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a b s t r a c t

In this paper we analyze the optimal joint decisions of when, how and howmuch to replenish customers
with products of varying ages. We discuss the main features of the problem arising in the joint
replenishment and delivery of perishable products, and we model them under general assumptions.
We then solve the problem by means of an exact branch-and-cut algorithm, and we test its performance
on a set of randomly generated instances. Our algorithm is capable of computing optimal solutions for
instances with up to 30 customers, three periods, and a maximum age of two periods for the perishable
product. For the unsolved instances the optimality gap is always small, less than 1.5% on average for
instances with up to 50 customers. We also implement and compare two suboptimal selling priority
policies with an optimized policy: always sell the oldest available items first to avoid spoilage, and always
sell the fresher items first to increase revenue.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inventory control constitutes an important logistics operation,
especially when products have a limited shelf life. Keeping the
right inventory levels guarantees that the demand is satisfied
without incurring unnecessary holding or spoilage costs. Several
inventory control models are available [3], many of which include
a specific treatment of perishable products [30].

Problems related to the management of perishable products'
inventories arise in several areas. Applications of inventory control
of perishable products include blood management and distribu-
tion [5,9,17,18,20,25,26,33], as well as the handling of radioactive
and chemical materials [1,11,37], of food such as dairy products,
fruits and vegetables [4,12,29,31,35,36], and of fashion apparel
[28]. Several inventory management models have been specifically
derived for perishable items, such as the periodic review with
minimum and maximum order quantity of Haijema [15], and the
periodic review with service level considerations of Minner and
Transchel [24]. Reviews of the main models and algorithms in this
area can be found in Nahmias [30] and in Karaesmen et al. [19]. A
unified analytical approach to the management of supply chain

networks for time-sensitive products is provided in Nagurney et al.
[27].

Efficient delivery planning can provide further savings in
logistics operations. The optimization of vehicle routes is one of
the most developed fields in operations research [21]. The inte-
gration of inventory control and vehicle routing yields a complex
optimization problem called inventory-routing whose aim is to
minimize the overall costs related to vehicle routes and inventory
control. Recent overviews of the inventory-routing problem (IRP)
are those of Andersson et al. [2] and of Coelho et al. [8].

The joint inventory management and distribution of perishable
products, which is the topic of this paper, gives rise to the
perishable inventory-routing problem (PIRP). Nagurney and
Masoumi [25] and Nagurney et al. [26] studied the distribution
and relocation of human blood in a stochastic demand context,
considering the perishability and waste of blood related to age and
to the limited capacity of blood banks. Hemmelmayr et al. [16]
studied the case of blood inventory control with predetermined
fixed routes and stochastic demand. The problem was solved
heuristically by integer programming and variable neighborhood
search. Gumasta et al. [14] incorporated transportation issues in an
inventory control model restricted to two customers only. Custó-
dio and Oliveira [10] proposed a strategical heuristic analysis
of the distribution and inventory control of several frozen gro-
ceries with stochastic demand. Mercer and Tao [23] studied the
weekly food distribution problem of a supermarket chain, without
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considering product age. A theoretical paper developing a column
generation approach was presented by Le et al. [22] to provide
solutions to a PIRP. The optimality gap was typically below 10% for
instances with eight customers and five periods under the
assumptions of fixed shelf life and flat value throughout the life
of the product.

This paper makes several scientific contributions. We first classify
and discuss the main assumptions underlying the management of
perishable products. We then formulate the PIRP as a mixed integer
linear program (MILP) for the most general case, and we also model
it to handle the cases where retailers always sell older items first, and
where they sell fresher items first. We devise an exact branch-and-
cut algorithm for the solution of the various models. To the best of
our knowledge, this is the first time an IRP is modeled and solved
exactly under general assumptions in the context of perishable
products management. Our models do not require any assumption
on the shape of the product revenue and inventory cost functions.
We also establish some relationships between the PIRP and the
multi-product IRP recently studied by the authors [7].

