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a b s t r a c t

Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between
known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although
CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the
reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study,
we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn
the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images
from new noise-contaminated CGI images.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Computational ghost imaging (CGI) [1] has garnered attention in
recent years as a promising single-pixel imaging method. In CGI, we
project several known random patterns onto the object to be imaged and
then use a lens to collect the light transmitted an object or reflected by
an object. The light intensities are measured by a bucket detector, such
as a photodiode. An image of the object is then created by calculating
the correlations between the known random patterns and the measured
light intensities. CGI can image objects even in noisy environments.

Originally, CGI only measured the light intensity of objects, but
methods have also been devised for measuring its phase [2,3]. The
acquisition time for CGI schemes is long as they require a large number
of illuminating random patterns to objects. Recently, the situation has
been improved by using high-speed random pattern illumination [4,5].
In addition, three-dimensional [6] and multi-spectrum CGI [7] have
been developed.

Since random patterns are used to create the object images, the
reconstructed images are contaminated by noise. To improve the quality
of CGI images, improved correlation calculation methods have been
devised, such as differential [8] and normalized CGI [9]. Iterative
optimization schemes based on the Gerchberg–Saxton algorithm [10]
as well as compressed sensing [7,11] have also been applied to CGI.
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In this study, we propose an approach to improve CGI image quality
by using deep learning [12] and confirm our technique’s effectiveness
through simulations. Deep neural networks (DNNs) can learn features
for the noisy images reconstructed by CGI schemes automatically. We
used a dataset of 15,000 images and their CGI reconstructions to train a
network. After training, the network could predict lower-noise images
from new noisy CGI images that were not included in the training
set. In Section 2, we describe our DNN-based CGI scheme. Section 3
presents the simulation results and demonstrates the effectiveness of
the proposed method. Finally, Section 4 presents the conclusions of this
study.

2. Proposed method

In this section, we first outline the CGI scheme used and then we
describe the architecture of the DNN.

2.1. Computational ghost imaging

We use a differential CGI [8] scheme because its image quality is
superior to that of traditional CGI [1]. The optical setup required for
differential CGI is shown in Fig. 1.
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Fig. 1. Optical setup for differential CGI.

In this scheme, a sequence of random patterns is shown on a
spatial light modulator (SLM). We denote the 𝑖th random pattern as
𝐼𝑖(𝑥, 𝑦). The light transmitted by the SLM is divided into two beams
by a beam splitter. One beam then irradiated the object to be imaged,
and the light transmitted by the object is collected by a lens, and its
intensity 𝑆𝑖 is measured by a bucket detector for each 𝐼𝑖(𝑥, 𝑦). The
other beam is immediately focused by a lens, and its intensity 𝑅𝑖 is
measured by another bucket detector for each 𝐼𝑖(𝑥, 𝑦). The final image
𝑂(𝑥, 𝑦) that is reconstructed by differential CGI is then calculated as
follows:

𝑂(𝑥, 𝑦) = ⟨𝑂𝑖(𝑥, 𝑦)⟩𝑁 , (1)

where ⟨𝑎𝑖⟩𝑁 = 1
𝑁
∑𝑁

𝑖 𝑎𝑖 denotes the ensemble average over all 𝑁 random
patterns. The 𝑂𝑖(𝑥, 𝑦) are calculated as follows:

𝑂𝑖(𝑥, 𝑦) =
(

𝑆𝑖
𝑅𝑖

−
⟨𝑆𝑖⟩𝑁
⟨𝑅𝑖⟩𝑁

)

(

𝐼𝑖(𝑥, 𝑦) − ⟨𝐼𝑖(𝑥, 𝑦)⟩𝑁
)

. (2)

As can be seen from Eq. (2), the reconstructed image is expressed as
a superposition of the random patterns; thus, the resulting image is
noisy. Fig. 2 shows a series of example images that are reconstructed
by differential CGI. The images are arranged from left to right in
such a manner that the original image is followed by images that are
reconstructed using 𝑁 = 1, 000, 2,000, 5,000, and 10,000 patterns. As
the number of random pattern 𝑁 increases, the image quality gradually
improves. However, it increases the processing and measurement time
of differential CGI.

2.2. Improving image quality using a deep neural network

In this study, we use a DNN to improve the quality of CGI images.
Fig. 3 shows the proposed network structure which is called U-Net [13].
This network was originally used for image segmentation, but it can also
be used for image restoration [14].

The network consists of the following two paths: a constructing
path and expansive path. These paths include convolution, max-pooling,
and up-sampling layers denoted as ‘‘Conv’’, ‘‘MaxPooling’’ and ‘‘UpSam-
pling’’, respectively. The convolution layers generate feature maps for

Fig. 2. Example images reconstructed by differential CGI. From left to right, these are the original image that is followed by images reconstructed using 𝑁 = 1, 000, 2,000, 5,000, and
10,000 patterns.

