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In this study a rigorous evaluation and comparison of the difference in water balance simulations
resulted from using different downscaling techniques, GCMs and hydrological models is performed in
upper Hanjiang basin in China. The study consists of the following steps: (1) the NCEP/NCAR reanalysis
data for the period 1961–2000 are used to calibrate and validate the statistical downscaling techniques,
i.e. SSVM (Smooth Support Vector Machine) and SDSM (Statistical Downscaling Model); (2) the A2 emis-
sion scenarios from CGCM3 and HadCM3 for the same period are used as input to the statistical down-
scaling models; and (3) the downscaled local scale climate scenarios are then used as the input to the
Xin-anjiang and HBV hydrological models. The results show that: (1) for the same GCM, the simulated
runoffs vary greatly when using rainfall provided by different statistical downscaling techniques as the
input to the hydrological models; (2) although most widely used statistics in the literature for evaluation
of statistical downscaling methods show SDSM has better performance than SSVM in downscaling rain-
fall except the Nash–Sutcliffe efficiency (NSC) and root mean square error-observations standard devia-
tion ratio (RSR), the runoff simulation efficiency driven by SDSM rainfall is far lower than by SSVM; and
(3) by comparing different statistics in rainfall and runoff simulation, it can be concluded that NSC and
RSR between simulated and observed rainfall can be used as key statistics to evaluate the statistical
downscaling models’ performance when downscaled precipitation scenarios are used as input for hydro-
logical models.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Studies of climate change impacts on water resources have
become a hot topic recently. Climate models (global and regional)
and hydrological models are the important tools used in these
studies (Boe et al., 2007; Chen et al., 2007; Gleick, 1987; Guo
et al., 2002; Xu, 2000; Xu et al., 2005). However, there exist many
key challenges in the application of GCMs and hydrological models
(Fowler et al., 2007; Xu, 1999). First, the spatial scales of GCMs and
hydrological models are inconsistent. Therefore, the output of
GCMs cannot be directly used as input to hydrological models.
Second, the accuracy of precipitation simulations from GCMs
cannot meet the requirements of hydrological simulations. The
dynamic downscaling and statistical downscaling are the most
commonly used methods in the one-way coupling of GCMs and
hydrological models (Bergstrom et al., 2001; Fowler et al., 2007;
Pinto et al., 2010; Schoof et al., 2009; Wilby et al., 1999). Dynamic
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downscaling models, i.e., regional climate models (RCMs) have
clear physical meanings, however they are computationally expen-
sive. Statistical downscaling models, on the other hand, are based
on statistical relationship and hence require less computational
time.

It is a well accepted fact that considerable errors exist in all
three steps in assessment of climate change impacts, knowing as
uncertainty of climate modeling, uncertainty of downscaling tech-
niques, and uncertainty of hydrological modeling. Some scholars
have already compared and analyzed the uncertainties of climate
change impacts on runoff by using different downscaling tech-
niques and hydrological models under different scenarios. Dibike
and Coulibaly (2005) applied two types of statistical (a stochastic
and a regression based) downscaling techniques and two hydro-
logical models to simulate the corresponding future flow regime
in a catchment. Prudhomme and Davies (2009) used a lumped con-
ceptual rainfall–runoff model, three GCMs and two downscaling
techniques to investigate the climate change impacts on river
flows. Chiew et al. (2010) assessed the runoff simulated by the
SIMHYD rainfall–runoff model with daily rainfall which was
downscaled from three GCMs using five downscaling models. Segui
et al. (2010) evaluated the uncertainty related to climate change
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impacts on water resources by applying a distributed hydrological
model and three different downscaling techniques. These litera-
tures are basically the application of GCM scenarios for driving
the hydrological models to obtain runoff series of different scenar-
ios. But so far, not a single GCM or hydrological model is found to
be dramatically better than others. This is partly because evalua-
tion of statistical downscaling models has been focused on the
comparison of rainfall statistics obtained from GCMs or downscal-
ing models, rather than on evaluation of the usefulness of the rain-
fall data series in driving hydrological models for water balance
calculations. We argue that one of the ultimate purposes of down-
scaling methods is to provide rainfall (or other meteorological) in-
put for hydrological models for simulation/prediction of discharge
and other water balance components. Therefore, the evaluation of
downscaling methods should also include the comparison of the
results of hydrological simulations in the study of climate change
impacts on runoff.

