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Abstract—In this paper, we develop an integrated local tra-
jectory planning and control scheme for the navigation of au-
tonomous ground vehicles (AGVs) along a reference path with 
avoidance of static obstacles. Instead of applying traditional 
cross track-based feedback controllers to steer the vehicle to 
track the reference path as closely as possible, we decompose the 
path following task into two subtasks. Firstly, in order to follow 
the reference path with smooth motions and avoid obstacles as 
well, we apply an efficient model-based predictive trajectory 
planner, which considers geometric information of the desired 
path, kinematic constraints and partial-dynamic constraints to 
obtain a collision-free, and dynamically-feasible trajectory in 
each planning cycle. Then, the generated trajectory is fed to the 
low-level trajectory tracking controller. Relying on the 
steady-state steering characteristics of vehicles, we develop an 
internal model controller to track the desired trajectory, while 
rejecting the negative effects resulting from model uncertainties 
and external disturbances. Simulation results demonstrate ca-
pabilities of the proposed algorithm to smoothly follow a refer-
ence path while avoiding static obstacles at a high speed. 

I. INTRODUCTION 

The past three decades have witnessed the rapid devel-
opment in the research field of autonomous driving, which 
attracts considerable research interest and efforts from both 
academia and industry. During the famous AGV competitions, 
the DARPA Grand Challenges and the DARPA Urban Chal-
lenge, autonomous ground vehicles had demonstrated their 
great potentials to improve driving safety, efficiency and 
comfort in both off-road and on-road environments [1]-[3]. 
These competitions showed significant advances over 
the-state-of-the-art in autonomous driving technology and 
stimulated extensive interest in the AGV research field as well. 
Recently, partially automated control functions have already 
been applied in the driver assistant systems and several au-
tomotive companies even make their research and develop-
ment plans for producing future autonomous cars. Neverthe-
less, there is still a number of challenges to be faced for de-
veloping truly reliable and robust fully-autonomous driving 
vehicles to handle various realistic situations in the real world.  

As is well-known that the development and application of 
AGVs require the integration of the-state-of-the-art technolo-
gies, ranging from perception, localization to navigation and 
control [4]. As the core modules, both local motion planner 
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and path tracking controller play a significant role in guaran-
teeing safety and improving driving comfort.  

In order to track the reference path accurately and robustly, 
many researchers developed Lyapunov-based feedback con-
trol laws by considering vehicle kinematics and dynamics, 
such as sliding model control, backstepping control and so on. 
To adapt high speed and varying terrain conditions and im-
prove control accuracy and robustness, some researchers ex-
plore cascaded or multi-tiered control strategies and focusing 
on minimizing lateral errors in the outer loop, and stabilizing 
yaw motions via steering actions in the inner loop [5]. To 
reject model uncertainties and external disturbances, tire si-
deslip angles and inertial effects are taken into account. 
However, most of these controllers formulate the tracking 
control problem into a regulation problem, which primarily 
concerns with current cross-track error information (such as 
lateral and heading deviations from the reference path) to 
generate the immediate control action instead of a sequence of 
optimal or sub-optimal control actions within a finite horizon. 
In addition, state and control constraints are often ignored. 
Therefore, it may easily result in abrupt steering actions when 
vehicles deviate far from the reference path or negotiate a tight 
turn. Some researchers utilizes the gain-scheduling or variable 
structure control approaches to avoid abrupt control actions to 
achieve graceful motions at the expense of reducing tracking 
accuracy or error convergent speed [6]. Based on the com-
parison of a variety of path tracking controllers, [7] concluded 
that path tracking control performance is strongly dependent 
on both vehicle dynamics and smoothness of the reference 
path. Essentially, most of these kinematics-based and/or dy-
namics-based controller primarily focused on eliminating the 
current cross-track errors instead of taking advantage of the 
predictive information ahead to integrally optimize a sequence 
of control actions and its corresponding trajectory, which 
smoothly regulates the vehicle from the current state onto the 
sampling states aligned with the reference path ahead.  