Fig. 3. Our network structure [13]. This network was originally used for image segmentation, but, it can be also used for image restoration [14].
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Fig. 4. Comparison of the proposed methods and other methods for eight new images.
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Table 1
Average SSIMs for all methods.

CGI Bilateral Ours Ours with filters

Averaged SSIM 0.19 0.22 0.31 0.32

Fig. 5. Comparison of the SSIM values for the proposed methods and the other methods
for the eight new images.

the input images using convolution operations, which are frequently
used in image processing. For example, the first convolution layer is
denoted as ‘‘128 × 128 × 32’’,which means the that it outputs 32 feature
map that have an output size of 128 × 128 pixels each. The first three
convolution layers have convolution filters with a kernel size of 9 × 9,
and the kernel weights are learned from the training dataset. Generally,
convolution reduces the number of pixels in the output (feature map).
To avoid reducing the number of pixels, we use zero padding in each
convolution layer.

The output of each convolution layer except the last uses a ReLU
activation function. The last convolution layer, which has a kernel size
of 1 × 1, outputs a predicted image that is the same size as the input
image and uses a sigmoid activation function.

The max-pooling layers down-sample the input data to reduce the
influence of changes in position and size. We used a down-sample rate
of 2 × 2; this means that for input data of size 𝑀 ×𝑀 , the output size
is 𝑀∕2 × 𝑀∕2. The up-sampling layers then up-sample the input data

again at a rate of 2 × 2; this means that for input data of size 𝑀∕2×𝑀∕2,
the output size is 𝑀 ×𝑀 .

Although the max-pooling layers are important for robustness
against changes in position and size in the input images, in the deeper
max-pooling layers much of the input data resolution has been lost,
this has resulted in them behaving like low-pass filters. To address
this drawback, skip connections have been added to the network to
forward the feature maps generated by the contracting path directly to
the expansive path.

To optimize the kernel weights and other network parameters,
the network is trained by minimizing the mean squared error (MSE)
between the noisy images 𝑓 ′(𝑥, 𝑦) that are reconstructed by differential
CGI and the original images 𝑓 (𝑥, 𝑦). The reconstructed images are
calculated using Eq. (1). We used Adam optimizer [15] to minimize the
MSE using stochastic gradient descent (SGD). In SGD, part of datasets is
randomly selected. The size 𝐵 of the partial dataset is referred to as the
batch size, which was 50 in this study. The number of epochs, i.e., the
number of iterations used to optimize the network parameters, was 3.
In addition, we used the Dropout technique [16] to prevent over-fitting
in the network. Dropout randomly disables 𝑑 percent of the units in a
layer during the training process, and we used 𝑑 = 80%.

3. Results

To train the network, we needed to prepare a large dataset com-
prising pairs of original and reconstructed images. Here, we used the
Caltech-256 [17] dataset, which includes ∼ 30, 000 general images with
different resolutions. In this study, the objects measured by differential
CGI are 128 × 128 pixels in size; therefore, we randomly selected 15,000
images from Caltech-256 and resized them to 128 × 128 pixels. These
images were then reconstructed by differential CGI, using Eq. (1) with
5,000 random 128 × 128-pixel patterns. The reconstructed images were
generated by incoherent light simulation using our numerical optics
library [18].

Fig. 4 shows example images that are produced using the proposed
method that is based on eight original images that were not included in
the training dataset. We compared the proposed method with a bilateral
filter [19] to demonstrate its effectiveness. Bilateral filters are a well-
known type of noise-reduction filter that preserves edges.

The first column shows the eight original images, while the second
shows the images reconstructed by differential CGI, the third shows

Fig. 6. DNN with additional pre- and post-processing filters.
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the results obtained by the bilateral filter, and the fourth shows results
produced by the proposed method. Subjectively, the images obtained by
the proposed method show improved noise and contrast compared with
the images from the other methods.

The image quality improvement achieved by the proposed method
was evaluated in terms of the structural similarity (SSIM) index [20].
Fig. 5 compares the SSIM values for the proposed method with those
for the other methods. SSIM values can evaluate image quality more
accurately than the peak-signal-noise ratio (PSNR), and larger SSIMs
indicate better image quality. Overall, the SSIMs for the proposed
method were better than those for the other methods for all the original
images.

To improve the proposed method further, we also added pre- and
post-processing filters to the DNN as shown in Fig. 6, using a bilateral
filter in both cases. The bilateral filters reduced the noise in the
training dataset, thus allowing the DNN to learn the filtered dataset.
The reconstructed images and SSIM values for the proposed method
with filters are also shown in Figs. 4 and 5, and these results show
a small additional improvement while using the filters. For example,
the filters increases the SSIM for the ‘‘Tiffany’’ image from 0.36 to
0.39. Table 1 shows the average SSIM values for the different methods
that are averaged over the eight images. This again shows that our
proposed methods can produce better results than the other methods.
The prediction time of the DNN running on a graphics processing unit
took only 5 ms.