In this study, the application of statistical downscaling tech-
niques in providing rainfall input for hydrological models for cli-
mate change impacts studies in Hanjiang River basin is assessed
through one-way coupling of multiple GCMs, multiple downscal-
ing methods and multiple hydrological models. The main aim of
the study is to evaluate and compare the uncertainty in the simu-
lated runoffs resulting from different impact assessment steps,
including the use of NCEP/NCAR reanalysis data, GCMs predictions,
downscaling models’ results, and hydrological models’ simula-
tions. The technique route of this study was drawn in Fig. 1. The
aim is achieved through following steps: (1) establishment and
evaluation of the statistical downscaling methods and hydrological
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models in the Hanjiang basin; (2) evaluate and compare the uncer-
tainty in the simulated runoffs resulting from using two statistical
downscaling methods, two GCMs and two hydrological models; (3)
discuss the usefulness of evaluation criteria for downscaling meth-
ods with respect to the performance of the hydrological models in
simulating runoff using different rainfall inputs provided by the
combinations of GCMs and downscaling methods.
2. Study area and data

2.1. Study area

The upper Hanjiang River basin with an area of 59,115 km2 is
selected as the study region (Fig. 2). Hanjiang River is the largest
tributary of the Yangtze River, which rises on the southern slope
of the Qin Ling Mountains and flows through Shaanxi and Hubei
provinces, falls into the Yangtze River at Wuhan, with a length of
1577 km and a drainage area of about 159,000 km2 (Chen et al.,
2007). The longitude and latitude of Hanjiang basin is 106�150–
114�200E and 30�100–34�200N respectively. For the base period of
1961–2000, the annual average temperature is 12–16 �C; the water
surface evaporation is 700–1100 mm, and land surface evaporation
is 400–700 mm, increasing from southwest to northeast. The
Hanjiang basin locates in the East Asian subtropical monsoon
region with annual average rainfall of 873 mm, mainly comes from
the southeast and southwest warm air. The rainfall is unevenly
distributed during the year with the maximum rainfall of 4
consecutive months accounts for 55–65% of the annual rainfall,
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Table 1
The selection of large-scale climate factors for the statistical
downscaling methods in this study.
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decreasing from south to north and from west to east. During these
months the rainfall of the upper Hanjiang River accounts for 60–
65% of the annual rainfall. The flood season is from May to October
in the upper river, the rainfall of flood season accounts for 75–80%
of the annual rainfall.

2.2. Data

Seven hydro-metrological stations with daily air temperature,
rainfall, and pan evaporation data and discharge data from Baihe
runoff station (as shown in Fig. 1) are selected in this study. The
quality of the data has been checked and verified in terms of homo-
geneity and consistency in earlier studies (Chen et al., 2007, 2010)
and no missing data is found in the period of 1961–2000. The cal-
ibration and validation periods of the hydrological models are from
1976 to 1986 and from 1987 to 1988, respectively. The daily NCEP/
NCAR reanalysis data are used as the observed large-scale climate
data to calibrate and validate the downscaling models during the
period of 1961–2000. CGCM3 SRES A2 (DAI CGCM3 Predictors,
2008) and HadCM3 SRES A2 (Pope et al., 2000) are used to produce
regional climate scenarios through downscaling, which in turn are
used to simulate hydrological responses. The grid spatial resolution
of large-scale climate factors is 2.5 � 2.5 degrees, covering four
grids over the upper Hanjiang basin. Sixteen large-scale climate
factors are used in this study (Table 1), which will be screened fur-
ther during the establishment of statistical downscaling methods.

3. Statistical downscaling methods and hydrological models

Statistical downscaling methods have been widely used in re-
cent years. This study chooses two typical statistical downscaling
methods: Smooth Support Vector Machine (SSVM) (Chen et al.,
2010) and Statistical Downscaling Model (SDSM) (Wilby et al.,
2002). The first technique is a relatively new learning method in
statistical learning theory, while the second statistical downscaling
technique is based on regression analysis. To investigate the poten-
tial difference between different hydrological models for climate
impact study, two widely-used hydrological models are utilized
in this study, which are the Xin-anjiang model (Zhao, 1992) and
the HBV model (Bergstrom, 1975).

