – – – – – 3 1 1 3 1 1
Avg node acc 4.56 3.80 3.58 3.56 3.56 1.67 1.65 1.65 0.99 0.97 0.97

Table 7
Search performance: 100 k.

Metric NPT Hashing-NPT NPT-BF NPT-BF-Chaining (w/o pre-comp) NPT-BF-Chaining w pre-comp)

BF size – – 4N0 8N0 16N0 4N0 8N0 16N0 4N0 8N0 16N0

BF mem (KB) – – 256 512 1024 256 512 1024 256 512 1024
No. of false pos – – 3667 213 1 3873 213 1 3873 213 1
Wst false pos – – – – – 3 1 1 3 1 1
Avg node acc 4.58 3.80 3.59 3.58 3.58 1.69 1.68 1.67 0.99 0.97 0.97



Table 8
Search performance: 300 k.

Metric NPT Hash-NPT NPT-BF NPT-BF-Chaining (w/o pre-comp) NPT-BF-Chaining (w pre-comp)

BF size – – 4N0 8N0 16N0 4N0 8N0 16N0 4N0 8N0 16N0

BF mem (KB) – – 512 1024 2048 512 1024 2048 512 1024 2048
No. of false pos – – 18,392 1590 33 19,832 1599 33 19,832 1599 33
Wst false pos – – – – – 4 2 1 4 1 1
Avg node acc 4.37 3.62 3.39 3.37 3.37 1.67 1.65 1.65 1.00 0.97 0.97

Fig. 5. Average number of node accesses.

J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–47 45
requirement is estimated. The memory requirement is calculated by the number of entries N0 multiplied by the entry width, which is
9 bytes. The memory requirement shown in Table 4 is denoted as kilobytes by dividing by 1024. Note that the memory requirements for
the off-chip hash tables for hashing-NPT, NPT-BF, and NPT-BF-Chaining are the same, since they construct the same trie. Note that the size
of the hash table does not fit in an on-chip memory for large name sets in current technology, even though we allocate the minimum size
by assuming that a perfect hash function is given for storing each NPT node into the hash table.

The number of inputs for evaluating the search performance of each algorithm is 3 times the number of elements in the sets. The 1/3 of
the input trace includes the content names used to build the name prefix trie, and the remaining 2/3 includes the content names not used
to build the name prefix trie.

For the number of nodes N in a name prefix trie that should be programmed into a Bloom filter, the basic size of a Bloom filter can be
N0 ¼ 2⌈log 2 N⌉. Letm be the size of a Bloom filter, which is a multiple of the basic size. Then the number of hash indices k¼ ðm=N0Þ ln 2 (Song
et al., 2005). In this paper, we performed simulations for the different sizes of the Bloom filters, such that m¼ 4N0, 8N0, and 16N0, and
evaluated the search performance related to the size of a Bloom filter.

A cyclic redundancy check (CRC) generator is an excellent bit scrambler, popularly used in generating hash indices. A simple 64-bit CRC
generator has been used to obtain hash indices for the Bloom filter. The registers in the CRC generator are initialized as zero. Each input bit is
shifted into the CRC generator, and after all bits of an input are shifted to the CRC generator, the register value is returned as a CRC code. A multiple
number of hash indices with variable sizes can be easily extracted from the CRC code by combining bits in a CRC code (Alagu Priya and Lim, 2010).

Tables 5–8 show the simulation results. As stated in previous section, in the NPT-BF-Chaining algorithm, a back-tracking can occur even
though the Bloom filter positive is true, in case if the accessed hash entry represents an internal node which does not have an output face.
In this reason, for the NPT-BF-Chaining algorithm, we performed the simulation for two cases: without the pre-computation and with the
pre-computation of the output face of the best matching name. In the NPT-BF-Chaining without pre-computation, whenever an internal
node is encountered, the number of node accesses is increased, until a node with a content name is reached. On the other hand, in the
NPT-BF-Chaining with pre-computation, the content name of the direct ancestor is pre-computed and stored into internal nodes, and
hence the number of node accesses is not increased, when an internal node is encountered. Hence, the difference in the number of node
accesses between without pre-computation and with pre-computation shows the number of internal node accesses.