There exists a large amount of research on integrated 
planning and control approaches for AGVs by applying op-
timization techniques. One of the most attractive methods is 
the Model Predictive Control (MPC), which is capable of 
formulating the vehicle navigation problem into a fi-
nite-horizon constrained optimization control problem 
[8]-[10]. MPC approach uses the vehicle kinematic or dy-
namic model to predict its future state evolution based on the 
current measured states. In each control cycle it generates a 
sequence of control actions, which minimizes a specific ob-
jective function within a finite horizon and satisfies the control 
constraints as well. Then, the first control action is issued to be 
executed by the low-level actuator. The process is repeated at 
subsequent time steps. The MPC scheme has the capabilities 
to systematically deal with system state and control constraints. 
However, it often assumes the reference path is known and the 
speed is constant over a short-term finite horizon ahead at each 
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time. When vehicles drive either in on-road or off-road dy-
namic environments, due to the existence of unexpected ob-
stacles and localization errors, the collision-free assumption of 
the reference path may be impractical. Solving the optimiza-
tion problem via MPC scheme may involve non-convex con-
straints when obstacles are considered. In this case, computa-
tional burden and limited on-board computational resources 
may become a barrier preventing MPC approaches from ge-
nerating a collision-free and feasible trajectory in real time. 

To deal with obstacle avoidance and achieve safe and 
graceful motions along the reference route, we introduce a 
computationally efficient local trajectory planner between the 
reference path and the path following controller based on a 
hierarchical framework. To generate a sufficiently long, col-
lision-free and curvature-continuous trajectory in real-time, 
the planner is required to consider the reference route and 
surrounding environmental information from on-board per-
ceptual system, as well as system model and constraints. To 
some extent, the local trajectory planner performs the function 
of bridging the gap between high-level rough reference path 
planning and low-level tracking control. In addition, it enables 
the vehicle to handle dynamic environments deliberatively 
and reactively. In addition, corresponding control inputs of the 
planned trajectory could be used as feedforward control 
commands by the low-level tracking controller and allow the 
feedback controller to focus on handling model uncertainties 
and disturbances. 

To solve the local trajectory generation problem, several 
well-known sampling-based motion planning approaches 
have been extensively studied. Most of them follow a discrete 
optimization scheme. More specifically, a set of trajectory 
candidates is generated via forward simulation based on the 
system model. Then a best trajectory is selected according to 
an objective function. This sampling-based motion planning 
scheme can be roughly classified into two categories, one is 
control space sampling-based method and the other is state 
space sampling-based method [11].  

The former scheme discretizes the control input space 
(such as constant-curvature arcs [12], clothoids [13], or con-
catenation of these short-term motions [14]) to generate a set 
of trajectory candidates via numerical forward integration of 
differential equations which governs vehicle kinematics or 
dynamics [15]. Therefore, the generated trajectory candidates 
are inherently drivable. Due to its simplicity and computa-
tional efficiency, the scheme has been widely applied for the 
local navigation purpose, especially suitable for finding a 
collision-free path in the far less constrained environment. 
Based on the symmetric nature of mechanical system, some 
researchers generate a motion primitive library offline in the 
body-centered coordinate and use them online via ration and 
translation [16]. Nonetheless, since the motion primitives are 
generated by discretizing the control input space, the motion 
primitives are often not well-separated. A large amount of 
computational resource will be consumed on exhaustive col-
lision-test and evaluation process. 

By contrast, instead of sampling discrete control inputs, 
the state space sampling-based motion planning scheme sam-
ple a set of terminal states by using the information of guid-
ance path and environments. It not only considers the position 
constraints, but also accounts for heading and curvature states 
constraints imposed by the reference path. To be aligned with 
the reference path and obtain a collision-free and relatively 

smooth trajectory, a set of terminal states are sampled laterally 
offset along the reference path. Several approaches have been 
proposed to generate trajectories, which connect the vehicle 
current state with the terminal states aligned with the reference 
path. Based on cubic Bézier curves, [17] developed an effi-
cient and analytical path smoothing algorithm to generate 
continuous-curvature path, which considers an upper-bound 
curvature constraint. Regarding the reference path as a base-
line, [18] introduced a geometric method to generate multiple 
path candidates. The baseline is required to be smooth enough 
to ensure the smoothness of generated candidates. Instead of 
using geometric methods, [19] and [20] proposed local dy-
namically-feasible trajectory planners involving both 
close-loop control laws (kinematic-based nonlinear control 
law and pure pursuit control law, respectively) and system, 
state and control constraints, regardless of the smoothness of 
the baseline. [21] presented a model predictive trajectory 
generation scheme, which transforms the local trajectory 
generation problem into a two-point boundary value problem 
(BVP), subject to high-fidelity vehicle dynamic constraints. 
Due to use of the numerical solving method, it achieves a high 
degree of efficiency and generality. The low-level controller 
applies an open-loop control strategy for tracking control. 

