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Highlights

e Sparse optimization have been applied to simultaneously estimate the weights and model structure of an artifi-
cial neural network.

e The problem has been formulates as an {y-norm optimization problem, which is approximatively solved with
an iterative reweighting procedure.

o The proposed method reduces the complexity an artificial neural network by finding a sparse representation of
it, i.e. a solution where as many weights as possible are equated to zero.

e The proposed algorithms have successfully been applied to several benchmark problems and to a case study for
estimating waste heat recovery in ships.
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Abstract

In this paper, the problem of simultaneously estimating the structure and parameters of artificial neural networks with
multiple hidden layers is considered. A method based on sparse optimization is proposed. The problem is formu-
lated as an {p-norm minimization problem, so that redundant weights are eliminated from the neural network. Such
problems are in general combinatorial, and are often considered intractable. Hence, an iterative reweighting heuristic
for relaxing the {p-norm is presented. Experiments have been carried out on simple benchmark problems, both for
classification and regression, and on a case study for estimation of waste heat recovery in ships. All experiments
demonstrate the effectiveness of the algorithm.
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1. Introduction

Selecting the structure of models and estimating model parameters are fundamental tasks in many fields of science
and engineering. Artificial neural networks (ANN) provide a non-linear way of mapping relations between inputs and
outputs, and are often used as black-box models for systems where the underlying dynamics are either unknown or
complex. ANN:s have been shown to approximate any continuous function to arbitrary accuracy, provided that the
number of nodes is sufficiently large [1]. Thus, large networks can exactly represent an arbitrary training set, and the
risk of overfitting the model to noisy data is high. This will often result in bad generalization on new data [2]. Hence,
it can be beneficial to keep the network size as small as possible, while maintaining good fit to the data. By reducing
the size of the networks and by allowing sparse connectivity, generalization is expected to be improved.

Various methods for reducing the number of weights in feed-forward neural networks, have been proposed in
literature. Methods such as “optimal brain damage” [3] and “optimal brain surgeon” [4], provide training procedures
where parameters are pruned according to their importance. Various regularization approaches, often referred to
as “weight decay” or “forgetting” in the context of machine learning and neural networks, have traditionally been
used to prevent networks from overfitting [5, 6]. Here weight decay and forgetting simply refers to penalizing the
weights with an £,- or {;-norm respectively, where only the latter is promoting sparsity [5, 7]. From a Bayesian
perspective, regularization is associated with assigning a prior distribution to the weights. The Laplacian distribution
(¢,-regularization) is a commonly used sparsity promoting prior [8, 9, 10].

The interest in so called “extreme learning machines” (ELM) have increased in recent years due to the low compu-
tational cost of training such networks [11, 12]. Extreme learning machines are large single hidden layer feed-forward
neural networks with a randomly generated hidden layer. Since the input layer weights are given, the task of training
the network becomes a linear least squares regression problem, which can be solved efficiently. The drawback with
ELM:s is that they are easily overfitted. Hence, various techniques for finding sparse representations have been ap-
plied [13, 14, 15]. Saxén and Pettersson [16] have suggested an intuitive greedy algorithm for promoting sparsity and
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for determining relevant inputs for single-hidden-layer ANN:s, by iteratively setting the least significant weights to
zero. However, in these methods, only the linear output layer weights are identified, while the hidden layer weights
are randomly generated.

Recent advances in deep learning, such as weight dropout [17], have made it feasible to train very deep and large
neural networks where the number of unknown weights are in the millions. However, having too many weights does
not only increase the risk of overfitting the model, but also complicates parallel implementations for training dense
neural networks and increases the computational power needed for using such models [18]. Thus, reducing the number
of weights by finding sparse representations of neural networks has been of increasing interest recently. Han et al.
[19] have proposed a simple method for pruning deep networks by applying ¢;- or £,-norm regularization. Wen et al.
[20] have shown that structural sparsity learning can both improve the training accuracy and speed up evaluations
for deep neural networks. Furthermore, Liu et al. [21] have used group Lasso [22, 23] for reducing the redundancy
of parameters in convolutional neural networks, Scardapane et al. [24] have proposed a regularization strategy for
deep neural networks based on group Lasso, Feng and Darrell [25] proposed to use the Indian Buffet Process prior
for learning the structure of deep convolutional neural networks, and Lebedev and Lempitsky [26] have proposed a
group-wise brain damage process for pruning convolutional layers of neural networks.