Table 5 shows the search performance for the 10 k set. The NPT and the hashing-NPT algorithms determine the output face by 4.84 and
4.05 node accesses on average, respectively. Since these algorithms are based on trie structure, if a node does not exist in a level, search
procedure is finished immediately. Some inputs do not have matching names at the first level, and hence the number of node accesses for
these inputs is 1 for both algorithms. The hashing-NPT shows slightly better performance on average node accesses than the NPT, since the
NPT requires one more access than the hashing-NPT, when all components of an input name are used up in the search procedure. For
example, assume the input youtube.com/user. The number of node accesses for the NPT is 4, counting the root node, com, com/youtube,
and com/youtube/user, while it is 3 for the hashing-NPT, counting com, comyoutube, and comyoutubeuser.

For algorithms with a Bloom filter, the memory requirement for Bloom filters is calculated related to the base size N0. The wst false pos is
the worst-case number of false positives occurring, and converges to zero for the Bloom filter size of 16N0.

http://youtube.com/user
https://www.researchgate.net/publication/270607456_Fast_Hash_Table_Lookup_Using_Extended_Bloom_Filter_An_Aid_to_Network_Processing?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/270607456_Fast_Hash_Table_Lookup_Using_Extended_Bloom_Filter_An_Aid_to_Network_Processing?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/222656867_Hierarchical_packet_classification_using_a_Bloom_filter_and_rule-priority_tries?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–4746
While a trie node stored in an off-chip hash table is accessed for every positive result of the Bloom filter in the NPT-BF algorithm, the
NPT-BF-Chaining algorithm continuously performs the Bloom filter queries without accessing the node, until the Bloom filter produces a
negative result (or all the components of the input name are used).

For the Bloom filter size of 16N0, while the average number of node accesses for the NPT-BF algorithm is 3.84, this improves to 1.67 for
NPT-BF-Chaining without pre-computation, and improves further to 0.97 in NPT-BF-Chaining with pre-computation. The performance
difference in the NPT-BF-Chaining algorithmwithout and with pre-computation results from avoiding the back-tracking at empty internal
nodes. Note that inputs having a negative result in the first level do not have matching names, and hence the hash table is not accessed at
all for these inputs in Bloom filter-based algorithms.

Tables 6, 7 and 8 show the search performance for 50 k, 100 k, and 300 k, respectively. The average number of node accesses in the
NPT-BF-Chaining with pre-computation is 1 or less in these sets. The worst-case number of false positives is 1 for Bloom filter sizes of
16N0. Hence, the worst-case number of node accesses is 2 in these sets. Note that the worst-case number of node accesses for the NPT and
the hashing-NPT is equal to the trie depth, and it is a large number as shown in Table 4. For the NPT-BF algorithm, the worst-case number
of node accesses is one smaller than the trie depth, since the Bloom filter avoids one hash table access by producing a negative result, after
the search procedure reaches the bottom of the trie.

Fig. 5 compares the average number of node accesses in each algorithm for the Bloom filter size of 16N0.
It shows that the search performance of each algorithm is not much related to the number of content names stored in the name prefix

trie. NPT-BF-Chaining with pre-computation provides the best performance, and it can determine the output face through a single node
access on average and two node accesses in the worst-case.
5. Conclusion

This paper proposed new algorithms to improve the search performance of FIB lookups for packet forwarding in a content-centric
network. Our proposed approach is based on the fact that accesses to an off-chip memory takes much longer than accesses to an on-chip
memory. We proposed to use an on-chip Bloom filter to reduce accesses to an off-chip hash table. Hence the amount of memory and a
number of queries for the Bloom filter are traded off the reduced number of hash table accesses in our proposed approach.

We first described the name prefix trie used for the content name search that can be implemented using hashing-based architecture:
hashing-NPT. In order to improve the search performance of the hashing-NPT algorithm, we proposed two algorithms using Bloom filters: NPT-
BF and NPT-BF-Chaining. Both algorithms have the same construction procedure, though with different search strategies. The NPT-BF algorithm
accesses the off-chip hash table for each positive result of a Bloom filter. The NPT-BF-Chaining algorithm utilizes the fact that the false positive
rate of a Bloom filter can be sufficiently small, as the size of a Bloom filter increases. Hence, the NPT-BF-Chaining algorithm continues the query
to the next level for the case of a positive result at the current level, until the Bloom filter produces a negative result. Since Bloom filter negative
results are always true, the NPT-BF-Chaining algorithm accesses the node in the previous level, which is the level of the most recent positive. In
this way, the NPT-BF-Chaining algorithm can determine the longest level that has the matching node. The search performance of the NPT-BF-
Chaining algorithm is further improved by pre-computing the output face of the best matching name for internal nodes.

