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A reentrant hybrid flow shop, typically found in the electronics industry, is an extended system of the
ordinary flow shop in such a way that there exist one or more parallel machines at each serial stage
and each job has the reentrant product flow, i.e., a job may visit a stage several times. Among the oper-
ational issues in reentrant hybrid flow shops, we focus on the scheduling problem that determines the
allocation of jobs to the machines at each stage as well as the sequence of the jobs assigned to each
machine. Unlike the theoretical approach on reentrant hybrid flow shop scheduling, we suggest a real-
time scheduling mechanism with a decision tree when selecting appropriate dispatching rules. The deci-
sion tree, one of the commonly used data mining techniques, is adopted to eliminate the computational
burden required to carry out simulation runs to select dispatching rules. To illustrate the mechanism sug-
gested in this study, a case study was performed on a thin film transistor-liquid crystal display (TFT-LCD)
manufacturing line and the results are reported for various system performance measures.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A hybrid flow shop, an extended production system of the or-
dinary flow shop, consists of two or more stages in series and there
exist one or more parallel machines at each stage. In general, the
parallel machines at each stage are added for the objective of
increasing productivity as well as flexibility. The hybrid flow shop
can be found in various types of industries. The most representa-
tive one is the electronics industry, such as semiconductor wafer
fabrication, printed circuit board (PCB) manufacturing, thin film
transistor-liquid crystal display (TFT-LCD) manufacturing, etc. In
addition, various traditional industries, such as food, chemical
and steel, have various hybrid flow shops.

Hybrid flow shops can be classified into two types according to
product flows: (a) those with unidirectional flows; and (b) those
with reentrant flows. Here, the unidirectional flows imply that
each job starts at the first stage and finishes at the last stage. On
the other hand, in the reentrant flows, each job may visit each
serial stage two or more times. For example, semiconductor wafer
fabrication and TFT-LCD manufacturing lines have the reentrant
flows. In other words, each visit of certain specified serial produc-
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tion stage corresponds to a layer that is built up for required cir-
cuits. Compared with the unidirectional flows, the reentrant
flows generally make system operations much more complicated.

This paper focuses on the scheduling problem in hybrid flow
shops with reentrant product flows, called reentrant hybrid flow
shop scheduling in this paper. The main decisions are: (a) allocation
of jobs to machines at each stage; and (b) sequence of the jobs as-
signed to each machine. In fact, this research was motivated from a
TFT-LCD manufacturing system with a large number of complex
processes and reentrant product flows. As stated earlier, the reen-
trant product flows make its operations much more complicated
and hence the system performances get worse. To improve the sys-
tem performances, it is needed to develop and implement an effi-
cient scheduling system. One of its main parts is the robust real-
time scheduling methodology that considers the dynamic features
of the real TFT-LCD manufacturing system.

Most of the previous studies on reentrant hybrid flow shop
scheduling are theoretic in the sense that sophisticated algorithms
were devised after developing and analyzing mathematical models
with various assumptions. (See Linn and Zhang (1999) for a litera-
ture review on hybrid flow shop scheduling.) For example, Bertel
and Billaut (2004) suggested a genetic algorithm for reentrant
hybrid flow shop scheduling that minimizes the weighted number
of tardy jobs, and Choi, Kim, and Lee (2005) suggested several list
scheduling algorithms for the problem with the objective of mini-
mizing total tardiness. Recently, Choi et al. (2009) considered the
two-stage reentrant hybrid flow shop scheduling problem for the
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objective of minimize makespan while meeting the maximum
allowable due dates, and suggested several heuristic algorithms.
Also, Graves, Meal, Stefek, and Zeghmi (1983) and Hsu and Sham-
ma (1997) considered reentrant flow shop scheduling, a special
case of the reentrant hybrid flow shop scheduling. Although these
articles have contributions in the theoretical sense, their applica-
tions are limited since they are inherently static versions of the
problem.