In this paper, we apply sparse optimization to simultaneously identify both the network structure and parameters
of multiple-hidden-layer artificial neural networks. In sparse optimization, one wants to train a set of weights such that
as many as possible are exactly zero. Such type of problems are often referred to as £y-norm minimization problems,
which are combinatorial and considered intractable for large problems [7]. Thus, we relax the problem with iteratively
reweighted ¢;- and £,-norm procedures. Similar reweighting strategies have previously been applied in the context
of linear regression problems and kernel-based methods, such as least squares support vector machines (LS-SVM)
[27, 7, 28, 29, 30]. The proposed reweighting strategies have so far (to the best knowledge of the authors) not been
applied for promoting sparsity in multiple-hidden-layer artificial neural networks.

The rest of the paper is organized as follows. In Section 2 we present the main structure and feed-forward pro-
cedure of a neural network, and we introduce the main notations that we are going to use throughout the paper. In
Section 3, we give an introduction to the sparse optimization problem and present some challenges in solving it. We
also propose an approximative way of solving the problem via relaxation of the {,-norm and an iterative reweighting
procedure. In Section 4 the effectiveness of the proposed method is demonstrated on some simple test problems, and
to a case study for forecasting of waste heat recovery in ships.

2. Network structure and notation

Consider an artificial neural network with L hidden layers. For a single hidden layer /, the forward propagation
for the j:th node is described by
&) = h(w.20), (1

where z"V is a vector consisting of all outputs from the previous hidden layer and w is a vector containing all
weights associated with that node. The non-linear function /(-) is the so called “activation function” for a node, which
is typically selected as a sigmoid-, tanh- or radial-basis-function. For convenience we will also introduce the notation
wl(,j.) to describe a specific weight between nodes 7 in layer / — 1 and node j in layer /. We also define a merged

weight vector w = [w(D, ..., wP]T € RX which contains all weights in the network. In this article we only consider
networks with a single output, but all results can easily be extended for networks with multiple outputs. Then, given
an M-dimensional input vector x and weights w, the output of the network is described by a non-linear function
f(x,w) : RM — R. Schematics of a single node at layer [ in a feed-forward neural network is presented in Figure 1.

Networks typically have full connectivity between layers. However, large fully-connected-networks are easily
overfitted to training data. Hence, we intend to reduce the model complexity by finding a sparse representation of the
network (i.e. a representation where most of the weights are zero).

3. Sparse connectivity in neural networks

In this section, we formulate a sparse optimization problem and present some challenges of solving it. We also
propose an approach for approximatively solving such problems.
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Figure 1: Schematics of a single node j in layer / in a feed-forward ANN.

3.1. Sparse optimization

Given a dataset D = {(x,, y,,)}nN:I, where x,, € RM is an input vector and y, € R is the target response. We denote
the vector of output data y = (yn)ﬁlvzl. For the sake of simplicity, we consider only networks with a single output.
However, our presented methodology can easily be applied for networks with multiple outputs. The merged vector
of model outputs is denoted § = (f(x,, w))}’q"= - We are to determine the unknown model parameters w of a neural
network with the structure described in Section 2, so that maximum number of entries in w are zero while |ly—§||? < &,
where £ > 0. An intuitive way of formulating such an optimization problem is

(Py) : minimize ||wl|o
W

) s 2
subjectto [ly-¥l; <e.
Here || - || is the so called £y-norm' which is defined as
K
1 P o_ 1 P _
Il += Tim [ Wil = lim ; wal? = Z;ol’ 3)
= Wi

where ||wl|, = ( Zle |wk|p)l/” is the p-norm. As seen from Equation (3), we are using the ||-||o as a convenient measure
of sparsity of a vector, counting the number of nonzero entries in w. Problem (Py) can be reformulated by introducing
an appropriate Lagrange multiplier @ > 0, which results in

(P3): minimize [[wllo + ally - 13- )

The problem (Py) is a combinatorial problem, which will become intractable when the number of parameters grows
large [7].