The remainder of the paper is organized as follows. In Section 2
we provide a formal description of the PIRP. In Section 3 we present
our MILP model and its two variants just described, including new
valid inequalities. This is followed by a description of the branch-
and-cut algorithm in Section 4. Computational experiments are
presented in Section 5. Section 6 concludes the paper.

2. Problem description

The joint replenishment and inventory problem for perishable
products is concerned with the combined optimization of delivery
routes and inventory control for products having a transient shelf
life. Here, we consider a three-echelon supply chain in which
suppliers deliver products to retailers who then sell products to
the end-customers. These products typically have an expiry date,
after which they are no longer fit for consumption. This is the case
not only of some law-regulated products such as food and drugs,
but also of a wide variety of unregulated products whose quality,
appearance or commercial appeal diminishes over time, such as
flowers, cosmetics, paint, electronic products or fashion items. In
this section we discuss four main assumptions underlying the
treatment of these kinds of products, and we explain how we
incorporate them in our model. Specifically, we discuss the types
of product perishability in Section 2.1, the assumptions governing
the inventory holding costs of these products in Section 2.2, their
revenue as a function of age in Section 2.3, and the management of
items of different ages held in inventory in Section 2.4.

2.1. Types of product perishability

There exist two main types of perishable products according to
how they decay [30]. The first type includes products whose value
does not change until a certain date, and then goes down to zero
almost immediately. This is the case of products whose utility
eventually ceases to be valued by the customers, such as calendars,
year books, electronics or maps, which quickly become obsoles-
cent after a given date or when a new generation of products
enters the market. However, this is more a case of obsolescence
than perishability. Even though these items may still be in perfect
condition, they are simply no longer useful. Within the same
category, we find products with an expiry date, such as drugs,
yogurt and bottled milk. These products can be consumed
whether they are top fresh or a few days old, but after their expiry
date, they are usually deemed unfit for consumption. The second
type includes products whose quality or perceived value decays
gradually over time. Typical examples are fruits, vegetables and

flowers. The models introduced in Section 3 can handle both types
of products without any ad hoc modification. Raafat [34] describes
a stochastic model in which the deterioration is a function of the
on-hand inventory level. Our model does not work under the
assumption of a random lifetime.

2.2. The impact of item age on inventory holding costs

As a rule, the unit inventory holding cost changes with respect
to the age and value of a product. This general assumption holds,
for instance, for insurance costs which are value related. All the
variable costs related to the age of the product can be modeled
through a single parameter, called the unit inventory holding cost,
which depends on the age of the item. In some contexts, all items
yield the same holding cost, regardless of their age. Products with
a short shelf life usually fit in this category. In this case, the holding
cost, which encompasses all other variable costs, can be captured
by a unique input parameter independent of the value and age of
the product, which is the case in most applications.

2.3. Revenue of the item according to its age

A parameter that greatly affects the profit yielded by products
of different ages is their perceived value by consumers. Brand new
items usually have a higher selling price, which decreases over
time according to some function. In this paper we do not make any
specific assumption regarding the shape of this function. Rather,
we assume that the selling price is known in advance for each
product age. Note that the function describing the relation
between price and age can be non-linear, non-continuous or even
non-convex, but it can still be accommodated by our model, as will
be shown in Section 3.

2.4. Inventory management policies

The final assumption we discuss relates to the management of
items of different ages held in inventory. It is up to the retailer to
decide which items to offer to customers, which will influence
the associated revenue. In such a context, three different selling
priority policies can be envisaged. The first one consists of
applying a fresh first (FF) policy by which the retailer always sells
the fresher items first. This policy ensures a longer shelf life and
increases utility for the customers but, at the same time, yields a
higher spoilage rate. The second policy is the reverse. Under an old
first (OF) policy, older items are sold first, which generates less
spoilage, but also less revenue. The third policy, which we
introduce in our model, is more flexible and general, and encom-
passes these two extremes. The optimized priority (OP) policy lets
the model determine which items to sell at any given time period
in order to maximize profit. This means that depending on the
parameter settings, one may prefer to spoil some items and sell
fresher ones because they generate higher revenues.