Real-time scheduling, one of practical scheduling approaches, is
an important topic on which a number of previous researches have
been done. Yamamoto and Nof (1985) proposed a scheduling and
rescheduling method in which an initial schedule is generated at
the beginning, and schedule revisions are done whenever there
are significant operational changes, and Church and Uzsoy (1992)
analyzed periodic and even-driven policies for rescheduling in sin-
gle and parallel machines in the dynamic environment. Kim and
Kim (1994) suggested a simulation-based real-time scheduling
mechanism for flexible manufacturing systems, in which dispatch-
ing rules vary dynamically based on information obtained from
simulation, and later, their model was extended by Jeong and
Kim (1998) in that a systematic framework is suggested together
with scheduling strategies that determine the point of time when
a new dispatching rule is selected. Chang (1997) suggested another
simulation-based real-time scheduling mechanism in which
queueing times for the remaining operations of jobs are estimated
and then incorporated into the existing scheduling heuristics for
dynamic job shops. Also, Cowling and Johansson (2002) provided
a general framework for using real-time information to improve
scheduling decisions. For semiconductor wafer fabrication facili-
ties, Kim, Shim, Choi, and Hwang (2003) suggested simplification
methods to carry out efficient and prompt dispatching in simula-
tion-based real-time scheduling, and Min and Yih (2003) at-
tempted to improve system performances by combining machine
and vehicle dispatching policies.

Unlike the existing approaches explained above, we suggest a
real-time scheduling mechanism in which the decision tree is used
to select an appropriate dispatching rule at the end of each moni-
toring period so that the computational burden required for carry-
ing out simulation runs can be eliminated. Here, the monitoring
period is the time period during which a dispatching rule is main-
tained before considering the rule change. Also, the decision tree, a
schematic model to determine one of the alternatives available to a
decision maker, is constructed using the information obtained
from preliminary data. The real-time scheduling mechanism sug-
gested in this paper is illustrated with a case study on a TFT-LCD
manufacturing line, and the test results are reported for various
system performance measures.

Although there have been a number of previous research arti-
cles on scheduling in semiconductor manufacturing systems, i.e.,
typical reentrant hybrid flow shops, they have limited applications
since they are off-line in nature. See Wein (1988), Glassey and
Resende (1988), Lu, Ramaswamy, and Kumar (1994), Kim, Lee,
Kim, and Roh (1998), Hung and Chen (1998) for examples. In other
words, most of them suggest certain scheduling methods whose
solution qualities were shown with static and off-line simulations.
Also, the existing real-time scheduling approaches for semiconduc-
tor manufacturing select priority dispatching rules using the infor-
mation obtained from simulation runs and hence they may require
significant amount of computational burden. Unlike these, we
suggest a real-time scheduling mechanism that increases the speed
of the scheduling decisions using the decision tree. Note that the
system performances are directly affected by the speed of schedul-
ing system and hence scheduling decisions and actions also have to
be made in real-time.

This paper is organized as follows. In the next section, we
explain the decision tree based real-time scheduling mechanism.
The algorithm to construct the decision tree is also explained.
The case study on the TFT-LCD manufacturing line is reported in
Section 3. Finally, Section 4 summarizes the main results, gives
the conclusions, and describes some areas for further research.
2. Decision tree based real-time scheduling mechanism

This section presents the decision tree based real-time schedul-
ing mechanism suggested in this paper. First, the framework is ex-
plained. Then, the components and the algorithm to construct the
decision tree are explained in details. Finally, the scheduling strat-
egy, i.e., the time point to select a new dispatching rule, is
explained.

2.1. Framework

Fig. 1 shows the framework, i.e., components and necessary
information for the real-time scheduling mechanism to work. In
fact, the framework is a modified version of the simulation-based
one of Jeong and Kim (1998) in that the decision tree, instead of
simulation, is used to select a new dispatching rule at the end of
each monitoring period.

As can be seen in the figure, the real-time scheduling mecha-
nism suggested in this paper consists of three main components:
real-time controller, scheduler, and decision tree based rule selec-
tor. A brief explanation of each component is given below. (Details
of the components will be explained in the next section.)

� Real-time controller exchanges the information with the shop
floor, monitors the system states, and dispatches jobs according
to the rule released by the scheduler.
� Scheduler determines the point of time when a new dispatching

rule is to be selected, i.e., implementing the scheduling strategy,
and releases the dispatching rule selected by the decision tree
based rule selector.
� Decision tree based rule selector selects a new dispatching rule

(without carrying out time-consuming simulations). The deci-
sion tree can be constructed using historical data, knowledge
from experts or simulations on the performances of dispatching
rules under certain system states. (In our case study, simulation
was adopted since there was no preliminary knowledge on the
performances of dispatching rules.)

To explain the relations among the three components, we ex-
plain three databases required for our real-time scheduling mech-
anism to work.