The remainder of the paper is organized as follows: in 
Section II we introduce the structure of the proposed frame-
work. Then, Trajectory generation method and low-level path 
tracking controller are described in detail in Section III and 
Section IV respectively. Section V presents the simulation 
results. Followed by concluding remarks and future work in 
Section VI. 

II. FRAMEWORK 

The typical system architecture for an autonomous ground 
vehicle is illustrated in Fig.1. The perception and localization 
system obtained from the on-board sensors provide the envi-
ronmental information surrounding the vehicle along with the 
vehicle position and pose information. The high-level mission 
planning is decided by the allocated task. While the behavioral 
planners reasons about road conditions, traffic regulations and 
other rules to issue safe and feasible behaviors to the motion 
planners. While the motion planning level often consists of 
reference path planning and trajectory planning, which pri-
marily focus on generating a collision-free path or trajectory in 
accordance with the high-level intentions. The low-level 
tracking controller refers to tracking the generated trajectory 
as accurately as possible.  

 
Figure 1.  A typical hirarchical framework for AGVs. 
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We assume that a rough reference route is known as prior 
information. The assumption is practical because the global 
route could be obtained offline (for instance, global waypoints) 
or from online high-level path planner, such as graph-search 
algorithm, random sampling-based motion planner, et al; or 
extracted from the structured environment such as road lanes. 
Meanwhile, we do not require the reference path to be curva-
ture-continuous and collision-free. In this paper, we mainly 
focus on local trajectory planning and tracking control prob-
lem. To ensure path curvature-continuity, avoid static ob-
stacles as well as achieve graceful motions, we combine local 
trajectory planning and tracking control rather than following 
the reference path by only using a feedback controller.  

Inspired by previous navigation framework in [18] and 
[22], which separated the navigation task into trajectory gen-
eration and subsequent tracking control via feedback control, 
we divide the navigation task into outer-loop trajectory gen-
eration planner and inner-loop trajectory tracking controller 
using a two-freedom control framework in a receding horizon 
manner. More specifically, the trajectory generation planner 
issues a dynamically-feasible trajectory and corresponding 
nominal control inputs in each planning cycle, while the in-
ner-loop controller tracks the generated trajectory based on the 
corresponding nominal control inputs in each control cycle, 
which executes at a higher frequency. In order to deal with the 
model uncertainties and external disturbance, we introduce an 
inner model control strategy combining a feedforward con-
troller with the feedback controller. 

III. TRAJECTORY PLANNING 

For the local trajectory generation task, we develop an ef-
ficient state space sampling-based trajectory planning algo-
rithm following the idea presented in [21] via a discrete op-
timization scheme. In each planning cycle, a set of trajectory 
candidates are generated aligned with the reference path. 
Based on an objective function, The best trajectory is selected 
and issued for low-level tracking  

A.  Terminal States Sampling based on a Reference Path 

Through observing on-road human drivers' behaviors, it 
can be found that human drivers often steer the vehicle to be 
aligned with road lanes rather than minimizing time and 
energy [22]. In light of this, instead of using the absolute in-
ertial coordinate framework, we employ the curvilinear coor-
dinate framework relying on the reference path to express the 
reference path. To satisfy the constraints imposed by road 
geometry, we sample terminal states aligned with it. In addi-
tion, the bias-sampling scheme significantly reduces the 
computational complexity as well as prevents the vehicle from 
entering into dangerous states.  

To avoid abrupt steering actions and ensure curva-
ture-continuity of the generated trajectory, we use four di-
mensional state-space representation, i.e. position (x, y), 
heading θ and curvature κ. In order to obtain a collision-free 
and smooth trajectory, the terminal states are required to be 
sampled in a high-resolution state space. However, due to 
limited onboard computational resources, we have to restrict 
sampling density and range. So we adopt an efficient 
low-dispersion sampling strategy as shown in Fig. 2. In the 
longitudinal direction, to guarantee the minimal crash distance, 
and overcome the delay resulting from the actuators and ve-
hicle inertial effects to ensure the stability of control, a mi-

nimal look-ahead distance is often set as a function of the 
vehicle's current speed. We set lateral offset bounds as well. 
The sampling density and range can be adjusted according to 
the environment (on-road or off-road) and computational 
resources available. 
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Figure 2.  Terminal states are uniformly sampled along the reference path. 