For artificial neural neural networks, the number of parameters in the hidden layers will quickly grow large when
the size of the network is increased, and hence solving (P) through an exhaustive combinatorial search is often not
an option. An additional difficulty is the non-convexity of the hidden layers, which will make it difficult to guarantee
global optimality of a solution. It is hence well motivated to look for approximative solutions to (P(), by relaxing the
{o-norm with a continuous function, such as the ¢;- or {,-norm. Furthermore, we introduce an iterative reweighing
procedure so that the desirable sparsity promoting properties of the £y-norm are preserved.

3.2. Approximative solutions to (P()
In order to approximate the £yp-norm, we first relax it with the £,-norm, and introduce a diagonal weight matrix A,
which allows us to penalize individual elements in w differently. The relaxed formulation of (Pf) can be expressed as

(Py): minimize AW} + ally - §15. 5)

Note that the term fy-norm” is a misnomer, since it does not satisfy the homogeneity axiom ||3w|| = |8|||w|| of a norm, for all arbitrary scalars

B.



For a given solution W to optimization problem (P,), we update A according to

Ul ifha
k:{ [l if | > € k=1,2,..,K, ©

1/e otherwise, ’

where € > 0, cf. [31, 7]. Similar reweighing procedure have previously been proposed by Huang et al. [28], Lopez
et al. [29] to promote sparsity in LS-SVM:s. By solving problem (P,) and updating A according to Equation (6)
iteratively, until the parameters W converge, we get

K
IAW@IE = " A e(e)?
k=1

0 w, (t)2 N
=3 S+ ) ﬁafjﬁp= PRI LONS

Wi ()=0 € Wi ()#0 Wi (H)#0

(7

where 7 is the iteration index. Thus we may view the {y-norm as an adequately weighted version of the squared
{>-norm.
To make sure that some weights will become exactly zero, we need to apply a threshold for Wy so that

0 if Wyl <
W ={A ithd<e o 12k )
Wy otherwise
Finally, we define the stop criteria for the algorithm
IW(r) = w(z = Dll2 <6, €))

where ¢ > 0.
The complete algorithm is presented in Algorithm 1.

Algorithm 1 Iterative procedure for approximative {p-norm minimization by ¢,-relaxation.
given initial parameters w, A := Ig, ¢t := 1.

repeat
Solve optimization problem (P;) and get solution W(¢).
0 if (W (?)] <
Setigpy =10 d@I<e ok
wi(t) otherwise

/W@l if We()] > €

Update A by Ayx = { Jk=1,2,..,K

1/e otherwise
Sett:=t+1
until stop criteria (9) is satisfied.

An alternative way to relax the {y-norm is by replacing the {,-relaxation with an ¢,-relaxation. We define the
optimization problem (P;) as follows

(P1): minimize [[AW]; +ally - 93

X . (10)
=" Axhwid + ally - 1.
k=1

The benefit of using the £;-norm is that no threshold is needed in order to make weights go exactly to zero [5, 7].
However, the gradient of the £;-norm is undefined for w; = 0, and a subgradient needs to be specified. In this case,



the intuitive choice is to define it as to be zero in w; = 0, which results in a valid subgradient. Equation (6) can still
be used for updating A, since now we also get

K
AW = > Axal(o)
o 0 () b
_ Y Wi _ A
= 2 et 2 e 2 = IOl

We(H)=0 We(1)£0 We(H)#0

after convergence. The complete algorithm using the £ -relaxation is presented in Algorithm 2.