� Decisions in planning stage contain the information about jobs
(with operations), routings, processing times, due dates, perfor-
mance measures, etc.
� System states, updated whenever there is any change in system

states, contain the information related to the current system
states, i.e., number of jobs in the system, number of remaining
operations for each job, processing states of each job, machine
states (working, being repaired or idle), etc.
� Data on the performances of dispatching rules contain the infor-

mation required to build up a decision tree, i.e., system perfor-
mances under certain system states.

2.2. Components

2.2.1. Real-time controller
The real-time controller exchanges the information with the

shop floor, monitors the system states, and dispatches jobs accord-
ing to the rule released by the scheduler. Also, it updates the



Fig. 1. An overview of the decision tree based real-time scheduling mechanism.

Table 1
Data set for constructing a decision tree: example.

Objects Conditional attributes Decision attribute

A B C D X

1 1 2 2 1 1
2 1 2 3 2 1
3 1 2 2 3 1
4 2 2 2 1 1
5 2 3 2 2 2
6 1 3 2 1 1
7 1 2 3 1 2
8 2 3 1 2 1
9 1 2 2 2 1

10 1 1 3 2 1
11 2 1 2 2 2
12 1 1 2 3 1
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system states database using the system monitoring results and
sends a signal to the scheduler if it senses the occurrence of a sys-
tem disturbance.

2.2.2. Scheduler
The scheduler determines the point of time when a new dis-

patching rule is to be selected. If the real-time controller senses
the occurrences of system disturbances and/or a significant differ-
ence between real and estimated performances, it sends a signal to
the scheduler. This makes a decision on whether or not a new dis-
patching rule should be selected. When it is necessary to select a
new dispatching rule, the scheduler sends a request to the decision
tree based rule selector.

2.2.3. Decision tree based rule selector
When the system requests a new dispatching rule, the decision

tree based rule selector selects the best dispatching rule, i.e., a rule
that gives the best performances, and it is informed to the sched-
uler. In the next subsection, we explain the overview of the
decision tree and its application to the real-time scheduling
mechanism suggested in this paper.

2.3. Constructing the decision tree

The decision tree consists of three types of nodes: non-leaf
nodes and leaf nodes. Here, each non-leaf node represents a choice
among alternatives while leaf nodes represent classification or
decision. Before explaining the decision tree in details, an example
of the data set is shown in Table 1, which is adopted from Han
(2008). In the table, there are twelve objects, four conditional attri-
butes, and one decision attribute. For example, object 1 implies
that the decision is 1 (X = 1) if the values of conditional attribute
A, B, C, and D are 1, 2, 2, and 1, respectively.

Using the data given in Table 1, we can make various decision
trees. Among them, an example is shown in Fig. 2. In the figure,
a path from the root node to each lead node corresponds to a deci-
sion. For example, if the values of conditional attributes A, B and C
are 2, 3, and 1, the resulting decision is 1, i.e., X = 1.

Now, we explain how the decision tree is used to select a
dispatching rule at the end of each monitoring period. In our



Fig. 2. Decision tree: example.
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application, conditional and decision attributes in the data set cor-
respond to the system states and the selection of dispatching rule,
respectively. If simulation is used to construct the decision tree, an
object in the data set, i.e., each row in Table 1, is obtained by per-
forming a simulation run under a given set of system states and
identifying the best dispatching rule. As stated earlier, the data
set can be also obtained from the historical data or the knowledge
of experts.

The system states considered in this study are summarized
below. (Note that more variables can be added for other
applications.)

� Total number of remaining operations for the jobs in queue at
each stage.
� Total processing time of remaining operations for the jobs in

queue at each stage.
� Total number of remaining operations for the jobs being pro-

cessed at each stage.
� Total processing time of remaining operations for the jobs being

processed at each stage.

Note that the decision tree can be updated if there are changes
in the cumulated data set. This shows the flexibility of our decision
tree based real-time scheduling mechanism.

There are various algorithms to construct the decision tree.
Among them, we adopt the Iterative Dichotomiser algorithm of
Quinlan (1986), called the ID3 algorithm in the literature, since it
has been proved to be simple but effective to express information
contained implicitly in discrete valued data sets. The basic idea of
the ID3 algorithm is stemmed from the information theory and the
pattern recognition. Before explaining the algorithm, a set of ob-
jects is defined as a matrix A = [aij], where aij denotes the value
of conditional attribute j of object i. Note that in the matrix, each
row vector corresponds to an object without the decision attribute.
(See Table 1 for an example.)

