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Mathematical models of tumor growth*

MILJENKO MARUSIGT

Abstract. In the lecture we describe some elements of mathe-
matical modeling of tumor growth. We present deterministic math-
ematical models most often used for description of tumor growth.
Development of a model, based on some biological assumption, is
also illustrated by one example. Described models are tested and
compared by ability to describe experimental data.

Key words: mathematical modeling, tumor growth, multicellu-
lar tumor spheroids

Sazetak. Matematicki modeli rasta tumora. U predavanju
su opisani neki dijelovi matematickog modeliranja rasta tumora. Prikazani
su matematicki modeli koji su najéesée koristeni za opis rasta tumora.
Takoder opisan je i razvoj jednog modela na osnovi bioloskih pret-
postavki. Prikazano je testiranje i usporedba modela na eksperimen-
talnim podacima.

Kljuéne rijec¢i: matematicko modeliranje, rast tumora, visestanicni
tumorski sferoidi

1. Introduction

A mathematical model of tumor growth is a mathematical expression of the
dependence of tumor size on time. In the lecture we present some results in the
field of deterministic mathematical modeling of tumor growth. There are three
main steps in the process of mathematical modeling:

1. Definition of model based on biological assumptions.

2. Testing the model against experimental data.

*The lecture presented at the MATHEMATICAL COLLOQUIUM in Osijek organized by Croatian
Mathematical Society - Division Osijek, June 7, 1996.
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3. Acceptance of model or its rejection and change of assumptions.

It is important to note that a model may be rejected due to wrong assumption(s)
or inadequate number of assumptions.

A particularly convenient experimental tumor paradigm is provided by the
multicellular tumor spheroids (MTS) culture system [3, 27]. Spheroids provide
a system for the study of the prevascular phase of tumor growth in the absence
of tumor—host interactions, and for investigating the regulation of growth by
three-dimensional cell-cell interactions. In MTS oxygen and nutrition come
through the surface of spheroids and necrotic cells lay in the center of tumor.
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Figure 1. Three layers in idealized scheme of MTS

Figure 1 shows three layers in idealized scheme of MTS: necrotic core (I),
quiescent (nonproliferating) cells (IT) and proliferating cells (IIT). Moreover, the
growth curve for tumor spheroids can conveniently be determined with uniquely
dense measurements and high precision [10].

2. Mathematical models

In the case of multicellular spheroids, growth follows the sigmoid curve with the
three distinct phases: the initial exponential phase, the linear phase and the
plateau [13]. For this study, we selected mathematical models that reflect the
sigmoid nature of growth. The models are divided into three groups: empir-
ical models, functional models (based on cell kinetics), and structural models
(developed specifically for spheroid growth).

2.1. Empirical models

These models are based on the fundamental empirical insight that growth results
from the increase in size concomitant with processes that limit the size of the
system. We consider two sets of empirical models developed for growth of
biological systems.
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Figure 2. Nesting scheme for models originating from the generalized
two-parameter model of growth

One set of models is based on the principle that for tumor size V', the rate
of change in size V' is a difference between the rate of growth and the rate
of degradation. According to von Bertalanffy [2], both rates follow the law
of allometry, i.e., they are proportional to the power of tumor volume, so the
growth equation is of the form

V' =aV® —pV-, (1)

(Starting from different assumptions, Savageau [23] later derived the same equa-
tion.) This model is named the ”generalized two-parameter model” [15].

As the special cases, equation (1) includes the well known logistic growth
equation (o = 1, 8 = 2) [20, 30] and the von Bertalanffy growth equation
(a = 2/3, B =1) [1]. Both models have been used for description of tumor
growth [29].
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It is interesting that a particular limiting case of equation (1) is the most
often used Gompertz equation [11]

V' =aV —bVInV. (2)

When parameters « and § approach 1, the growth curve represented by Eq. 1
does not necessarily approach an exponential curve, but it may also approach the
Gompertz growth curve. Furthermore, equation (1) contains the more general
equations as special cases: “generalized Gompertz equation” [15] and “general-
ized Bertalanffy-logistic equation”.