As shown in Fig. 2, a set of terminal states XF (xf, yf, θf, κf) 
are uniformly sampled in both the lateral and longitudinal 
direction along the reference path. To be aligned with the 
reference path, the sampled heading state is set to be the same 
as that of the corresponding nearest point on the path. For 
simplicity, the trajectory is represented in the vehicle local 
coordinate framework, so vehicle current states are trans-
formed to be (0, 0, 0, κ0) via rotation and translation. Since we 
consider the initial curvature in each planning cycle, the 
smoothness of steering actions can be improved. 

B. Model Predictive Path Generation 

High-fidelity dynamic model can be applied to precisely 
predict evolution states of the vehicle. However, it refers to 
various time-varying parameters, online identification me-
thods are required to precisely estimate these parameters in 
real time. Even so, the parameter variations caused by the 
interaction between the tire and ground are difficult to predict. 
Instead, we utilize the vehicle kinematic model to predict 
future state evolution of the system. Dynamic effects, such as 
sideslip angles and actuator dynamics, could be accounted for 
to improve the accuracy of the prediction. 

( ) cos( ),  ( ) sin( ),  ( ) ,  ( )x t v t y t v t t v u t         (1) 
It can be seen that a trajectory can be explicitly defined as a 

vector valued function of time t. However, a trajectory tightly 
couple the spatial path and velocity. It imposes strict velocity 
constraints on the path. In fact, we can track a geometric path 
without specifying velocity laws. Through integrating the time, 
the states can be represented as a function of the arc-length s 
instead of time t.  

 0 0
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 


  (2) 

In this way, the trajectory planning could be decomposed 
into the geometric path planning and longitudinal velocity 
planning. The time-dependent vehicle model is transformed 
into a spatial-dependent model, which allows velocity to re-
main unspecified. Hence, we decompose the trajectory gen-
eration task into two sequential subtasks: geometric path 
generation and velocity planning. Solving the path generation 
problem involves computing a geometric path, which satisfies 
the current and sampled terminal states boundary constraints, 
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the differential constraints represented by (2), and other state 
and control input constraints. Because of the nonlinear diffe-
rential equations, it is nontrivial to solve the nonlinear con-
strained problem by using nonlinear programming methods in 
the continuous control space. In order to make the nontrivial 
inverse problem solvable, we follow the idea in [21], and 
parameterize the control input space and formulate the tra-
jectory generation problem into a two-point boundary value 
problem (BVP). More precisely, we parameterize the control 
input space by using a cubic polynomial spirals model. Al-
though it reduces the control input space, while it retains the 
property to express complicate maneuvers and limits the un-
known parameters as well. Hence, the generated paths will be 
cubic polynomial spirals. 

 2 3
0 1 2 3( )s s s s          (3) 

In this way, the BVP is transformed into solving the unknown 
control parameters P = [κ1, κ2, κ3, sf]

T.  
We apply a computationally efficient numerical nonlinear 

optimization technique, Newton’s method described in [21], 
to solve the above BVP. The control parameters matrix P is 
iteratively solved via using the Newton’s method, as 
represented in (4). For each BVP, the iterative procedure ends 
till the terminal states errors ∆XF(P) is less than a us-
er-specified threshold. The initial guess of parameter P affects 
the speed of convergence. In order to obtain a good initial 
guess for online application and reduce the number of itera-
tions, we use a l pre-computed ookup-table of initial parame-
ters guess by sampling densely in the high-resolution state 
space. 
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Here, we use small perturbations to calculate the matrix of the 
first-order partial derivatives of a vector-valued function. 

During the trajectory generation stage, to alleviate tire si-
deslip effects and reduce the control efforts for yaw motion 
stabilizing control, we consider lateral acceleration limits (as 
described in (5)) based on the current velocity and road con-
ditions (such as road friction coefficient). In this way, we 
efficiently limit the tire slip angles and prevents the force of 
vehicle tires from entering into nonlinear saturated zone. 
Moreover, it can significantly improve vehicle stability and 
generate safer and more comfortable trajectories, though at the 
expense of reducing solution space. 

 max max(s) ,  ( , )u f v      (5) 

Since the numerical integration method is applied for the 
forward simulation of the system, control constraints can be 
easily handled.  