3.1. Statistical downscaling methods

3.1.1. Smooth Support Vector Machine (SSVM)
Support Vector Machine (SVM) is a new supervised learning

method proposed by Vapnik (1998), based on the Vapnik–Chervo-
nenkis (VC) dimension and Structural Risk Minimization (SRM). It
can find the best compromise between the model complexity
and learning ability through the limited sample information. It
has a good ability of prediction and can address the small sample,
nonlinear, high dimension and local minimum points and other
practical issues. It has become one of the research focuses in ma-
chine learning research field and has been successfully applied into
classification and regression. Lee and Mangasarian (2001) pro-
posed a new Smooth Support Vector Machine (SSVM) to simplify
the SVM training and further reduce the computational complex-
ity. The constrained quadratic optimization problem is converted
into the unconstrained convex quadratic optimization problem
by using the smoothing method. The experiments show that, SSVM
performs better than SVM algorithm in solving problems. Chen
et al. (2010) established the statistical relationship between the
GCM atmospheric predictors and the observed rainfall in Hanjiang
basin and evaluated the simulation ability of the model.

3.1.2. Statistical Downscaling Model (SDSM)
Statistical Downscaling Model (SDSM) is a decision support tool

for assessing local climate change impacts, established by Wilby et
al. (2002) basing on Windows interface. The model, which incorpo-
rates the weather generator and the multiple linear regression
technique, is a hybrid statistical downscaling method. After nearly
10 years of development, SDSM has grown to the forth generation,
and has been widely used in the climate change studies. SDSM’s
workflow includes two parts: First, establish the statistical rela-
tionship between the predictand and predictors and to determine
the required parameters for the weather generator, including data
quality control and transformation, screening of predictor vari-
ables, model calibration and weather generation (using observed
predictors); second part is to simulate the future series of predict-
and by using the predicted data from GCMs and the parameters
generated in the first step.

3.1.3. Evaluation statistics of statistical downscaling
Maraun et al. (2010) summarized that according to the applica-

tion of the impact study, different statistics of the downscaled pre-
cipitation may be of interest, including intensity metrics, temporal
and spatial characteristics as well as metrics characterizing rele-
vant physical processes. Statistics regarding precipitation intensity
are mean, variance and quantiles or parameters of the precipitation
distribution. Temporal statistics are the autocorrelation function,
the annual cycle, inter-annual and decadal variability and trends,
or measures focusing on the precipitation occurrence such as wet
day probabilities, transition probabilities (wet–wet) and the length
of wet and dry spells (Maraun et al., 2010, 2011). Extreme mea-
sures for temporal statistics include the maximum number of con-
secutive dry days. The statistics in Table 2 are commonly used in
evaluation of statistical downscaling methods in downscaling rain-
fall (Khan and Coulibaly, 2010; Wetterhall et al., 2006), and are
chosen to evaluate the statistical downscaling methods in different
seasons (Winter: DJF; Spring: MAM; Summer: JJA; Autumn: SON)
in this study. The wet-threshold is chosen as 1.0 mm in this study.

3.2. Hydrological models

3.2.1. Xin-anjiang model
The Xin-anjiang (XAJ) model (Zhao, 1992; Zhao et al., 1980) was

first used in prediction of Xin-anjiang Reservoir inflow, and later on
became a rainfall–runoff model for general use. Its major feature is
the concept of runoff formation as a dependent variable of reple-
tion of storage, i.e., runoff is not produced until the soil moisture
content of the aeration zone reached field capacity, and thereafter,
runoff is equal to the rainfall excess without further loss. XAJ mod-
el, with three runoff components, has been widely used in humid



Table 2
Selection and definition of indicators for evaluation of statistical downscaling
methods in this study.

Indicators Definition

Mean Average of all values
Variance Variance of all values in each time period
Percentile Value of the User specified percentile
Maximum 5-day

total
Maximum total accumulated over 5-days

Percentage wet Percentage of days that exceed the threshold
Maximum dry

spell length
Longest spell with amounts less than the wet-day
threshold

Maximum wet
spell length

Longest spell with amounts greater than or equal to the
wet-day threshold

Peaks over
threshold

Count of peaks over User specified threshold (defined as
a percentile of all data)
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or semi-humid regions in China as well as in many other countries
(Jiang et al., 2007; Yang et al., 2010; Zhang and Lindstrom, 1996).