The above models are special cases of the model described by equation (1)
and are nested within this model. Figure 2 illustrates the nesting relationships.
These relationships make it possible to compare the models by well defined
statistical criteria.

Another set of nested empirical models, proposed by Turner et al. [28],
is given in Figure 3. It is assumed there that the rate of change in size is
proportional to the product of one function increasing with size and the other
function decreasing with size. The corresponding equation reads

V' = kﬁnvlfnp (k}n _ Vn)1+177 (3)

where —1 < p < %7 n > 0, and the solution is designated as the “generic
growth curve”. Turner et al. [28] derived the special cases of equation (3). One
is the “hyper-Gompertz” model and the other is the “hyper-logistic” model.
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Figure 3. Nesting scheme for models originating from the generic model

For p = 0 the generic equation reduces to the Bertalanffy-Richards equation
[28] which is a special case of the generalized Bertalanffy-logistic equation. The
Gompertz model and the logistic model are nested in the hyper-Gompertz and
the hyper-logistic models, respectively.

Another empirical model is the “Gomp-ex” model [31]. It is a combination
of the often used exponential model and the Gompertz model. The differential
equation for this model is

%4 oV NG 0) =V (4)
B aV—/BanL7 VZ‘/cv -

This model describes explicitly the initial exponential spheroid growth. For
V. = Vp, the Gomp-ex equation reduces to the simpler Gompertz equation.
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2.2. Functional models

From the fertile field of functional models based on cell kinetics, we selected
some with few parameters. Thus, we considered the model by Piantadosi [21]:

%4 1
vi_..
L § 17

w,

the inhibition model formulated on the basis of work by Wheldon et al. [32]
and Cox et al. [6]:

v a L w

Vo 145V ’

as well as the autostimulation model [16] based on the autocrine hypothesis:

K’ia1+5 W
Vo 148V ’

S =aV — bS2.

These models are characterized by the cellular doubling time, the fraction
of actively dividing cells (growth fraction), and the random loss of cells from
population. The magnitude of the growth fraction depends on the population
size.

The models account for volumes, though originally they were developed for
cell numbers [6, 16, 21, 32]. Although the total spheroid volume is not directly
proportional to the number of living cells due to changes in cell size and central
necrosis during growth [9, 10], these changes do not alter the overall size of
the spheroid. Consequently, the spheroid volume can be substituted for the
cell number in these models. This substitution makes it possible to apply the
functional models to the measurements of spheroid volumes.

2.3. Structural models

Several mathematical models have been developed for description of spheroid
growth in structural terms. All such models assume that the spheroid is a
perfect sphere and that processes such as proliferation, necrosis, diffusion, shed-
ding, inhibition, etc., obey spherical symmetry. Thus the growth of a spheroid
can be conveniently described by its radius, R(t). However, the corresponding
equations can be obtained in terms of volume by substitutions V = 4/37 R3.

Conger and Ziskin [4] based their ”constant crust” model on the observation
that cells proliferate at a constant rate o within the proliferating cell rim of the
spheroid (layer III in Figure 1); the rim is of constant thickness, k [13]. This
model was modified by Wheldon adding initial exponential growth [31]:

laR, R<k,

R = 2 3
aR[E-(5)+3(0)°]. B>k,
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The model describes the exponential and the linear phases of spheroid growth.
The solution of equation (5) is unbounded. Consequently, it does not describe
the final plateau phase, and we exclude it from further analysis.

To include the loss of cells, we modified equation (5) in analogy to the
previous models:

(%a — w) R, R <k,
R(0) = Ro. 6
aR[k- (B + 5 (8] -or Rk OO
Again, the loss is assumed to be proportional to spheroid volume, with the rate
of loss characterized by the rate constant 3w. Due to simplicity of assumptions,
we named this model the ”simple spheroid model”.
Structural models also include more complex models developed for growth
of tumor spheroids by Landry et al. [13] and the diffusion model of spheroid
growth by Maggelakis and Adam [14].