The ID3 algorithm uses the entropy function to select the condi-
tional attributes of a decision tree, where the entropy function mea-
sures the impurity of an arbitrary collection of objects. More
formally, the entropy function of conditional attribute j is defined as

entropyj ¼
XCj

c¼1

�pðwcjjjÞ � log2pðwcjjjÞ;

where Cj denotes the number of different conditional attribute val-
ues, e.g., CA, CB, CC, and CD are, 2, 2, 3, and 3 for the example in Table
1. Also, p(wcj|j) denotes the proportion of value wcj in conditional
attribute j, i.e.,

pðwcjjjÞ ¼ jWcjj=m;

where Wcj = {i|aij = wcj, "i} and m denotes the number of objects. For
example, p(1|A) = 8/12 and p(2|B) = 4/12 in Table 1, and hence the
entropy value of conditional attribute A can be calculated as
follows:
entropyA ¼ �
8

12
� log2

8
12
� 4

12
� log2

4
12

The ID3 algorithm constructs the decision tree as follows. First,
all the conditional attributes are evaluated using the entropy func-
tion and the one with the smallest entropy value is selected. From
the root node, a partial decision tree is constructed with the se-
lected conditional attribute. Second, a child node is generated for
each conditional attribute value of the root node and it is con-
nected to the root node. As in the root node, the conditional attri-
bute of the child node is set to the one with the smallest entropy
value after removing the selected conditional attribute and the ob-
jects with the conditional attribute value of the root node. This is
done until there is no remaining conditional attributes to be con-
sidered. A detailed procedure of the ID3 algorithm is given below.

Procedure 1 (ID 3 algorithm for constructing a decision tree).

Step 1. Create the root node using the conditional attribute with
the smallest entropy value and let the root node be the
current node.

Step 2. For each conditional attribute value of the current node,
create and connect a child node whose conditional attri-
bute is set to the one with the smallest entropy value after
updating the data set, i.e., entropy values are calculated
after removing the conditional attribute of the current
node and the objects with the conditional attribute value
of the current node.

Step 3. If all conditional attributes are considered, stop. Other-
wise, let one of the unconsidered child nodes be the cur-
rent node and go to Step 2.

2.4. Scheduling strategy

After the decision tree is constructed, one more decision should
be made on the time points when a new dispatching rule is to be
selected, i.e., the time when the decision tree is called. To do this,
we use the ALL strategy suggested by Jeong and Kim (1998) since
it is better than the others. (See Jeong and Kim (1998) for the other
scheduling strategies.) In the ALL strategy, the scheduler is called in
the following cases.

� Beginning of a new scheduling horizon.
� Major system disturbances (e.g., machine breakdowns).
� Minor system disturbances (e.g., tool breakages).
� Getting the performances worse, i.e., certain performance value

exceeds a pre-determined limit, at each periodic monitoring
period.

3. Application

This section reports a case study on a TFT-LCD line. First, the
system is described. Second, dispatching rules used for the case
study are explained. Finally, the performances of the decision tree
based real-time scheduling mechanism are reported.

3.1. System description

TFT-LCDs are high-tech display products manufactured through
complex processes. A glass of semiconductor material is coated
with a thin film of a chemical called photo-resist. Photo-resist
coated wafers or glasses are then baked in an oven to remove sol-
vents. Once the baking process is completed, the stepper aligns lay-
ers with mask plate and the glass is exposed to ultraviolet light.
Then, the glass is developed in the developer. At the final stage,
dry and wet etching processes remove thin film layers. The dry



Fig. 3. TFT-LCD manufacturing processes.

Table 2
Product routes and processing time for the case study.