3.2.2. HBV model
The HBV model is a conceptual hydrological model and it was

originally developed at the Swedish Meteorological and Hydrologi-
cal Institute (SMHI) for runoff simulation and hydrological forecast-
ing in the early 1970s (Bergstrom, 1975). It consists of routines for
snow accumulation and melting, soil moisture accounting, runoff
response, and finally a flow routing procedure. The model is based
on a sound scientific foundation and can meet its data demands in
most areas, which has the scope of applications in more than 40
countries (Ashagrie et al., 2006; Bergstrom et al., 2001; Jin et al.,
2009; Seibert et al., 2010; Yu and Wang, 2009).

3.2.3. Evaluation criteria for hydrological models
The Percent Bias (PBIAS) between the observed and simulated

discharge, Nash–Sutcliffe efficiency (NSC) (Nash and Sutcliffe,
1970) and Root Mean Square Error (RMSE)-observations standard
deviation ratio (RSR) were selected to evaluate the merits of the
hydrological models in this study.

PBIAS, expressed in percentage, measures the average tendency
of the simulated data to be larger or smaller than their observed
counterparts (Gupta et al., 1999) and is calculated with the follow-
ing equation:

PBIAS ¼
Pn

i¼1ðQ
obs
i � Q sim

i Þ � 100Pn
i¼1Qobs

i

" #
ð1Þ

where Qobs
i is the ith day observed discharge, Q sim

i is the ith day
simulated discharge and n is the total number of days in the runoff
series. The optimal value of PBIAS is 0.0, with positive values indi-
cating model underestimation bias, negative values indicating
model overestimation bias and low-magnitude values indicating
accurate model simulations.

NSC is a normalized statistic that determines the relative mag-
nitude of the residual variance (‘‘noise’’) compared to the measured
data variance (‘‘information’’) (Nash and Sutcliffe, 1970). It is com-
puted by the following equation:

NSC ¼ 100 � 1�
Pn

i¼1ðQ
obs
i � Q sim

i Þ
2Pn

i¼1ðQ
obs
i � Q obs

meanÞ
2

" # !
ð2Þ

NSC ranges from �1 to 1. A value of 1% or 100% corresponds to
a perfect match of the simulation to the observation. An efficiency
of 0 indicates that the model simulations are as accurate as the
mean of the observation, whereas an efficiency less than zero oc-
curs when the observed mean is a better predictor than the model
simulation or, in other words, when the residual variance is larger
than the data variance.
Moriasi et al. (2007) developed a model evaluation statistic,
named the RMSE-observations standard deviation ratio (RSR).
RSR standardizes RMSE using the observations’ standard deviation
and is calculated as the ratio of the RMSE and the standard devia-
tion of measured data, as shown in the following equation:

RSR ¼ RMSE
STDEVobs

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Q obs

i � Qsim
i

� �2
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Q obs
i � Q obs

mean

� �2
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RSR incorporates the benefits of error index statistics and in-
cludes a scaling/normalization factor, so that the resulting statistic
and reported values can apply to various constituents. RSR varies
from the optimal value of 0 to a large positive value and the lower
the RSR, the lower the RMSE, and the better the model simulation
performance. In general, hydrological model simulation can be
judged as ‘‘satisfactory’’ if NSC > 0.50 and RSR < 0.70, and if PBIAS
±25% for streamflow (Moriasi et al., 2007).
4. Results

4.1. The establishment of SSVM and SDSM

The statistical relationship between large-scale circulation fac-
tors and the rainfall of hydrological stations above the upper
Hanjiang basin is established by using SSVM and SDSM. The
calibration period is from 1961 to 1990, and the evaluation period
is from 1991 to 2000. The selection of large-scale climate factors is
a very important and crucial step in the study of statistical down-
scaling methods. In order to obtain the most relevant factors with
the rainfall of the basin, the Screen Variables of SDSM are used to
select the large-scale climate factors. All the factors in Table 1 are
selected by setting the measured rainfall, and the correlation
coefficient 0.3 of large-scale factors is used as the threshold. The
selected factors are shown in the shadow part of Table 1. There
are four factors been selected in each grid, and 16 large-scale
climate factors are used as predictors in the establishment of
statistical downscaling models.