3. An example of model development

Here we present a model with assumptions of fundamental mechanisms of growth.
To develop a model, one must assume the level of elementariness and to impose
necessary abstractions and idealizations. We assume that cells are elementary
units in MTS and abstract from any mechanistic details involved in cell division
and in cell death. In addition, we impose the following idealizations:

1. The number of cells is large enough to be represented by a smooth function
of
time.
2. Spheroid volume is directly proportional to the number of cells.
3. Spheroids are ideal spheres.

4. Proliferating cells are strictly contained within the outer rim which is an
ideal
spherical annulus.

Now we can formulate the model by five postulates:

1. A cell population of the size N = N(t) consists only of reproducing sub-
population of the size P = P(t) and the quiescent subpopulation of the size

Q=Q().

2. Each cell divides into exactly two cells. The growth rate is characterized
by the rate constant o and is proportional to the size of the reproducing
subpopulation.

3. Cells in quiescent subpopulation reenter the reproducing subpopulation at
the time-dependent rate g = g(t).
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4. Dying of cells in both subpopulations ia a first order process characterized
by the same rate w.

5. Thickness of viable rim is constant during the MTS growth.

Postulate 1 can be expressed by equation

N=P+Q, (7)

while postulates 2—4 can be expressed by
P = gQ+aP—-wP, (8)
Q = —9Q-wq. (9)

Equations (7-9) can be combined into one differential equation

N’ =aFN —wN (10)

where P
F=5<1 (11)

is the growth fraction. According to the second idealization and discussion in
2.3. we substitute number of cells N in (10) by volume V', and obtain

V' =aFV —wV.
From the fifth postulate the growth fraction is
R —(R—k)3
B - (B-k)" (12)
i3

where R is the radius of MST and k is thickness of viable rim (layer III in
Figure 1). In the initial phase of growth (R < k) all cells are in the reproducing
subpopulation, so the growth fraction is equal to one:

F=1 (13)

This model is named the simple spheroid model [17].

The first four postulates specify the simplified cell cycle as presented by
Piantadosi [21]. Different choice of postulates leads to different equations for
the growth fraction. In the Piantadosi model

1
E=ayavym (14)

F:

in the inhibition model [6, 32]
1

F=—— 1
14+ 8V° (15)
and in the autostimulation model [16]
1+S
F —_— 1
146V’ (16)
S' = aV —bS% (17)
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4. Testing the model

To test the adequacy of the model we fit curve generated by the model to the
tumor data using the weighted least squares method. The best-fit curve for the
model was obtained by minimization of the function

ey (B ey (18)

i=1

over the model parameters. Here, V; stands for the measured volume at time
t;, V(t;) for the corresponding volume computed from the model and o; for
the standard deviation of V;. The least squares method can be meaningfully
applied when errors in measurement are distributed normally. Measurements
used in this paper were obtained as means of 50 volumes and, consequently, the
error distribution can be expected to approach the normal distribution, what is
testified by analysis of residuals. Since standard deviation of measurements is
approximately proportional to the measured volumes, we may apply minimiza-
tion of

n
X2 => (nV; —InV(t)”.
i=1
The use of the unweighted least squares method (o; =1 in (18)) does not give
a satisfactory fit. More details on the choice of minimization criterion can be
find in [18].

To obtain volumes V (¢;) in (18), some considered differential equations were
solved analytically and some numerically by the use of the computer code ODEN
[25]. For nonlinear minimization of the x? function (18), we combined the
Nelder-Mead simplex [22] and the Levenberg-Marquardt minimization proce-
dures [19]. To satisfy the nonnegativity constraints on parameters mandated by
the models, we used the penalty functions.

We exemplify results on one data set only (V79 fibroblast cell line). The
same analysis is done in [17] on 15 data sets. A typical spheroid growth curve
is shown in Figure 4. The curve is obtained from 45 measurements of volumes
during the time period of 60 days. It demonstrates the three phases of spheroid
development: exponential growth, linear growth and plateau. Further, Figure 4
shows the best-fit curves for Gompertz and logistic model on this data set ob-
tained by minimization of (18). It is clear that the Gompertz model describes
data much better than the logistic model.

