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ABSTRACT 
Localization of acoustic sources in reverberant environments by 
microphone arrays remains a challenging task in audio signal 
processing. As a matter of fact, most assumptions of commonly 
adopted models are not met in real applications. Moreover, in 
practical systems it is not convenient or possible to employ 
sophisticated and costly architectures, that require precise 
synchronization and fast data shuffling among sensors. 

In this paper, a new robust multi-step procedure for speaker 
localization in reverberant rooms is introduced and described. 
The new approach is based on a disturbed harmonics model of 
time delays in the frequency domain and employs the well- 
known ROOT-MUSIC algorithm, after a preliminary distributed 
processing of the received signals. Candidate source positions 
are then estimated by clustering of raw TDOA estimates. 

Main features of the proposed approach, compared to previous 
solutions, are the capability of tracking multiple speakers and the 
high accuracy of the closed form TDOA estimator. 

1. INTRODUCTION 

Localization of acoustic sources in reverberant environments is 
an important task in many automatic systems for surveillance, 
videoconferencing, hands-free talking [I]. Spatial parameters 
obtained in the localization process can be used in a variety of 
applications: dereverberation of speech, fault prediction and 
analysis in machinery, cueing and tracking of TV cameras, 
speaker verification, etc. 

From a signal processing standpoint. the issue is a proper 
treatment of multiple arrivals, corresponding to both useful 
signal(s) and reflections. Reflective surfaces in closed 
environments are usually modeled by the introduction of virfual 
sources [2], whose number typically exceeds the microphone 
array size. This fact, coupled with the very large bandwidth of 
the signals of interest, makes unsuitable the parametric 
techniques used in narrow-band or moderately wide-band array 
processing in the presence of far-field sources [3][4][5]. For 
these reasons, most approaches to source localization involve the 
use of differential time delays (Time Delay of Arrival, TDOA) 
among pairs (“doublets”) of co-located microphones 
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[6][7][8][9]. This process requires a joint parameter optimization 
from signals collected by many sensors at a time. 

Typically, TDOA estimation is performed by generalized cross- 
correlation methods [6][9], that are appealing for their simplicity 
and ease of implementation. Anyway, generalized cross- 
correlation methods assume a single-source model, which can be 
far from reality in many typical operating environments. A 
different model and strategies are thus needed to overcome the 
limitations of traditional approaches. 

From the point of view of system design, i t  is very important to 
reduce synchronization requirements and signal paths to a 
minimum, to reduce costs in current applications. 

In this work, we propose a novel three-stage strategy for the 
robust localization of multiple speakers in reverberant rooms. 
The first stage consists of data pre-whitening by use of Linear 
Predictive Coding (LPC). The effects of signal pre-whitening are 
to generate an approximate concentration of the likelihood 
function (under a simplifying Gaussian assumption) [7] and to 
reduce the reverberation effects (e.g. the number of significant 
TDOA to be estimated). 

In the second stage the TDOAs for the direct path and early 
(strongest) reflections are estimated by a closed-form parametric 
approach, based on the ROOT-MUSIC algorithm [ 121. 

Finally, the third stage finds the most likely position of the 
speakers by means of a clustering in space performed among all 
the estimated locations. The most dense clusters are selected as 
candidate speakers, thus eliminating most of false detections 
generated by outliers (virtual sources, localization ambiguities, 
impulsive noise, etc.). 

2. PROPOSED APPROACH 

In this section we briefly describe the main steps of the proposed 
approach. 

2.1 Signal whitening through LPC 

Array microphones are paired in doublets. Microphones in each 
doublet are supposed to be physically close to each other, so that 
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they can be assumed to receive a time-shifted replica of each 
source signal, filtered by the same acoustic transfer function. 