Algorithm 2 Iterative procedure for approximative {p-norm minimization by ¢;-relaxation.

given initial parameters w, A := Ig,  := 1.
repeat
Solve optimization problem (P;) and get solution W(¢).

L/Wr(0)]  if ()] >
Update A by Agy = | /O1 ATIR@OF>€ o0
’ 1/e otherwise

Sett:=t+1
until stop criteria (9) is satisfied.

To ensure that Algorithms 1 and 2 are useful, one would need to show that W(¢) converges as t — oo. Some
convergence claims have previously been made by Huang et al. [28] in the context of kernel-based regression and
LS-SVM and by Figueiredo [10] in a Bayesian framework. However, a rigorous proof for convergence using artificial
neural network models is left as an open problem. We will instead demonstrate the effectiveness of the algorithms by
applying it on benchmark problems. In the next section we propose a simple backtracking gradient descent algorithm,
which guarantees convergence (to a local optima) within each iteration.

3.3. Backtracking line search

The simplest way of training ANN:s is by using gradient descent methods with fixed step length s [S]. However,
one cannot guarantee that an improvement in the objective is obtained in each iteration when using a fixed step length.
There are several ways of performing a line search with variable step lengths. Here we are considering a simple and
quite effective algorithm referred to as “’backtracking line search” [32]. Given a descent direction Aw, backtracking
line search only requires two additional parameters 1 € (0,0.5) and ¢ € (0, 1) and a few extra function evaluations per
iteration, compared to standard gradient descent with a fixed step length. The backtracking line search starts with a
unit step length s = 1 and reduces it with a factor ¢ until the stopping condition

F(W + sAW) < f(W) + sV f(w)TAw (12)

holds. Figure 2 illustrates the main idea of the backtracking algorithm. Inequality (12) ensures that the backtracking
algorithm always results in an improvement in objective function in each step [32]. However, unless the function
f(w) is convex, we cannot guarantee finding the global optimum, and ANN:s are generally non-convex. The complete
gradient descent algorithm using backtracking line search is presented in Algorithm 3.

4. Experiments

The proposed algorithm has been evaluated on two simple test problems and on a case study. In the first example
we use radial-basis-function type (RBF) networks to perform regression. The second problem is a two-spiral clas-
sification problem. Finally we apply the method to a case study for estimating waste heat recovery in ships. In all
experiments, backtracking parameters 7 = 0.2 and ¢ = 0.5 have been used.



S(w) .
f(w + sAw)

- f(W) + sV f(w)TAw

NFW) + sV Fw)TAw

0 So
Step length s

Figure 2: Illustration of the backtracking line search method, where f is the objective function. The black dashed line is a linear extrapolation in the
point f(w), the red dashed line has a slope factor 0 < 17 < 0.5 and is an upper approximation of the optimum solution. The backtracking condition
is that f lies below the upper dashed line, which gives 0 < s < so [32].

Algorithm 3 Gradient descent with backtracking line search [32].
given a starting point w, n7 € (0,0.5), £ € (0, 1).
while stopping criterion is not satisfied do
Aw = =V f(w).
Line search, set s := 1
while f(w + sAw) > f(w) + nsVf(w)TAw do

s:=/(s
end while
Update w := w + sAw.
end while

4.1. Illustrative example: Regression

We consider the regression problem of estimating the sinc function

sin(x)

gx) =

13)

from noisy data, where the noise is zero mean Gaussian with variance o> = 0.005. Given a training data set of
N = 300 samples, we train a single layer RBF-network with the basis function

h(pi, x,) = exp (=yllx, = ill3), (14)

where y; is the center of the i:th radial basis function and v is a pre-specified width parameter. Using M = N = 300
number of basis functions, and selecting the centres as y; = x;, we construct the hidden-layer-matrix
h(xy,x1) -+ h(xy, x1)
H= : : . (15)
h(xi, xy) -+ h(xy, xy)
The matrix H is an N-by-N, symmetric, positive-semi-definite Mercer kernel [33]. The output of the network is then