Product type DS GP EP WE SP GP EP WE SP GP EP WE SP GP EP WE SP GP EP WE SP GP EP WE SP Sum
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Product-01 36a 54 48 27 126 72 216 0 0 90 78 36 249 72 60 18 180 60 30 18 144 0 0 0 0 1614
Product-02 36 54 30 18 144 72 228 0 0 90 36 42 234 72 78 30 168 60 48 18 150 0 0 0 0 1608
Product-03 54 48 36 30 252 72 60 42 78 0 0 42 300 54 72 18 144 48 36 18 180 0 0 0 0 1584
Product-04 42 48 36 18 120 60 192 0 0 48 42 24 0 0 0 24 180 48 72 18 144 42 54 18 144 1374
Product-05 36 54 30 18 108 60 204 0 0 60 42 24 0 0 0 24 180 72 60 18 90 60 42 30 144 1356
Product-06 36 54 30 24 132 60 192 0 0 60 72 24 0 0 0 30 204 60 72 18 144 60 30 30 120 1452
Product-07 72 72 42 108 324 0 288 0 0 90 72 168 360 90 660 0 0 72 48 48 300 0 0 0 0 2814
Product-08 90 72 60 120 288 72 300 0 0 108 108 180 300 120 240 0 0 120 36 36 240 0 0 0 0 2490
Product-09 72 72 60 126 324 66 348 0 0 72 90 126 348 84 408 48 240 0 0 0 0 0 0 0 0 2484
Product-10 36 72 36 30 126 84 216 0 0 90 72 30 0 0 0 48 252 108 108 30 162 72 24 48 162 1806
Product-11 72 72 54 30 108 30 348 30 0 0 0 30 288 0 0 30 336 0 0 12 144 0 0 48 300 1932

a Unit: minutes.
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etching process uses reactive species, such as atoms or radicals
from the gas plasma, to etch away a portion of the object material.
When these species react with the material located on the plate,
the open region of material is transformed into a volatile state
and removed from the matrix. In this process, the reaction velocity
is fast, and fine patterns can be formed uniformly.

The TFT-LCD fabrication process, a typical bottleneck among the
whole processes, is similar to the semiconductor wafer fabrication
process in that its complexity comes from a large number of oper-
ations as well as reentrant flows. The TFT-LCD fabrication process
considered in this study can be described as Fig. 3. As can be seen
in the figure, there are five serial stages, called deposition (DS) with
10 machines, gate photo (GP) with 20 machines, exposure (EP)
with 10 machines, wet etching (WE) with 15 machines, and strip-
ping (SP) with 10 machines, in the line.

In the TFT-LCD manufacturing line, 11 product types are
produced. The routes and processing times are summarized in
Table 2. According to the operations managers of the line, due
dates of jobs were generated from DU(2.0 � Ti, 4.0 � Ti), where
DU(l, u) and T denote a discrete uniform distribution with range
[l, u] and the sum of the operation times of the job i, respectively.
Preemption is not allowed due to the technical problems. It is as-
sumed that the transportation time is ignored since the material
handling system is not the bottleneck in the line, and set-up times
are included in the processing times. Finally, the other problem
data are summarized below. Note that some of the data are artifi-
cial due to the confidential problem and the difficulties to obtain
the exact data.

� Jobs arrive with an inter-arrival time generated from EXP(10),
where EXP(k) is an exponential distribution with a mean of k.
� Major machine breakdowns occur with an inter-failure time of

EXP(15,000), and repair times were generated from EXP(500).
� Minor breakdowns occur with an interval generated from

EXP(6000) for each machine, and repair time follows EXP(150).
� Buffer size, i.e., maximum number of available waiting jobs at

each stage, was set to 200.

Due to a large number of operations and reentrant flows, the
TFT-LCD manufacturing line has low system throughput, long flow
time, and bad due date related performance measures. Therefore,
our motive is to suggest new and practical real-time scheduling
mechanism that can help to improve its system performances.
Multiple performance measures are considered in this study. They
are: (a) maximizing system throughput; (b) minimizing mean flow
time; (c) minimizing mean tardiness; and (d) minimizing the num-
ber of tardy jobs.

3.2. Dispatching rules

Dispatching rules are used for selecting a job among those wait-
ing in a queue at each stage when a machine becomes available.
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(See Panwalkar and Iskander (1977) and Blackstone, Phillips, and
Hogg (1982) for surveys on various dispatching rules.) The dis-
patching rules tested in the case study are summarized below.
Note that other rules can be added since the real-time mechanism
is flexible in this respect.