Typically, the range of the signal spectrum in acoustic 
applications is characterized by high fluctuations (1 04+106). This 
fact can heavily influence the quality and robustness of the 
subsequent TDOA estimation [6][7][9]. For this reason, in the 
proposed approach signals coming from each pair of 
microphones are pre-processed by a standard LPC algorithm, 
which has been recently applied to speech enhancement, also in 
reverberant environments [lO][l I]. The main effect of LPC is to 
remove the common spectral features present in doublet signals 
(including the pitch) and minimize spectrum fluctuations, 
induced by multipath. Whitening produces data matrices that are 
better balanced, well conditioned and largely insensitive to 
speech nonstationarity, thus enhancing the subsequent parametric 
TDOA processing. Being a linear processing, LPC does not 
modify either the general signal model (described in the 
following section), or the local signal-to-noise ratio (SNR) in the 
frequency domain. 

Short- and long-term predictors [I31 are computed on the basis 
of the average autocorrelation of doublet signals. The filter 
resulting from the average of the two auto-correlation functions 
is smoother in frequency and leads to a negligible loss in 
performance with respect to optimal processing [6]. In contrast, 
separate filtering of each signal would require compensation of 
the different group delay during the estimation of the phase 
spectrum, leading to an increased computational cost. 

2.2 Robust parametric TDOA estimation by 
ROOT-MUSIC 

In alternative to approaches based on the generalized cross- 
correlation, the TDOA search can be also recasted as a disturbed 
harmonics retrieval problem [ 14][ 151 from the cross-power 
spectrum P &). If x l ( t )  and x2(t) are the signals acquired by the 
generic doublet and XIU, and X2y) are the corresponding Fourier 
tranforms, the cross-power spectrum P I 2 0  between XI([) and 
x2(t) is defined by the following formula: 

where E[.] indicates the expectation operator and 
complex conjugation operator. 

Under mild hypotheses, it can be shown that the following 
equation holds for PI2(f): 

(.)* is the 

equispaced frequencies uk, k = l,2, ..., M )  from consecutive 
frames of LPC residuals by means of FFT and time averaging. 

The ROOT-MUSIC algorithm [12], which is known to be very 
robust to envelope fluctuations, has been used to estimate the 
sinusoid frequencies in eq. (1.2). Namely, ROOT-MUSIC is 
applied to the covariance of a Hankel-structured data matrix, 
formed by estimates of PI2(fk) at each doublet [15]. 

Compared to existing approaches, location estimates obtained 
with the proposed approach are characterized by a very good 
consistency. Moreover, since strict synchronization and fast data 
transfer requirements are confined within each doublet, the 
proposed strategy enables a decentralized and asynchronous 
processing of TDOAs by use of DSP. 

2.3 Estimation of the number of relevant 
reflections 

The ROOT-MUSIC algorithm requires the estimation of the 
number of sinusoids from the effective rank of the data 
covariance matrix, which is representative of the number of 
significant arrivals and can be used to detect contributions in the 
received signals due to the direct paths. In the present approach 
the rank has been estimated by setting a threshold on the 
eigenvalues of the data covariance via a simple and robust 
algorithm. 

It is assumed that the smallest eigenvalues are clustered around 
the noise power with a distribution which is approximately 
Gaussian or X-Square. In contrast, “signal” eigenvalues [5] 
belong to a different and unknown distribution [I71 and can be 
regarded as outliers when observed on the eigenvalue spectrum. 

This interpretation allows to use robust estimators of the noise 
eigenvalue distribution to set the threshold among signal and 
noise eigenvalues [ 161. In  particular, the sample median and the 
absolute median deviation of the eigenvalues have been 
successfully used in this work. 

For median-based estimators, it is known that the order of the 
data matrix must exceed twice the number of significant 
reflections [16]. Information theoretic criteria like MDL or AIC 
[I71 do not have this limitation but have been discarded for the 
excessive sensitivity to modelling errors and approximations. 

2.4 Source clustering 

From TDOAs generated for each pair of doublets, a candidate 
source position is computed by efficient geometric algorithms 
available in literature [18]. Estimates that lie inside the room 
borders are clustered in space, using a fastfuzzy algorithm [19]. 