Simulation results show that the proposed NPT-BF-Chaining with pre-computation can provide the output face of each input name less
than a single node access on average and with two node accesses in the worst-case, using a reasonable size of a Bloom filter.
Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF), NRF-2014R1A2A1A11051762 and NRF-
2015R1A2A1A15054081. This research was also supported by the Ministry of Science, ICT and Future Planning (MSIP), Korea, under the
Information Technology Research Center (ITRC) support program (IITP-2015-H8501-15-1007) supervised by the Institute for Information &
communications Technology Promotion (IITP).
References

Alagu Priya AG, Lim H. Hierarchical packet classification using a bloom filter and rule-priority tries. Comput. Commun. 2010;33(June (10)):1215–26.
Alexa the Web Information Company. 〈http://www.alexa.com/〉.
Bari MdF, Chowdhury SR, Ahmed R, Mathieu B. A survey of naming and routing in information-centric networks. IEEE Commun. Mag. 2012(December):44–53.
Bloom B. Space/time tradeoffs in hash coding with allowable errors. Commun. ACM 1970;13(7):422–6.
Dharmapurikar S, Krishnamurthy P, Taylor DE. Longest prefix matching using Bloom filters. IEEE/ACM Trans. Netw. 2006;14:397–409.
Esteve C, Verdi FL, Magalhaes MF, 2008. Towards a new generation of information-oriented Internet working architectures. In: ACM CoNEXT.
Jacobson V, Smetters DK, Thornton JD, Plass M, Briggs N, Braynard R, 2009. Networking named content. In: ACM CoNEXT.
Lim H, Lee N, Lee J, Yim C. Reducing false positives of a bloom filter using cross-checking bloom filters. Appl. Math. Inf. Sci. 2014a;8(July (4)):1865–77.
Lim H, Lim K, Lee N, Park K. On adding bloom filters to longest prefix matching algorithms. IEEE Trans. Comput. 2014b;63(February (2)):411–23.
Lim H, Shim M, Lee J, 2015. Name prefix matching using bloom filter pre-searching. In: IEEE/ACM ANCS, May, pp. 203–204.
Mun J, Lim H. New approach for efficient ip address lookup using a bloom filter in trie-based algorithms. IEEE Trans. Comput. 2015 Early Access.
Panda P, Dutt N, Nicolau A. On-chip vs. off-chip memory: the data partitioning problem in embedded processor-based systems. IEEE Trans. Design Autom. Electron. Syst.

2000;5(July (3)):682–704.
Perino D, Varvello M, 2011. A reality check for content centric networking. In: Proceedings of ACM, August, pp. 44–49.
Qiao X, Nan G, Peng Y, Guo L, Chen J, Sun Y, Chen K. NDNBrowser: an extended web browser for named data networking. J. Netw. Comput. Appl. 2015;50(April):134–47.
Quan W, Xu C, Guan J, Zhang H, Grieco LA. Scalable name lookup with adaptive prefix bloom filter for named data networking. IEEE Commun. Lett. 2014;18(January (1)):102–5.
Song H, Dharmapurikar S, Turner J, Lockwood J, 2005. Fast hash table lookup using extended bloom filter: an aid to network processing. In: ACM SIGCOMM, pp. 181–192.
Tong E, Niu W, Li G, Tang D, Chang L, Shi Z, Ci S. Bloom filter-based workflow management to enable QoS guarantee in wireless sensor networks. J. Netw. Comput. Appl.

2014;39(March):38–51.
Vasilakos AV, Li Z, Simon G, You W. Information centric network: research challenges and opportunities. J. Netw. Comput. Appl. 2015;52(June):1–10.
Wang Y, Dai H, Jiang J, He K, Meng W, Liu B, 2011. Parallel name lookup for named data networking. In: IEEE GLOBECOM, December, pp. 1–5.