Although they are similar, FF and OF policies are different from
the traditional FIFO and LIFO policies common in inventory
management. Under a FIFO policy, the first product delivered will
be the first to be sold. This coincides with an OF policy only if
deliveries from the supplier to the retailer is always of fresh items.
However, when the supplier delivers products of different ages in
different periods, the sequence of deliveries does not necessarily
coincide with the ages of the products in inventory. To illustrate,
consider the case where the supplier delivers new items on day
one, and three-day old items on day two. Then, on day three,
different solutions will be obtained under the OF and the FIFO
policies. Indeed, under the FIFO policy, the newer items (delivered
on day one) will be sold first, but the older items (delivered on day
two) will be selected under an OF policy.
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In order to illustrate the FF and the OF policies, first consider
the case of bottled milk having a limited shelf life. A retailer holds
in inventory one unit of old milk having a remaining shelf life of
one day, and one unit of one-day old milk still good for several
days. The unit revenue is $2. If the retailer applies an FF policy, he
sells his one-day old milk today, making $2 of revenue. Tomorrow,
the remaining bottle will be spoiled and he will make no revenue.
The total revenue under the FF policy is then $2. If, on the other
hand, he applies an OF policy, he sells his old bottle today, and the
newer one tomorrow, making a total revenue of $4, or twice the
revenue achieved under the FF policy.

Now consider the case of flowers, whose value declines quickly
from one day to the next. A one-day old bouquet of flowers
generates a revenue of $10, whereas a two-day old bouquet yields
only $4. Under an FF policy, she will sell the one-day old flowers
today, and nothing tomorrow, making a total revenue of $10.
Under an OF policy, the retailer will sell the older flowers today
and the other ones tomorrow, achieving a smaller revenue of $8.

Note that in these two examples, the OP policy coincides with
either the OF or the FF policy. However, this is not always the case,
namely when the revenue function is not monotonic with respect to
the age of the product. Consider for example the case of bananas,
which start their shelf life as green products, not yet ripe for
consumption, then turn yellow when they reach their peak value,
and finally become brown close to their spoilage date. Suppose there
are two hands of bananas of each color in inventory. Let the revenue
be $1.50 for a hand of green bananas, $2 for a yellow hand, and $0.50
for a brown hand. Note how the green product is valued higher than
the brown one, because it will mature over time and will eventually
become yellow. For a daily demand of one hand over two periods, the
FF policy yields a revenue of $3, the OF policy yields only $1, but an
OP policy consisting of selling yellow bananas each day yields an
optimal revenue of $4. If the inventory contains only green and
yellow bananas, then the OF and OP policies coincide; similarly, if
only yellow and brown bananas are considered, then the FF and OP
policies coincide.

Thus, the choice of which of the FF or OF policy to apply
depends on the trade-off between the inventory level and the
revenue functions of the product under consideration. The advan-
tage of the OP policy is that it does not impose any constraints on
the age of the items to sell and is able to generate the most general
and profitable solutions.

We implement all three policies and we analyze their trade-offs
in the context of profit maximization.

3. Mathematical formulations

We now formally describe the mathematical formulation of
PIRP under the assumptions just presented for a single product
and under the three inventory management policies just
described. The case of several products is conceptually similar,
but requires an additional index [7]. We assume that the routing
cost matrix is symmetric. Thus, we define the problem on an
undirected graph G¼ ðV; EÞ, where V ¼ f0;…;ng is the vertex set
and E ¼ fði; jÞ : i; jAV; io jg is the edge set. Vertex 0 represents the
supplier and the remaining vertices V 0 ¼ V\f0g correspond to n
customers. A routing cost cij is associated with edge ði; jÞAE.

Because of the general assumptions presented in Section 2, we
consider that both the supplier and customers are fully aware of the
number of items in inventory according to their age. This is important
because the sales revenue and inventory holding costs are affected by
the age of the product. The supplier has the choice to deliver fresh or
aged product items, and each case yields different holding costs. Each
customer has a maximum inventory holding capacity Ci, which cannot
be exceeded in any period of the planning horizon of length p. At each

time period tAT ¼ f1;…; pg, the supplier receives or produces a fresh
quantity rt of the perishable product. We assume that the supplier has
sufficient inventory to meet the demand of its customers during
the planning horizon, all the demand has to be satisfied. At the
beginning of the planning horizon the decision maker knows
the current inventory level of the product at each age held by the
supplier and by the customers, and receives information on the
demand di

t of each customer i for each time period t. Note again
that, as discussed in the previous section, the demand can be
equally satisfied by fresh or aged products, which will in turn affect
the revenue.