The maximum number L,, of estimates that can be attributed to a where S is the number of speakers, K p  is the number of single speaker can be easily computed from the array geometry 
[ 181. Most of remaining estimates are generated by the pairing of significant arrivals from a single speaker (direct path and 

TDOAs that refer to different acoustic sources and have no reflections), S,Y, is the spectrum of the whitened signal at the 
doublet centroid, cry> are slowly-varying transfer functions, and physical meaning. Other incorrect locations arise from 

formula, P 1 7 ( f )  can be interpreted as a sum of a few sinusoids, 
( r I ~ k  - ‘b/) = are the TDoAs to be estimated. Based On this geometrical ambiguities ofthe array, reverberation, diffractions. 

modulated by slowl.y-varying envelopes and embedded in a While wrong estimates usually generate disperse clusters 
nearry white noise [15]; this assumption is supported also by containing few points, dense clusters having an approximately 
empirical evidence. P12U, has been estimated at discrete and elliptical shape are formed around the speakers. Centroids of 
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clusters gathering a number of elements close to L,, are finally 
selected as speaker locations. Performance can be improved by 
extending the clustering phase over consecutive time frames. 

3. EXPERIMENTAL TRIALS 
The ROOT-MUSIC TDOA algorithm was compared with the 
Cross-Power Spectrum Phase approach (CPSP, [9]) using 
simulated data generated by the image method [2] and different 
array configurations. Results herein described refer to a room of 
size ( 6 x 7 ~ 4  m), with value p=O.8 for the reflection coefficient of 
the walls and p=0.6 for the ceiling and the floor. Four square 
arrays of size 4 place on the walls were considered. 

Prewithening was found to improve the performance of both 
algorithms in any case. Table 1 shows the sample TDOA 
statistics obtained from a single doublet in the presence of one 
speaker, for different values of SNR. The better performance of 
the proposed approach are clearly visible. 

Figure 1 demonstrates the tracking capabilities of ROOT-MUSIC 
in the presence of three simultaneous speakers. Tracks 
correspond to the polynomial roots, ranked with respect to the 
smallest distance from the unit circle [12]. Finally, figure 2 
shows an example of clustering over time in the presence of three 
simultaneous speakers. 

4. SUMMARY 

A new approach to speaker localization in reverberant 
environments has been introduced and described. The better 
performance of the proposed method with respect to traditional 
techniques have been demonstrated in realistic computer 
simulations, even in the presence of multiple speakers. The 
computational cost of the new procedure, being based on 
standard and optimized building blocks (LPC, FFT, small-size 
SVD, polynomial root finders), is affordable by modem DSP 
processors and depends on the particular implementation. The 
final fuzzy clustering can be implemented in high-level 
languages on general-purpose workstations. Finally, the 
proposed algorithm is characterized by a high degree of 
flexibility and can easily incorporate any enhanced whitening, 
TDOA estimation and clustering techniques. 
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TDOA Estimator 
SNR = 10 dB 

0.0278,0.165 1 CPSP 

SNR = 20 dB SNR = 30 dB 

0.0153,0.0264 0.015, 0.025 

Root-Music 

sample bias and standard deviation (ms) 

0.0126,0.0472 0.0087,0.0183 0.0065,0.0151 

Table 1: TDOA estimator performance comparison (prewhitened signals) 

I I I I I I I I I I I 

10 20 30 40 50 60 70 80 90 
overlap 50% rectangular window BIAS=-0.01 4366 ms, STD=0.045853 ms 

Fig. 1: TDOA tracking of three speakers by ROOT-MUSIC TDOA 

frames 81-90 frames 91-100 

800 ......... ;...*.+.+..* . . . .  ; ....... 

.............. 

+ + ; + +  ; 
200 400 600 200 400 600 

Fig. 2: Clustering example; x-marks indicate raw location estimates, circles point to final speaker estimates (units are in number 
of cT, where c is the propagation speed of sound and Tis the sampling period) 
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