SSVM and SDSM were established by utilizing the NCEP/NCAR
reanalysis data and the observed rainfall data of each hydrological
station. To comprehensively evaluate the performance of SSVM
and SDSM, the mean values of the observations and simulations
of seven hydrological stations were calculated and compared.
The evaluation of SSVM and SDSM was provided in Table 3, where
shadowed values show the better skills between the two models. It
is evident that SDSM has better performance than SSVM in simu-
lating rainfall as most statistics’ values of SDSM are in shadow area
in the calibration and validation periods. In the calibration period,
SDSM has an overwhelming advantage to SSVM, because most sta-
tistics of SDSM are better than those of SSVM. In the validation per-
iod, there are only a few statistics of SSVM which perform better
than those of SDSM, such as standard deviation and 5-day maxi-
mum rainfall in summer, autumn and annual, maximum dry spell
length in spring and winter, peaks over threshold in spring and au-
tumn, annual percentile and autumn’ mean. Fig. 3 shows the
monthly statistics’ values of the simulated rainfall by SSVM and
SDSM from NCEP/NCAR reanalysis data in the validation period,
reflecting similar conclusions with the above analysis. It can be
seen from the above analysis that SDSM has better capacity than
SSVM to downscale and simulate rainfall from large scale climatic
predictors in the region as far as the commonly used statistics are
concerned. In general, the simulation of rainfall of the both meth-
ods seems acceptable; however, their usefulness and weakness in
driving hydrological models will be further evaluated in the
following sections.



Table 3
Mean values of evaluation criteria of SSVM and SDSM in calibration (1961–1990) and validation (1991–2000) period computed from the meteorological seven stations.
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4.2. Hydrological models’ calibration and parameter optimization

The calibration period is from 1976 to 1986 and the validation
period is from 1987 to 1988 for the two hydrological models.
The parameters of the hydrological models are optimized with
three algorithms, namely Rosenbrock (Rosenbrock, 1960), simplex
(Nelder and Mead, 1965; Spendley et al., 1962) and genetic (Wang,
1991). Model calibration and evaluation results are shown in Table
4, which shows that both XAJ and HBV models have high perfor-
mance in reproducing historical flow data for the study basin.
The NSC is about 85%, PBIAS is equal to zero and less than 3%
and RSR is less than 0.50 in the calibration and validation periods,
respectively. Fig. 4 shows the measured and simulated discharge
series during the validation period from May to November in
1987 for illustrative purpose. Both Table 4 and Fig. 4 reveal that
the two models work well in the study basin in reproducing the
historical flow and in simulation of flood peaks.
5. Evaluation of the uncertainty of the GCMs, downscaling
methods and hydrological models in the study basin

In order to compare and analyze the uncertainty of the GCMs,
downscaling methods and hydrological models, observed rainfall
and six rainfall scenarios simulated by using SSVM and SDSM with
the NCEP/NCAR reanalysis data, CGCM3 and HadCM3 SRES A2 sce-
narios during 1961–2000 as large scale predictors, were used as in-
puts for XAJ and HBV models. Figs. 5–7 and Table 5 show the runoff
simulation results of different rainfall scenarios. These results are
discussed in the following sections.
5.1. Evaluation of different downscaling methods with same
hydrological models and NCEP/NCAR reanalysis data

Monthly mean and standard deviation (STD) of runoff simulated
by using precipitation scenarios downscaled from the NCEP reanal-
ysis data were drawn in Fig. 5. It can be seen from Fig. 5 that the
monthly means and STD of the simulation results are close to those
of observations, and it is difficult to judge which model performs
better results based on these two criteria. Three other statistics
(PBIAS, NSC and RSR) were therefore used to evaluate the perfor-
mance of the runoff simulations driven by precipitation scenarios
downscaled from the NCEP reanalysis data by using SSVM and
SDSM. The results were listed in Table 5 where it is evident that
the error of runoff simulation by using the rainfall inputs obtained
from SDSM is significantly greater than that of SSVM. For XAJ mod-
el, the NSC values (11.62% monthly, �28.19% daily) by SDSM are
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Fig. 3. Comparison of mean monthly rainfall statistics downscaled from NCEP/NCAR reanalysis data using SSVM and SDSM.
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significantly lower than those by SSVM, which are 68.35% and
54.42% for monthly and daily time steps respectively. The values
of RSR by SDSM are also higher than those by SSVM, while there
is no big difference between the values of PBIAS. The results of
HBV are similar to those of XAJ. This result is different from what
was concluded based on the commonly used statistics as showed
in Table 3, where SSVM has lower skills compared with SDSM.
Keeping in mind that one of the main uses of rainfall data should
be for water balance calculations and for serving as input to hydro-
logical models for flow simulation, the contradiction results of
Tables 5 and 3 mean that the commonly used statistics for evalu-
ation of downscaling methods are not determinative in terms of
their usefulness in providing rainfall data for hydrological analysis.
There is a need for reconsideration and selection of criteria for
evaluation of downscaling methods that are to be used for provid-
ing rainfall input to hydrological models.