given by the linear equation
y = Hw. (16)
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Optimization problem (P,) is formulated as
(P,):  minimize IAWI5 + ally — Hw|}3 =: L(w), (17)

which is a quadratic problem. Taking the derivative of the loss function L(w) and setting it equal to zero, gives the
optimality condition
oL
e 2ATAw — 20H"y + 20H Hw = 0, (18)
w

which gives us the explicit solution
-1
w=(HH+o'ATA) H'y. (19)
This problem is often referred to as ridge regression”. Since an explicit solution exists, Algorithm 1 can be used to
find sparse network structures, for given widths and centres of the radial basis functions. This problem now shows
great resemblance the LS-SVM problem [34, 35, 30] (with iterative reweighting). A more detailed discussion on the

single-hidden layer ANN interpretation of LS-SVM has been presented in [36].
Similarly, the optimization problem using an {;-relaxation becomes

(Py): minivgnize AWl + ally — Hw]3 =: L(w), (20)

Although this optimization problem is convex, one cannot solve it explicitly, and we need to rely on some convex
optimization framework such as CVX [37, 38].

Parameters « and y are typically determined through cross-validation. In Table 1, results from cross-validation
are presented, and some selected results obtained by running both Algorithms 1 and 2 are visualized in Figure 3.
From Table 1 it becomes clear that for the unregularized case (where @ = 0) the model is overfitted to the noisy data,
especially if we choose y to be large. We were able to decrease the number of non-zero elements in w significantly
for both cases. Surprisingly, for this test problem, the ¢,-norm regularization seem to result in more sparse solutions
that the £;-norm regularization.

~+ = 1000 =20 =5

0.001

«

0.01

@

-10 0 10

Figure 3: The sinc function (black) is estimated from and noisy data (gray dots). Results for models fitted with Algorithm 2 (blue) and with
Algorithm 1 (red) are presented for parameters o = {0,0.001,0,01} and y = {1000, 20, 5}.



Table 1: Crossvalidation results for estimating the sinc function. Root mean square error for training (RMSE,), validation (RMSE, ), on noise free
data (RMSEy) and number of nonzero parameters |W|lp. Various values of @ and y were used for both problem formulations (P;) and (P3). The
standard deviation of the noise is 0.07. Results have been rounded to four decimals.

Optimization problem (P;) Optimization problem (P;)
@ v RMSE, RMSE, RMSE; |[Wll RMSE, RMSE, RMSE;, [W]o
0 1000 0.0338 0.0891 0.0586 300 0.0330 0.0891 0.0586 300
100 0.0573 0.0780 0.0359 300 0.0573 0.0780 0.0359 300
50 0.0613 0.0753 0.0286 300 0.0613 0.0753 0.0286 300
20 0.0619 0.0722 0.0241 300 0.0619 0.0722 0.0241 300
10 0.0642 0.0711 0.0212 300 0.0642 0.0711 0.0212 300
5 0.0733 0.0774 0.0357 300 0.0733 0.0774 0.0357 300
0.001 1000 0.0581 0.0765 0.0342 43 0.0557 0.0768 0.0365 58
100 0.0644 0.0720 0.0221 16 0.0638 0.0720 0.0216 21
50 0.0653 0.0704 0.0161 13 0.0651 0.0704 0.0200 13
20 0.0664 0.0705 0.0155 11 0.0656 0.0697 0.0155 12
10 0.0661 0.0694 0.0144 11 0.0660 0.0693 0.0145 11
5 0.0706 0.0739 0.0276 11 0.0707 0.0739 0.0277 11
0.01 1000 0.0662 0.0796 0.0408 23 0.0618 0.0773 0.0347 30
100 0.0726 0.0780 0.0395 8 0.0652 0.0733 0.0232 14
50 0.0729 0.0772 0.0390 7 0.0656 0.0705 0.0189 11
20 0.0759 0.0813 0.0403 9 0.0660 0.0697 0.0135 11
10 0.0832 0.0840 0.0457 9 0.0662 0.0693 0.0139 11