As is typically the case in the IRP literature [8], we assume that
the quantity rt made available at the supplier in period t can be
used for deliveries to customers in the same period, and the
delivery amount received by customer i in period t can be used to
meet the demand in that period. A set K¼ f1;…;Kg of vehicles are
available. We denote by Qk the capacity of vehicle k. Each vehicle
can perform at most one route per time period, visiting a subset of
customers, starting and ending at the supplier's location. Also, as
in other IRP papers, we do not allow split deliveries, i.e., customers
receive at most one vehicle visit per period.

The perishable product under consideration becomes spoiled
after s periods, i.e., the age of the product belongs to a discrete set
S ¼ f0;…; sg. The product is valued according to its age, and the
decision maker is aware of the selling revenue ug of one unit of
product of age g. Likewise, the inventory holding cost hig in location
iAV is a function of the age g of the product. This general
representation allows for flat or variable revenues, and for flat or
variable holding costs depending on the age and value of the
product, thus covering all situations described in Section 2.

The inventory level Iit held by customer i in period t comprises
items of different ages. We break down this variable into Iti ¼∑gAS I

gt
i ,

where Ii
gt represents the quantity of product of age h in inventory at

customer i in period t. Likewise, we decompose the demand di
t into

∑gASd
gt
i .

The aim of the problem is to simultaneously construct vehicle
routes for each period and to determine delivery quantities of
products of different ages for each period and each customer, in
order to maximize the total profit, equal to the sales revenue,
minus the routing and inventory holding costs. This problem is
extremely difficult to solve since it encompasses several NP-hard
problems such as the vehicle routing problem [21] and a number
of variants of the classical IRP [8].

Our MILP model works with routing variables xij
kt equal to the

number of times edge ði; jÞ is used on the route of vehicle k in
period t. We also use binary variables yikt equal to one if and only if
node i is visited by vehicle k in period t. Formally, variables
Iti ¼∑gAS I

gt
i denote the inventory level at vertex iAV at the end

of period tAT , and di
gt denotes the quantity of product of age g

used to satisfy the demand of customer i in period t, and we
denote by qi

gkt the quantity of product of age g delivered by vehicle
k to customer i in period t. The problem can then be formulated
under an OP policy as follows:

ðPIRPÞ maximize ∑
gAS

∑
tAT

ug
i d

gt
i � ∑

iAV
∑
gAS

∑
tAT

hgi I
gt
i � ∑

ði;jÞAE
∑

kAK
∑
tAT

cijxktij ;

ð1Þ

subject to

Igt0 ¼ Ig�1;t�1
0 � ∑

iAV 0
∑

kAK
qgkti ; gAS\f0g; tAT ð2Þ

I0t0 ¼ rt ; tAT ð3Þ

Igti ¼ Ig�1;t�1
i þ ∑

kAK
qgkti �dgti ; iAV 0; gAS\f0g; tAT ð4Þ
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I0ti ¼ ∑
kAK