FCFS (first come first served): select an operation that arrived at
the queue first.
SPT (shortest processing time): select an operation with the
shortest operation processing time, i.e., min pj, where pj denotes
the processing time of operation j.
LPT (longest processing time): select an operation with the lon-
gest operation processing time, i.e., max pj.
LOR (least operation remaining): select an operation with the
least number of remaining operations, i.e., min oj, where oj

denotes the remaining operations of operation j (number of
successor operations including itself).
MOR (most operation remaining): select an operation with the
largest number of remaining operations, i.e., max oj.
LWR (least work remaining): select the operation with the least
remaining work, i.e., min rj, where rj denotes the remaining
work of operation j (sum of processing times of the successor
operations including itself).
MWR (most work remaining): select the operation with the
most remaining work, i.e., max rj.
PWR (processing time to work remaining): select an operation
with the smallest ratio of the processing time to remaining
work, i.e., min pj/rj.
POR (processing time to operation remaining): select an opera-
tion with the smallest ratio of the processing time to remaining
operations, i.e., min pj/oj.
EDD (earliest due date): select an operation with the earliest
due date, i.e., min dj, where dj denotes the due date of the job
in which operation j is included.
SLACK (minimum slack): select an operation with the minimum
slack time, i.e., min {dj � rj � t}, where t is the current time.
MDD (modified due date): select an operation with the mini-
mum modified due date, where the modified due date of oper-
ation j is defined as max{dj, t + rj}.
S/RO (slack per remaining operations): select an operation with
the smallest ratio of slack time to the remaining operations, i.e.,
(dj � rj � t)/oj.
S/RW (slack per remaining work): select an operation with the
smallest ratio of slack time to the remaining work, i.e.,
(dj � rj � t)/rj.
Fig. 4. A part of the decision tr
3.3. Experimental design and results

The main purpose of the test is to compare the decision tree
based real-time scheduling mechanism (that eliminates the com-
putational burdens of simulation runs for selecting dispatching
rules) with the existing simulation-based one (that selects dis-
patching rules using time-consuming simulation results).

As stated earlier, the performance measures considered in this
study are system throughput, mean flow time, mean tardiness,
and the number of tardy jobs. In this study, the data for construct-
ing the decision tree were obtained from steady-state simulation
runs because the system has no preliminary data. (See Law and
Kelton (1991) for more details on steady-state simulations.) The
two real-time scheduling mechanisms, together with the simula-
tion model, were coded in C++ and the test was done on a worksta-
tion with an Intel Xeon processor operating at 3.2 GHz clock speed.

The comparisons were done in two cases. The first case assumes
that the shop floor is not operated during the simulation run time
for deciding a new dispatching rule and hence the losses in system
performances are not considered. In this case, the simulation-
based mechanism gives better results than the decision tree based
one because the decision tree based one is an approximation of the
simulation-based one. Nevertheless, the decision tree based mech-
anism has an inherent merit in that the simulation model needs
not be required. On the other hand, in the second case, the shop
floor is operated with the current dispatching rule during the sim-
ulation run time and hence the losses in system performances are
explicitly considered.

In the test, we performed the comparisons according to three
levels of the performance limit in the scheduling strategy (1%, 5%
and 10%). Recall that one of the scheduling strategies is that a
new rule is selected if a certain performance value exceeds a pre-
determined performance limit at the end of each monitoring peri-
od. For each level of the performance limit, we performed five rep-
lications for each of the eight combinations for two levels for the
simulation time for deciding a new dispatching rule in the simula-
tion-based mechanism (500 and 1000) and three levels for the
length of the periodic monitoring period (2500, 5000, and
10,000). The performance measure used is the relative perfor-
mance ratio, which is defined as

100� ðCa � CbestÞ=Cbest

for the minimization objectives (mean flow time, mean tardiness,
and the number of tardy jobs), and

100� ðCbest � CaÞ=Cbest
ee used in the case study.



Table 3
Results for the comparison test.

Simulation
times

Monitoring
period

Simulation-based mechanism Decision tree based mechanism

Throughput Mean flow
time

Mean
tardiness

Number of
tardy jobs

Throughput Mean
flow time

Mean
tardiness

Number of
tardy jobs

(a) Results for performance limit 1%
Case 1a 500 2500 0.00c 0.00 0.00 0.00 2.22 2.39 2.51 2.02

5000 0.00 0.00 0.00 0.00 3.61 4.28 5.88 2.91
1000 5000 0.00 0.00 0.00 0.00 3.23 3.62 4.81 2.26

10,000 0.00 0.00 0.00 0.00 2.49 2.01 3.39 2.22

Case 2b 500 2500 0.19 0.14 0.11 0.05 0.29 0.32 0.28 0.43
5000 0.19 0.08 0.21 0.21 0.33 0.36 0.22 0.36

1000 5000 0.23 0.33 0.26 0.21 0.26 0.25 0.39 0.34
10,000 0.21 0.22 0.31 0.19 0.29 0.30 0.34 0.42