4.2. Illustrative example: Classification

In this section we have validated our proposed methods on a classification benchmark problem, by training a
multiple hidden layer, feed-forward, sigmoidal neural networks. A data set {x,,,}>%) was used, where x,, € R? and
yn € {0, 1}, with an equal amount of data points from each class. The data is illustrated in Figure 4. A two-hidden-layer
neural network with 2-30-20-1 nodes in respective layers was used. This makes the initial total number of weights
(excluding biases) K = 680, which is greater than the total number of training samples. Since K > N the model
complexity needs to be reduced. Thus, Algorithm 1, together with the backtracking batch-gradient-descent presented
in 3, are used to train the ANN so that sparsity in the hidden layers are promoted. We denote the set of weights in the
hidden layers w*. Optimization problem (P,) is re-formulated as

(Py): minimize [AW|3 + elly - 313, @1

so that only the hidden layer weights are regularized. Parameters & = 0.01 and € = 10~ were used. The resulting
boundaries separating the two classes is presented in Figure 4. The obtained sparse network, has the structure 2-16-
6-1 after training, and has only 22-37-6 number of non-zero weights in each layer respectively. In other words, the
number of non-zero parameters have been reduced from initially 680 to only 65, which is a 90% reduction in non-zero
weights.



Figure 4: The training data for the two-spiral classification problem, where the two classes are represented with *x’ and ’o’ respectively. The
classification output of the network is represented by the white/gray background.

4.3. Case study: Estimation of waste heat recovery in ships

We now present a case study for forecasting of waste heat recovery in ships. The diesel engine is the main source
of power for the entire ship. However, not all energy in the fuel is converted into mechanical work, but a significant
amount is also converted into thermal energy. Such thermal energy is here refereed to as waste heat. Waste heat can for
example be re-utilized via heat exchangers. Utilizing excess heat from a system is referred to as waste heat recovery.
Since the recovered heat can be reused for tasks such as general heating or fresh water production, the efficiency of
the the system is indirectly increased. It is hence of interest to be able to accurately predict the amount of available
recovered waste heat, so that on-board tasks can be scheduled optimally and the amount of required additional heating
can be minimized.

Schematics of an engine cooling system is presented in Figure 5. Although the main purpose of the cooling system
is to keep the engine temperature within an acceptable range, excess heat can be extracted via a heat exchanger (HE).
The system has three splitting/mixing valves (V1, V2, V3) which allow control of engine temperature. Valve (V1)
regulates the engine temperature by bypassing part of the flow around the heat exchanger, valve (V2) is a splitting
valve which connects the high temperature (HT) and low temperature (LT) loops, and valve (V3) a mixing valve. We
denote the added thermal heat flow rate from the engine with On, and the extracted waste heat flow rate by Or. In
practice one cannot measure Qy directly, but only the normalized electric load P € [0, 1] of the engine is known.
The mapping between electric load and the heat load is a (non-linear) function due to varying efficiency of the engine
at different loads. Hence we recognize that the heat flow rate is described by a function g(P) : [0, 1] — R, so that
Qu = g(P). For simplicity we assume that all temperatures T can be measured and that the mass flow rates s in the
systems are constant. We also assume that there is no heat loss in the valves and that there are no dynamics present in
the system, which is realistic if the sampling time of the measurements is high. For valve (V1) we introduce a splitting
constant x € [0, 1] so that

I’hz = Kl’i’ll (22)
= (1 = wymy. (23)

§.
|
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Since we assumed that mass flow rates are constant, it follows that

fn3 :fnz ZKI’h].

my = m3 + ms = my.

It is also clear that T, = T's = T since we assumed no heat loss.