Since the vehicle kinematic model is explicitly considered, 
all of the generated path candidates are kinematically-feasible. 
Even though, we acknowledge that the model predictive tra-
jectory planner has some limits. Due to finite sampling ter-
minal states and limited expressiveness of a single cubic spiral, 
it cannot always guarantee to obtain a collision-free and 
feasible solution. [23] proposed a more complex trajectory 
generation approach based on the spatiotemporal lattice to 
deal with more challenging scenarios at the expense of com-
putational efficiency. Once none of feasible and collision-free 
paths could be generated by the mentioned approach, the 

emergent control-space sampling method or powerful 
graph-search path planning method will be evoked. 
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Figure 3.  Path generation results. 

C. Collision Check and Evaluation 

To choose the best path among path candidates, we design 
a specified objective function for optimization criterion.  

Firstly, the collision check performs to trim the paths in 
collision with obstacles. Since the vehicle shape is often rec-
tangle, it could not be simplified as a mass-point. We refer to 
an efficient method proposed in [24]. As shown in Fig. 4, 
several circles are used to approximately represent envelop of 
the vehicle shape. To ensure collision avoidance, the distance 
between the obstacles and any center of these circles are re-
quired to be larger than the radius. 

 
Figure 4.  Circle decompostion of vehicle shape. 

Then, the remaining collision-free path candidates are 
evaluated via a user-specified objective function. Here, we 
design an objective function consisting of five weighted cost 
terms, which are the obstacle proximity Jo, deviation from the 
reference path Jd, smoothness Js, preview distance Jp, and 
subsequent consistency Jc. Each cost term contains a weighted 
factor, which are ωo, ωd, ωs, ωp, ωc, respectively. 

More precisely, the cost term Jo denotes the proximity to 
static obstacles. For instance, in off-road environments, an 
occupancy grid cost-map Co can be pre-computed at the be-
ginning of each planning cycle relying on the perception 
information. Each cell of the grid-map is assigned a cost value. 
Hence, Jo could be computed via accumulating the cost of the 
cells covered by the vehicle body, as described in (6), where τi 
(i=1,...,N) denotes a generated path. The cost term Jd de-
scribes the deviation from the reference path. D(τi(s)) denotes 
the deviation distance of the generated path from the refer-
ence path. In order to improve the smoothness of the gener-
ated path, we define the smoothness criterion as Js, which is 
obtained by integrating the path curvature. Besides, we define 
the cost term Jp, which reflects the preference of longer 
feasible paths. As represented in (6), Lmax is the maximal 
look-ahead distance and l is the arc-length along the reference 
path. During the replanning process, the discrepancy of con-
secutive plans can easily result in overshoots, oscillations, or 
even instabilities of vehicle movement. To minimize the 
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inconsistency, the discrepancy between the current evaluated 
path and the previous planning path is taken into account. The 
cost term Jc is computed by integrating the Euclidean distance 
d(τi(s)) between them along the reference path. Considering 
all of these cost terms mentioned above, an optimization 
criterion could be defined as follows: 
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(6) 

In practice, the weighted factors can be flexibly tuned 
according to driving conditions. As illustrated in Fig. 5, the 
optimal path (green curve) is selected from the path candidates 
(red curves) and tracked by the low-level controller.  

 
Figure 5.  The evaluation of path candidates. 

D. Velocity Profile Planning 

The path states (x, y, θ, κ) are represented as a function of 
curvilinear abscissa s, which is the integration of velocity with 
respect to time t. In order to improve trajectory tracking con-
trol performance, the velocity state should be explicitly de-
termined. Therefore, we plan the velocity profile after the 
spatial path generation. 

For simplicity, we discretize the spatial path along the 
curvilinear abscissa. In order to improve the driving safety and 
comfort, we deduce a velocity upper-bound on each discrete 
point via considering several constraints as follows.  

 Maximal allowed speed Vlimit1 : 
 limit1( ) ( )i iv s V s   (7) 

Vlimit1 can be determined by the high-level behavioral planner 
by reasoning about road conditions, traffic rules and so on. 

 Maximal allowed lateral acceleration Acclateral :  

 ( )
( )

lateral
i

i

Acc
v s

s
   (8) 

To prevent the vehicle tire force from entering into the non-
linear saturated zone and reduce control efforts for the yaw 
motion stabilizing, we set the lateral acceleration limit. 