4. Conclusions

In this study, we have proposed using a DNN to improve the
quality of images produced with CGI and have presented results from
simulations where a DNN was trained using a dataset of 15,000 images.
We compared the images reconstructed by the proposed method with
those obtained by differential CGI and bilateral denoising. While testing
with eight images that were not included in the training dataset, the
average SSIM of the proposed method was over 0.3 compared with only
around 0.2 for the differential CGI and bilateral denoising methods. In
our next study, we will improve the structure of the DNN to further
improve the image quality.

Acknowledgment

This work was partially supported by JSPS KAKENHI, Grant Number
16K00151.

References

[1] J.H. Shapiro, Computational ghost imaging, Phys. Rev. A 78 (6) (2008) 061802.
[2] T. Shirai, T. Setälä, A.T. Friberg, Ghost imaging of phase objects with classical

incoherent light, Phys. Rev. A 84 (4) (2011) 041801.
[3] P. Clemente, V. Durán, E. Tajahuerce, J. Lancis, Single-pixel digital ghost hologra-

phy, Phy. Rev. a 86 (4) (2012) 041803.
[4] M.P. Edgar, G.M. Gibson, R.W. Bowman, B. Sun, N. Radwell, K.J. Mitchell, S.S.

Welsh, M.J. Padgett, Simultaneous real-time visible and infrared video with single-
pixel detectors, Sci. Rep. 5 (2015) srep10669.

[5] Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, Q. Dai, High speed computational ghost
imaging via spatial sweeping, Sci. Rep. 7 (2017) 45325.

[6] B. Sun, M.P. Edgar, R. Bowman, L.E. Vittert, S. Welsh, A. Bowman, M.J. Padgett,
3D computational imaging with single-pixel detectors, Science 340 (6134) (2013)
844–847.

[7] S.S. Welsh, M.P. Edgar, R. Bowman, P. Jonathan, B. Sun, M.J. Padgett, Fast full-
color computational imaging with single-pixel detectors, Opt. Express 21 (20) (2013)
23068–23074.

[8] F. Ferri, D. Magatti, L.A. Lugiato, A. Gatti, Differential ghost imaging, Phys. Rev.
Lett. 104 (25) (2010) 253603.

[9] B. Sun, S.S. Welsh, M.P. Edgar, J.H. Shapiro, M.J. Padgett, Normalized ghost
imaging, Opt. Express 20 (15) (2012) 16892–16901.

[10] W. Wang, X. Hu, J. Liu, S. Zhang, J. Suo, G. Situ, Gerchberg-saxton-like ghost
imaging, Opt. Express 23 (22) (2015) 28416–28422.

[11] C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, S. Han, Ghost imaging lidar via
sparsity constraints, Appl. Phys. Lett. 101 (14) (2012) 141123.

[12] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016. http://www.
deeplearningbook.org.

[13] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical
image segmentation, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2015, pp. 234–241.

[14] K.H. Jin, M.T. McCann, E. Froustey, M. Unser, Deep convolutional neural network for
inverse problems in imaging, IEEE Trans. Image Process. 26 (9) (2017) 4509–4522.

[15] D. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A
simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1)
(2014) 1929–1958.

[17] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset. 2007.
[18] T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki,

N. Masuda, T. Ito, Computational wave optics library for C++: Cwo++ library,
Comput. Phys. Comm. 183 (5) (2012) 1124–1138.

[19] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in: Computer
Vision, 1998 Sixth International Conference on, IEEE, 1998, pp. 839–846.

[20] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From
error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)
600–612.

151

http://refhub.elsevier.com/S0030-4018(17)31162-8/sb1
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb2
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb2
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb2
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb3
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb3
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb3
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb4
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb4
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb4
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb4
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb4
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb5
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb5
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb5
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb6
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb6
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb6
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb6
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb6
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb7
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb7
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb7
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb7
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb7
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb8
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb8
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb8
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb9
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb9
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb9
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb10
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb10
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb10
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb11
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb11
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb11
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb12
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb12
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb12
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb13
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb13
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb13
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb13
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb13
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb14
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb14
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb14
http://arxiv.org/1412.6980
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb16
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb16
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb16
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb16
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb16
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb18
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb18
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb18
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb18
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb18
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb19
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb19
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb19
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb20
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb20
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb20
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb20
http://refhub.elsevier.com/S0030-4018(17)31162-8/sb20

	Computational ghost imaging using deep learning
	Introduction
	Proposed method
	Computational ghost imaging
	Improving image quality using a deep neural network

	Results
	Conclusions
	Acknowledgment
	References