.,

1

1

1

1

1

1

1
---

5
ve
E

A 4
O}
e
A 4
-9«
[}

T3,1m3

3

T4,n'14: Yy o HT flow

(24)
(25)

Figure 5: Simple schematics of the cooling system, consisting of a hight temperature (HT) and low temperature loop (LT). The HT-circuit consists
of a diesel engine (DE), a heat exchanger (HE) and three mixing/splitting valves (V). Temperatures 7', mass flow rates s and heat flow rates Q have

been marked out in the figure. Three boundaries (B) for mass and heat balances have been marked with dashed lines.

For the cooling circuit illustrated in Figure 5, we set up three boundaries (B1, B2, B3) for which we form mass

and heat balances. Introducing the specific heat capacity c,, we get

Bl : CpmlTl =Cpl’i’l4T4+g(P)
(25)
pirs (Ty—T1)=-——g(P)
cpml
B3 : Cpl’i’l4T4 = C[,I’}13T3 + C[,I’i’l5T5
(23, 24, 25) ) ) .
& miTy = kT3 + (1 =iy T,
T, -T;
o K= 77—t
5 - T,
B2 : cptinT = cprinn Ty — Ok
©2) . .
= Or = cpkm (T — T)

@ iy T4 =TT - T>)
P (T3 -Ty)
@6 cpi(Th = Ta) (T, -Ty)

g(P) = ———g(P).

cpim (T3 —Ty) (T3 =Ty

Given a set of data points {T},, Og., Pn}™

ne1s WE define a new target vector

y = (T5 - TI)Q‘R
(Ta =T~
and form the following regression model
In = 8(Pn).

11

(26)

27

(28)

(29)

(30)



Since g(P) is an unknown, possibly non-linear function, we can estimate it with an artificial neural network. It is
worth mentioning that the target vector defined in (29) is always non singular since 77 > T,. Simulated data of a
fresh water cooling system was provided by Zou et al. [39]. A total number of N = 500 data points, with sampling
time 100 seconds, were used for estimation g(P). The recovered energy was normalized before training with respect
to the maximum engine load, which is 16.8 MW. We apply our proposed sparse optimization technique, according
to Algorithm 1, to identify an appropriate network size and structure. A fully connected single hidden-layer sigmoid
neural network with M = 20 hidden nodes was initially used. For € = 1073 and « = 0.01 the final network consisted
of only 2 nodes in the hidden layer. The low number of nodes left after training seem reasonable due to the close
to linear appearance of the target data (see Figure 6). Results for the mapping between electric and heat load, and
between electric load and recovered waste heat energy are presented in Figure 6.
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Figure 6: Estimated heat load and recovered waste heat energy. The first figure (top left), shows the mapping from electric load to heat load. The

second figure (top right) displays the mapping between electric load obtained by Equation 29, given some temperature measurements. The third
figure (bottom) shows the fit on training data.

5. Concluding remarks

In this paper we proposed a sparse optimization technique, based on iterative reweighing for structural learning
in artificial neural networks. The proposed method was presented in a general form so that it applies to various
types of network types, such as multi-layer perceptions, radial-basis-function networks or extreme learning machines.
Experimental results for both regression as well as classification demonstrate the effectiveness of the algorithm. Model
complexity was significantly reduced in all cases, and sparse network structures were obtained. Additional structural
constraints, such as group sparsity, can easily be included in our proposed framework via group Lasso.
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For RBF-type networks, where the basis functions are convex, the hidden layer can be interpreted as an positive-
semi-definite kernel, which satisfies Mercer’s conditions. This makes it possible to find explicit solutions for each
iteration step, which makes the proposed algorithm computationally efficient. In this case, the proposed problem for-
mulation shows strong similarities to the least-squares support-vector-machines, but the presented iterative reweight-
ing procedure makes it possible to promote sparsity in the model.

Finding a rigorous convergence proof still remains an open problem, and further work could be directed in provid-
ing such. Future work could be directed towards evaluating the effectiveness of the reweighting strategy identifying
sparse structures of deep neural networks.
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