 Maximal allowed longitudinal acceleration Acclon and 
deceleration Declon : 

2
min 0

2 2
0 0

min

( ) ( ) 2

( ) 2   ( ) 2 0

0                                     

i lon i

lon i lon i

v v s v s Acc s

v s Dec s if v s Dec s
v

otherwise

  

    


(9) 

Acclon and Declon are set to avoid abrupt acceleration and 
deceleration motions. 

 Maximal braking deceleration limit : 

 
terminal

2
max( ) 2 ( )i N iv s v Dec s s     (10) 

Where Decmax denotes the maximal braking deceleration. In 
order to guarantee safety, the vehicle is required to stop or 
reach a certain speed (e.g. it can be determined by reasoning 
about road conditions) at the end of the trajectory.  

Based on the aforementioned constraints, the maximal 
velocity limits along the path can be determined. To enhance 
the driving speed, we assign the maximal velocity along the 
planned path to be the minimal value of the four speed bounds 
calculated by (7)-(10). Then, we generate a trapezoidal linear 
velocity profile connecting the current velocity with the ter-
minal velocity, while satisfying aforementioned constraints. 
After that, to obtain an acceleration-continuous velocity pro-
file, we use a parametric polynomial spline to smooth it. 

IV. LOW-LEVEL TRACKING CONTROL 

The object of the tracking controller is to track the gener-
ated trajectory as accurately as possible. There exists sub-
stantial work on this subject. Since path planning and velocity 
planning have been decoupled in the trajectory planning 
process, it is able to decompose the trajectory tracking control 
task into longitudinal control and lateral control. For the lon-
gitudinal control, we use a proportional and internal model 
control cascade controller (P-IMC) to generate throttle and 
brake control commands to track the desired velocity profile 
[25]. In this section, we primarily focus on the lateral control.  

Since velocity and curvature profiles could be easily de-
rived from the generated trajectory, it means that the yaw rate 
commands could be obtained as well. Therefore, steering 
control could be transformed into yaw motion stabilizing 
control. The desired yaw rate commands could be used to 
obtain feed-forward steering control inputs.  

When vehicle navigates at a low speed, a geometric 
steering control law could be applied to track the desired 
curvature profile. 

 tan / L    (11) 
Where δ is the front-wheel steering angle, L is the wheelbase. 
It represents the geometric relation between the steering angle 
and curvature of the rear wheel at low speeds. However, when 
the vehicle drives at a high speed, large lateral force is re-
quired for steering. In this situation, tire sideslip effects cannot 
be neglected, the relation between the steering angle and the 
instant responsive curvature exhibits strong nonlinearities. In 
this case, in order to achieve high steering control performance, 
vehicle lateral dynamics has to be accounted for. Previous 
work on vehicle dynamics control shows that it is possible to 
define the steady-state steering characteristics when the ve-
hicle negotiates a constant-curvature curve at a constant speed 
in a non-time-varying condition [26]. 

As shown in Fig. 6, the angles αf  and αr are the sideslip 
angles of front and rear tires respectively. Assuming the ve-
hicle is driving on a flat plane and the steering radius of the 
center of gravity (C.G.) R is much greater than the wheelbase 
L, i.e. R	>> L, we can easily obtain 

 / f rL R       (12) 

When the vehicle reaches steady state, lateral forces acting on 
front and rear tires generate the centripetal acceleration as 
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 2 /yf yr xF F mv R    (13) 

Where m is the vehicle mass, Fyf and Fyr are the front and rear 
tire lateral forces respectively, and vx is the longitudinal ve-
locity. According to the yaw moment equilibrium, we obtain 

 yf f yr rF l F l   (14) 

When sideslip angles are small (in the trajectory planning 
stage, we consider the maximal lateral acceleration in order to 
limit sideslip angles of the tires), lateral forces can be ap-
proximately estimated to be linear with sideslip angles. 

      yf f f yr r rF C F C      (15) 

Where Cαf and Cαr are the cornering stiffness of front and rear 
tires respectively. According to (12)-(15), the steady-state 
relationship between front-wheel steering angle and the ex-
pected curvature is characterized as 

 2( ),   ( )fr
v x v

f r

ll m
L K v K

C C L 

       (16) 

Where Kv is named understeer gradient. Since the cornering 
stiffness may vary in different road conditions, online system 
identification methods can be used. 

f



r

f 

r

fv

rv

xv

 
Figure 6.  Bicycle model considering sideslip effects. 