Table 4
Values of evaluation criteria of hydrological models in calibration (1976–1986) and
evaluation (1987–1988) periods.

Hydrological
model

Calibration Validation

PBIAS
(%)

NSC
(%)

RSR PBIAS
(%)

NSC
(%)

RSR

HBV 0 85.91 0.37 2.84 85.72 0.40
XAJ 0 84.58 0.37 0.27 85.38 0.39
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5.2. Evaluation of different hydrological models with same scenario
and downscaling methods

As many hydrological models have been applied in the study of
climate change impacts on hydrology and water resources, it is
desirable to compare their performance for this purpose and to
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ever Fig. 6 shows that when using rainfall downscaled by SSVM
from CGCM3 A2 scenario as input, both monthly mean values
and STD of model simulated discharge by XAJ show better agree-
ment with observations than those simulated by HBV model in this
region. Similar conclusions can be drawn for other precipitation
scenarios.

5.3. Evaluation of different GCMs and scenarios with same
hydrological models and downscaling methods

It is easily acceptable that the uncertainty of GCMs is greater
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Fig. 6. The comparison of runoff simulation driven by CGCM3 A2 scenario downscaled by SSVM.
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Fig. 7. The comparison of runoff simulation driven by CGCM3 and HadCM3 A2 scenario downscaled by SSVM.

Table 5
Runoff simulation results of different rainfall scenarios for the period of 1961–2000.

Hydrological models Prec. scenarios Daily Monthly

PBIAS (%) NSC (%) RSR PBIAS (%) NSC (%) RSR

XAJ P_Observed �9.76 78.80 0.46 �9.76 85.50 0.38
P_SSVM-NCEP �4.32 54.42 0.68 �4.32 68.35 0.56
P_SDSM-NCEP 6.56 �28.19 1.13 6.56 11.62 0.94

HBV P_Observed �7.58 79.33 0.45 �7.58 81.91 0.43
P_SSVM-NCEP �8.18 54.05 0.68 �8.18 68.45 0.56
P_SDSM-NCEP 0.91 �25.83 1.12 0.91 6.68 0.97
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of CGCM3 and HadCM3 in terms of the results of runoff simulation,
the monthly mean values and STD of runoff simulated by XAJ,
driven by precipitation downscaled by SSVM from CGCM3 and
HadCM3 A2 scenario and by observed precipitation, were plotted
in Fig. 7. It is easily found in Fig. 7 that the monthly means of runoff
simulations driven by observed precipitation agree better with
those driven by CGCM3 A2 scenario than by HadCM3 A2 scenario.
The same conclusion can be drawn by comparing their monthly
STD. When comparing results obtained from the other combina-
tions, like SSVM and HBV, SDSM and HBV, and SDSM and XAJ,
the similar findings can be obtained that CGCM3 is more appropri-
ate than HadCM3 for studying the climate change impact in the
Hanjiang basin.

5.4. Comparison of rainfall evaluation statistics in terms of
performance of runoff simulations

It was shown in Table 3 and Fig. 2 that most statistics used in
evaluation of the performance of downscaling methods are better
for SDSM than those for SSVM. However, Table 5 shows that the
NSC of runoff simulations by using the rainfall downscaled from
SDSM is much lower than that from SSVM. This study clearly
shows that most of the statistics used in this study and in the lit-
erature for evaluation of downscaling methods cannot fulfill the
need of hydrological modeling study. Therefore, it is necessary to
reconsider and select more appropriate statistics for the assess-
ment of the accuracy of rainfall simulation in the downscaling
methods when the study of hydrological response to climate
change is conducted.