(b) Results for performance limit 5%
Case 1 500 2500 0.00 0.00 0.00 0.00 1.89 2.62 2.54 2.51

5000 0.00 0.00 0.00 0.00 4.21 3.88 4.51 3.83
1000 5000 0.00 0.00 0.00 0.00 3.78 4.27 4.69 4.28

10,000 0.00 0.00 0.00 0.00 3.52 2.51 5.32 3.93

Case 2 500 2500 0.23 0.26 0.18 0.24 0.26 0.32 0.26 0.35
5000 0.16 0.19 0.25 0.30 0.23 0.36 0.22 0.28

1000 5000 0.23 0.26 0.23 0.23 0.19 0.29 0.39 0.25
10,000 0.26 0.33 0.32 0.24 0.31 0.24 0.24 0.27

(c) Results for performance limit 10%
Case 1 500 2500 0.00c 0.00 0.00 0.00 1.41 2.91 2.09 2.22

5000 0.00 0.00 0.00 0.00 2.19 2.21 2.12 2.41
1000 5000 0.00 0.00 0.00 0.00 2.12 3.62 3.32 2.89

10,000 0.00 0.00 0.00 0.00 2.54 2.77 3.14 2.49

Case 2 500 2500 0.11 0.23 0.18 0.23 0.12 0.34 0.31 0.31
5000 0.22 0.21 0.27 0.19 0.19 0.28 0.36 0.22

1000 5000 0.32 0.32 0.36 0.26 0.29 0.25 0.29 0.34
10,000 0.29 0.21 0.31 0.21 0.21 0.34 0.36 0.25

a The case that the shop floor is not operated during the simulation time for deciding a new dispatching rule.
b The case that the shop floor is operated during the simulation time for deciding a new dispatching rule.
c Average relative performance ratio (out of five instances).
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for the maximization objective (system throughput), where Ca is the
solution value obtained from real-time scheduling mechanism a
and Cbest is the better one of the two solution values.

When constructing the decision tree using the preliminary sim-
ulation results, the conditional attributes were defined in the form
of range instead of value. The resulting decision tree can be repre-
sented as Fig. 4 in which conditional attributes A, B, C and D denote
the total number of remaining operations for the jobs in queue at
each stage, the total processing time of remaining operations for
the jobs in queue at each stage, the total number of remaining
operations for the jobs being processed at each stage, and the total
processing time of remaining operations for the jobs being pro-
cessed at each stage, respectively.

Test results on the two real-time scheduling mechanisms are
summarized in Table 3. As can be seen in the table, the main result
is that the differences in performances are not significantly large.
(Recall that the decision tree based mechanism needs not require
simulation runs.) In particular, for the second case in which the
shop floor is operated with the current dispatching rule (before
change) during the simulation time, there were no significant dif-
ferences for all performance measures, which implies that the
losses in system performances due to poor dispatching rules dur-
ing the simulation run time are significant. Also, we found that
the decision tree based mechanism may give better performances
for some measures and parameter values. It was observed that the
gaps between the two mechanisms get smaller as the performance
limit gets increased (from 1% to 10%) because the current bad dis-
patching rule is used longer under larger performance limits.
Therefore, we can see that the rule section mechanism plays an
important role for immediate responses to changes in system
states. In summary, we can argue that the decision tree based
mechanism is worth to be considered for practical scheduling
problems, especially, in the scheduling systems without preparing
simulators.

4. Concluding remarks

We considered the scheduling problem in reentrant hybrid flow
shops that have a number of applications in various manufacturing
and service systems. Unlike the existing theoretical approaches, we
suggested a real-time scheduling mechanism in which a decision
tree is used to select an appropriate dispatching rule so that the
computational burden required for carrying out simulations can
be eliminated. The decision tree based real-time scheduling mech-
anism was applied to a TFT-LCD manufacturing line, i.e., a typical
reentrant hybrid flow shop, and the test results showed that it is
competitive to the simulation-based one with respect to various
performance measures such as system throughput, mean flow
time, mean tardiness, and the number of tardy jobs.

As a modification of the existing simulation-based real-time
scheduling mechanism, this research can be extended in several
directions. First, other algorithms to construct the decision tree
may be used. In other words, it may be needed to construct more
sophisticated decision trees. Second, more case studies that incor-
porate specific system characteristics are worth to be performed.
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