To quantify the quality of the fits we analyzed normality of residuals (Fig-
ure 5)

o
using the x? goodness-of-fit test and the Kolmogorov-Smirnov goodness-of-fit
test [12]. Further, we tested the serial correlation of residuals r; by use of the
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Durbin-Watson test [7, 8] and randomness of residuals by the sign test and by
the runs test [26].
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Figure 4. Best-fit curves by Gompertz and logistic models (volumes in um?> wvs.
time in days)

Table 1 summarizes results of analysis of considered models. Gomp-ex model
(4) and Bertalanffy-Richardson model (Figure 3) yielded fits identical to fit by
Gompertz model, so they are not listed in the table. Most of the models resulted
with comparable x? values. Exceptions are logistic and von Bertalanffy models.
They are obviously incapable to describe the data. The same is true for the
inhibition model by Wheldon and Cox. Analysis of residuals supports this
conclusion. Simple spheroid model is somehow worse than other models but
much better than previously mentioned three models. Fits to other data sets
[17] approved this conclusion.

All fits yielded the x? values which were too large in comparison to the
expected value of n — m (n - number of data points, m - number of model
parameters). So, we used the polynomial function, because it is likely to pro-
vide reliable description of data. Procedure for determination of its degree is
described in the next section. For the exemplary data set the fit by polynomials
yielded the x? value of 1731, while expected value was n — m = 38. However,
the residuals were distributed normally and were not correlated. These findings
imply the high likelihood that the models did provide an adequate description of
the data and that the large x? values resulted from the underestimated standard
deviations in measurements of spheroid volume.
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Figure 5. Plot of residuals for Gompertz model
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5. Comparison of the models

In the previous section we saw that almost all considered models describe data
well. The nesting of some models (Figures 2-3) allowed the selection of the
most applicable model(s) by the F-test [5]. The F-test is based on the statistic

(n —ma) [x*(m1) — x*(m2)]
(m2 —m1)x?(m2)

f= (19)
which follows approximately the F-distribution with ms—m; and n—ms degrees
of freedom. Here the values of x?(m;) and x?(ms2) correspond to the least x?
values obtained for the nested models defined by m; and my free parameters,
respectively (mg > my).

The fits by models not related by nesting can be compared by the Bayes
information criterion (BIC) according to Schwarz [24]:

BIC = x*(m) + % Inn,
where m is the number of free parameters and x?(m) corresponds to the least
x? value. The test is applicable when x?(m) is distributed by x2-distribution
with the expected value n — m. In our case the value of x?(m) is larger due
to underestimated measurement errors o; estimated by, say ;. Then, the stan-
dard deviation can be estimated from the fit to a flexible function which is
likely to yield low x? value (say x?(m1)) and the fit is characterized by m; free
parameters and by the normally distributed residuals. Namely, we can assume
that standard deviations are given by o; = pa; and determine the factor p by
imposing x?(m;) = n — my. This procedure implies that BIC takes the form
used in this paper:
X2(m) | m

+ —Inn. 20
Blm) T2 (20)

BIC = (n —mq)

The value of x%(m1) was obtained by fitting polynomials to data. We calculated
the x? values for polynomials of increasing order and chose the lowest order for
which changes in x? were no longer significant (P < 0.05 by F-test). According
to the above criterion, the preferred fit is characterized by a smaller BIC (20).