By using (16), the feed-forward steering control com-
mands can be employed to track the desired yaw rate profile. 
In practice, due to modeling uncertainties (such as varying 
yaw dynamics, actuator dynamics) and external noises (such 
as bank angle), using the feed-forward control law may in-
evitably cause control errors. In order to reject the external 
disturbance and achieve a high degree of robustness, we de-
velop a lateral control law based on the inner model control 
strategy. As shown in Fig. 7, the proposed inner model control 
strategy combines the feed-forward control with the feedback 
compensator. The discrepancy of the measured curvature (or 
yaw rate) and the expected curvature from the reference model 
can be compensated by the feedback compensator. In this way, 
it can significantly reduce feedback control efforts and allow 
the feedback controller to focus on compensating for the 
tracking errors resulting from the model uncertainties and 
external disturbances. 





ref
y

r
xv

 
Figure 7.  The inner model control framework for steering control. 

V. SIMULATION RESULTS 

To validate the effectiveness of the proposed method, we 
conduct simulations on a simulated environment established 
by coupling Matlab with Carsim®, which is a commercial-
ly-available high-fidelity full-vehicle dynamics solver. In the 
simulation, we use a coastal highway scenario and a full-size 
B-class passenger vehicle, which are provided by the Carsim. 
We set traffic cones along the road as static obstacles, while 
dynamic traffic participants are not considered in this paper. 
The initial vehicle speed is set to be 60km/h and the maximal 
speed is limited to be 100km/h. The maximal absolute value 
of the longitudinal and lateral acceleration are limited to be 
3m/s2 and 5m/s2 respectively. The cycle time of trajectory 
planning and low-level tracking control are set to be 100ms 
and 20ms respectively. The maximal look-head distance is set 
to be 50m. The response of low-level actuators (steering, 
throttle and brake systems) are considered as first-order delay 
process. 

Fig. 8 (a) shows entire tracking result of the vehicle along a 
reference road course with two bounds. The vehicle is capa-
ble of avoiding the static obstacles while keeping in the cor-
ridor when it navigates at a high speed. The snapshots of 
scenario A, B and C in Fig. 8 (b) depicts some details when 
the vehicle is avoiding static obstacles and negotiating two 
tight turns. Fig. 9 illustrates the snapshots of the local path 
planning scheme in the scenarios above. Fig. 10 depicts the 
corresponding lateral tracking error of the center of gravity 
(C.G.) of the vehicle. It can be seen that the lateral tracking 
errors are less than 1m during the entire course. As shown in 
Fig. 11, the longitudinal is adjusted according to the reference 
path geometry in order to guarantee the safety and comfort 
while adhering to the speed limits in different road segments. 

 
(a) 

 
(b) 

Figure 8.  The entire vehicle path tracking result along a reference corridor 
with two bounds, A, B and C illustrates details of three scenarios. 

 
Figure 9.  Snapshots of local trajectory planning in three scenarios. 
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Figure 10.  The lateral tracking error with respect to the reference path. 
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Figure 11.  Vehicle speed and front-wheel steering angle 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has proposed a local navigation strategy for 
autonomous ground vehicle driving along a reference path by 
combining the local trajectory planning and tracking control 
in a unified framework. In order to smoothly follow the ref-
erence path and handle unpredictably changing environments 
reactively as well as improve the driving safety and comfort, 
we develop a sampling-based trajectory planner following a 
discrete optimization scheme in the trajectory planning stage. 
To ensure the dynamic-feasibility of the planned trajectory, 
the planner considers geometry information of the reference 
path, static obstacle avoidance, vehicle kinematic and partial 
dynamic constraints as well. During the low-level tracking 
control stage, vehicle steady-state steering characteristics is 
employed to generate the steering commands, which are used 
to track the desired yaw rates derived from the selected op-
timal trajectory. 

The simulation results demonstrate the capabilities of the 
proposed integrated local trajectory planning and tracking 
control framework to follow a reference path while avoiding 
static obstacles at a high speed. In the future, we will conti-
nuously work on the extension of the proposed framework. 
For instance, one possible improvement is to integrate the 
local path planning strategy with the graph-search path 
planner in the cluttered environments and generate dynami-
cally-feasible trajectories in continuous space instead of in 
the discrete state space. Strongly nonlinear vehicle dynamics 
should be further accounted for to handle various road con-
ditions. Besides, understanding the scenarios and interacting 
with other traffic participants (such as other cars, cyclists and 
pedestrians) like human drivers are also required to be taken 
into consideration in future. 
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