The PBIAS, NSC and RSR of the downscaling methods for rainfall
simulations from NCEP/NCAR reanalysis data were calculated and
listed in Table 6. It can be seen from Table 6 that the NSC values
for the SSVM method are positive with the highest value of
52.38% (daily) and 82.81% (monthly), while the NSC values for
the SDSM method are much lower than those for SSVM, even neg-
ative value is obtained for daily simulation. Daily and monthly RSR
values by SSVM are lower than those by SDSM in Table 6. Although
absolute value of PBIAS of SSVM is higher than that of SDSM, the
difference between them is small. As a consequence, according to
the NSC and RSR values in Table 5, the runoff simulations driven



Table 6
The PBIAS, NSC and RSR of rainfall simulations by using SDSM and SSVM during the period of 1961–2000.

Precipitation scenarios Daily Monthly

PBIAS (%) NSC (%) RSR PBIAS (%) NSC (%) RSR

P_SDSM-NCEP 2.62 �77.41 1.33 2.62 41.46 0.77
P_SSVM-NCEP �5.01 52.38 0.69 �5.01 82.81 0.41
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by precipitation scenarios from SSVM have a better performance
than those from SDSM. The comparison results reveal that NSC
and RSR may be proper statistics for evaluation of downscaling
methods in terms of their usefulness in providing rainfall data
for hydrological simulations. The results also reflect that rainfall
simulations from larger scale climate predictors by using down-
scaling methods are still a challenge in the hydrometeorology
research.

From above analysis it can be concluded that the statistics in
Table 2 can only describe parts of the statistical characteristics of
rainfall data, but cannot reflect well the dynamics of the process
of simulated rainfall as compared with that of observed rainfall.
The NSC and RSR values from the rainfall simulation and runoff
simulation are coherent in all scenarios, which indicate that the
NSC and RSR may be used as key statistics to evaluate the rainfall
simulation of downscaling methods for climate change impact
studies, at least before an even better statistic is being defined.
Future study needs to define and verify more useful statistics for
evaluation of downscaling methods in order to determine the best
downscaling method for providing most useful rainfall data as
input to drive hydrological models.

6. Conclusions

This study focuses on the comparison and evaluation of the
skills and competences of multiple GCMs, statistical downscaling
and hydrological models in the study of climate change impacts
on runoff. The following conclusions can be drawn:

(1) According to the evaluation of calibration and validation
performance using observed rainfall and discharge data,
the XAJ model and HBV model have similar performance in
simulation of historical streamflow in the Hanjiang catch-
ment. However, when applying rainfall downscaled from
NCEP, CGCM3 and HadCM3 as inputs to both hydrological
models, the accuracy of simulation by XAJ is slightly higher
than that of HBV. It indicates that the performance of XAJ
model is more superiority than HBV in responding to climate
change impact on runoff in this region.

(2) By using the same scenario, downscaling technique and
hydrological model, the results showed that CGCM3 is more
suitable than HadCM3 to investigate the climate change
impact on runoff in this region. It also indicates that if only
single GCM was used to analyze the impact of climate
change, the conclusions would be not reliable and robust.
If there is no limit of GCMs’ data acquirement, more GCMs
and emission scenarios should be used in the study of cli-
mate change impact on hydrology.

(3) For the same GCM and scenario, the simulation results of
runoff vary greatly by using rainfall provided by different
statistical downscaling techniques as the input to hydrolog-
ical models. SSVM performed better than SDSM in studying
climate change impact on runoff in the Hanjiang basin.
Therefore, it is recommended to use more than one statisti-
cal downscaling method to study the climate change
impacts on runoff.
(4) Most statistics used in this study as well as in the literature
for evaluation of the performance of downscaling methods
show SDSM has better performance than SSVM in downscal-
ing rainfall, with an exception of the NSC and RSR values.
However, the runoff simulation efficiency as measured by
NSC and RSR driven by SDSM rainfall is far lower than by
SSVM. It can be concluded that NSC and RSR commonly used
for evaluation of hydrological models can be used as key sta-
tistics of the assessment of statistical downscaling methods
as well in assessing climate change impact on hydrology.
This study also reveals that more useful statistics for evalu-
ation of downscaling methods are to be defined and verified
in order to determine the best downscaling method for pro-
viding most useful rainfall data as input to drive hydrologi-
cal models.
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