All empirical models (except logistic and von Bertalanfly) described the data
similarly well. On the base of F-test the fits for the generalized two-parameter,
generalized Gompertz, generalized logistic-Bertalanffy and Gompertz models
were equally good. Further, comparison by the F-test showed that the Gom-
pertz, hyper-Gompertz and Bertalanffy-Richards models fitted data equally well
as the generic model. As among equivalent models the Gompertz model is char-
acterized in both groups by the least number of parameters. Therefore, this
comparison indicated that the Gompertz model was the most applicable among
those nested within the generalized two-parameter model (Figure 2), as well as
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those nested within the generic model (Figure 3). In [17] where 15 data sets
are used, the Gompertz model was also the most preferable model on all but
two data sets, where the Bertalanffy-Richards model and the hyper-Gompertz
model were better. The hyper-logistic model resulted in significantly worse fits
in ten data sets. In conclusion, this analysis of empirical models showed that
the Gompertz model was preferable for description of spheroid growth curves.
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The comparison of the fits by the inhibition model and the autostimulation
model (F-test) shows that the difference in x? values is significant. This differ-
ence is significant also for the fits by the inhibition model and the Piantadosi
model. Importantly, the residuals in fit by the inhibition model are significantly
serially correlated. Thus, the inhibition model appears inadequate for descrip-
tion of these data. The comparison of fits by the autostimulation model and
the Piantadosi model by BIC shows preference for the autostimulation model.
But, in [17], for the former model, BIC was larger for eight data sets, whereas
the BIC calculated for the Piantadosi model was larger for seven data sets. So,
there was no preference for any of those two models. It is noteworthy that the
autostimulation model yielded the least x? value for seven data sets and the
Piantadosi model for only one data set.

The x? value and BIC for the simple spheroid model are notably larger than
for other models, but the residuals for this fit are still distributed normally
and are not correlated. In [17] the simple spheroid model resulted in notably
larger x? values for six data sets (in three data sets residuals were distributed
normally and not correlated and in three data sets distribution of residuals
differed significantly from the normal distribution). In the comparison of the
fits by the BIC, the simple spheroid model was preferred over the Gompertz
model in three data sets.

In conclusion, we may recapitulate that the Gompertz model, the autostim-
ulation model and the Piantadosi model are models of choice for the description
of the MTS growth curves. It is noteworthy to mention that capability of mod-
els to describe growth curve data is not the only criterion for its evaluation.
Some other criteria, such as prediction of growth curve [18] and estimation of
some biological parameters (e.g. doubling time and viable rim thickness [17])
may be used for the selection of an appropriate model.
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ration with Drs. Zeljko Bajzer and Stanimir Vuk-Pavlovié¢ from Mayo Clinic
and Foundation, Rochester, MN, U.S.A. and James P. Freyer from Los Alamos
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Table 1: The x? values for different models and p-values for tests used in analy-
sis of residuals (x?: x?-goodnes-of-fit, KS: Kolmogorov-Smirnov, DW: Durbin-

Watson)
Model G GG L B GBL GTP HG
(3) (4) 3) (3) (4) () (4)
x2-value 1796.9  1708.6 21903.6 13101.0 1708.6  1682.6  1750.1
BIC 45.15 45.12 486.52 293.29 45.12 46.45 47.93
X2 test 0.68 0.46 0.46 0.68 0.10
KS test >0.20 >0.20 0.02 >0.20 >0.20 >0.20 >0.20
DW test | >0.05 >0.05 0.025 0.025 >0.05 >0.05 >0.05
Sign test 0.55 0.55 0.02 0.23 0.55 0.37 0.55
Runs test 0.92 0.92 0.00 0.00 0.92 0.68 0.92
Model HL Ge AS P I SS Pol.
(4) (5) (6) (5) (4) (4) (7)
x2-value 1850.5 1750.1 1526.8 1708.6  4594.3  2440.9 1731.1
BIC 48.23 47.93 44.93 47.02 108.46 61.19
x? test 0.58 0.10 0.61 0.46 0.27 0.78 0.38
KS test >0.20 >0.20 >0.20 >0.20 >0.20 >0.20 >0.20
DW test | >0.05 >0.05 >0.05 >0.05 0.025 1C >0.05
Sign test 0.55 0.55 0.77 0.55 0.07 0.77 1.00
Runs test 0.16 0.92 0.86 0.92 0.00 0.30 0.83

Abbreviation: G: Gompertz, GG: generalized Gompertz, L: logistic, B: Bertalanffy,
GBL: generalized Bertalanffy-logistic, GTP: generalized two-parameter, HG: hyper-
Gompertz, HL: hyper-logistic, Ge: generic, AS: autostimulation, P: Piantadosi, I:

inhibition, SS: simple spheroid, Pol.: Polynomials.

IC: inconclusive.

associated with each designation stands for the number of free parameters.

The number