http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref1
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref1
http://www.alexa.com/
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref3
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref3
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref4
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref4
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref5
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref5
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref8
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref8
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref9
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref9
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref11
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref12
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref12
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref12
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref14
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref14
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref15
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref15
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref17
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref17
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref17
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref18
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref18
https://www.researchgate.net/publication/260113135_Bloom_filter-based_workflow_management_to_enable_QoS_guarantee_in_wireless_sensor_networks?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/260113135_Bloom_filter-based_workflow_management_to_enable_QoS_guarantee_in_wireless_sensor_networks?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/273579247_Information_centric_network_Research_challenges_and_opportunities?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/270607456_Fast_Hash_Table_Lookup_Using_Extended_Bloom_Filter_An_Aid_to_Network_Processing?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/260670278_A_Survey_of_Naming_and_Routing_in_Information-Centric_Networks?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/273652339_NDNBrowser_An_extended_web_browser_for_named_data_networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/275618366_Reducing_False_Positives_of_a_Bloom_Filter_using_Cross-Checking_Bloom_Filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/283097812_Name_prefix_matching_using_bloom_filter_pre-searching?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/260712191_Scalable_Name_Lookup_with_Adaptive_Prefix_Bloom_Filter_for_Named_Data_Networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/260712226_On_Adding_Bloom_Filters_to_Longest_Prefix_Matching_Algorithms?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/220305970_On-chip_vs_Off-chip_memory_The_data_partitioning_problem_in_embedded-processor-based_systems?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/220305970_On-chip_vs_Off-chip_memory_The_data_partitioning_problem_in_embedded-processor-based_systems?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/220424808_SpaceTime_Trade-Offs_in_Hash_Coding_with_Allowable_Errors?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/3335174_Longest_prefix_matching_using_bloom_filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/222656867_Hierarchical_packet_classification_using_a_Bloom_filter_and_rule-priority_tries?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221289105_Parallel_Name_Lookup_for_Named_Data_Networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/254003632_A_reality_check_for_content_centric_networking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221325411_Networking_named_content?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/279154345_New_Approach_for_Efficient_IP_Address_Lookup_Using_a_Bloom_Filter_in_Trie-Based_Algorithms?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/221325155_Towards_a_new_generation_of_information-oriented_internetworking_architectures?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==


J. Lee et al. / Journal of Network and Computer Applications 65 (2016) 36–47 47
Wang Y, He K, Dai H, Meng W, Jiang J, Liu B, Chen Y, 2012. Scalable name lookup in NDN using effective name component encoding. In: IEEE ICDCS, 2012.
Wang Y, Pan T, Mi Z, Dai H, Guo X, Zhang T, Liu B, 2013. NameFilter: achieving fast name lookup with low memory cost via applying two-stage Bloom filters. In: IEEE

INFOCOM, pp. 95–99.
Wang Y, Dai H, Zhang T, Meng W, Fan J, Liu B. GPU-accelerated name lookup with component encoding. Comput. Netw. 2013a;57:3165–77.
So W, Narayanan A, Oran D, 2013. Named data networking on a router: fast and DoS-resistant forwarding with hash tables. In: ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, 2013.
Xu Y, Li Y, Lin T, Wang Z, Niu W, Tang H, Ci S. A novel cache size optimization scheme based on manifold learning in content centric networking. J. Netw. Comput. Appl.

2014;37(January):273–81.

http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref22
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref22
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref24
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref24
http://refhub.elsevier.com/S1084-8045(16)00091-6/sbref24
https://www.researchgate.net/publication/259520964_A_novel_cache_size_optimization_scheme_based_on_manifold_learning_in_Content_Centric_Netorking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/259520964_A_novel_cache_size_optimization_scheme_based_on_manifold_learning_in_Content_Centric_Netorking?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/262174122_GPU-accelerated_name_lookup_with_component_encoding?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261462410_NameFilter_Achieving_fast_name_lookup_with_low_memory_cost_via_applying_two-stage_Bloom_filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261462410_NameFilter_Achieving_fast_name_lookup_with_low_memory_cost_via_applying_two-stage_Bloom_filters?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261245722_Scalable_Name_Lookup_in_NDN_Using_Effective_Name_Component_Encoding?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261161217_Named_data_networking_on_a_router_Fast_and_DoS-resistant_forwarding_with_hash_tables?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==
https://www.researchgate.net/publication/261161217_Named_data_networking_on_a_router_Fast_and_DoS-resistant_forwarding_with_hash_tables?el=1_x_8&enrichId=rgreq-0e402965-8834-41f9-8a49-875a96533a0a&enrichSource=Y292ZXJQYWdlOzI5NTg5MzM3MTtBUzozMzcyMzIwNDE5MjI1NjBAMTQ1NzQxMzc5MjI2Mw==