q0kti �d0ti ; iAV 0; tAT ð5Þ

∑
gAS

Igti rCi; iAV 0; tAT ð6Þ

dti ¼ ∑
gAS

dgti ; iAV 0; tAT ð7Þ

∑
gAS

∑
kAK

qgkti rCi� ∑
gAS

Ig;t�1
i ; iAV 0; tAT ð8Þ

qgkti rCiykti ; iAV 0; gAS; kAK; tAT ð9Þ

∑
iAV 0

∑
gAS

qgkti rQky
kt
0 ; kAK; tAT ð10Þ

∑
jAV;io j

xktij þ ∑
jAV;jo i

xktji ¼ 2ykti ; iAV; kAK; tAT ð11Þ

∑
iAS

∑
jAS;io j

xktij r ∑
iAS

ykti �yktm ; SDV 0; kAK; tAT ; mAS ð12Þ

∑
kAK

ykti r1; iAV 0; tAT ð13Þ

Igti ; d
gt
i ; q

gkt
i Z0; iAV 0; gAS; kAK; tAT ð14Þ

xkt0iAf0;1;2g; iAV 0; kAK; tAT ð15Þ

xktij Af0;1g; ði; jÞAE; kAK; tAT ð16Þ

ykti Af0;1g; iAV; kAK; tAT : ð17Þ
The objective function (1) maximizes the total sales revenue,

minus inventory and routing costs. Constraints (2) define the
inventory conservation conditions for the supplier, aging the
product by one unit in each period. Constraints (3) ensure that
the supplier always produces or receives top fresh products.
Constraints (4) and (5) define inventory conservation and aging
of the items for the customers. Constraints (6) impose a maximal
inventory capacity at each customer. Constraints (7) state that the
demand of each customer in each period is the sum of product
quantities of different ages. Note that by design, any product
whose age g is higher than s is spoiled, e.g., it no longer appears in
the inventory nor it can be used to satisfy the demand. Constraints
(8) and (9) link the quantities delivered to the routing variables.
In particular, they only allow a vehicle to deliver products to
a customer if a vehicle has been assigned to it. Constraints (10)
ensure that the vehicle capacities are respected. Constraints (11)
and (12) are degree constraints and subtour elimination con-
straints, respectively. Inequalities (13) ensure that at most one
vehicle visits each customer in each period, thus forbidding split
deliveries. Constraints (14)–(17) enforce integrality and non-
negativity conditions on the variables.

This model can be strengthened through the inclusion of the
following families of valid inequalities [6]:

xkt0ir2ykti ; iAV; kAK; tAT ð18Þ

xktij rykti ; i; jAV; kAK; tAT ð19Þ

ykti rykt0 ; iAV 0; kAK; tAT ð20Þ

ykt0 ryk�1;t
0 ; kAK\f1g; tAT ð21Þ

ykti r ∑
jo i

yk�1;t
j ; iAV; kAK\f1g; tAT : ð22Þ

Constraints (18) and (19) enforce the condition that if the
supplier is the immediate successor of a customer in the route of

vehicle k in period t, then i must be visited by the same vehicle.
A similar reasoning is applied to customer j in inequalities (19).
Constraints (20) ensure that the supplier is visited if any customer
i is visited by vehicle k in period t.

When the vehicle fleet is homogeneous, one can break some of
the vehicle symmetry by means of constraints (21), thus ensuring
that vehicle k cannot leave the depot if vehicle k�1 is not used.
This symmetry breaking rule is then extended to the customer
vertices by constraints (22) which state that if customer i is
assigned to vehicle k in period t, then vehicle k�1 must serve a
customer with an index smaller than i in the same period.

We also introduce additional cuts in order to strengthen this
formulation. If the sum of the demands over ½t1; t2� is at least equal to
the maximum possible inventory held, then there must be at least
one visit to this customer in the interval ½t1; t2�. This constraint can be
strengthened by considering that if the quantity needed to satisfy
future demands is larger than the maximum inventory capacity, then
several visits are needed. Since the maximum delivery size is the
minimum between the holding capacity and the maximum vehicle
capacity, one can round up the right-hand side of (23). Making the
numerator tighter by considering the actual inventory instead of the
maximum possible inventory yields inequalities (24), which cannot
be rounded up because they would then become non-linear due to
the presence of the It1i variable in their right-hand side

∑
kAK

∑
t2

t0 ¼ t1

ykt0i Z⌈
∑t2

t0 ¼ t1
dt0i �Ci

minfmaxkfQkg;Cig
⌉; iAV 0; t1; t2AT ; t2Zt1

ð23Þ

∑
kAK

∑
t2

t0 ¼ t1

ykt0i Z
∑t2

t0 ¼ t1
dt0i � It1i

minfmaxkfQkg;Cig
; iAV 0; t1; t2AT ; t2Zt1: ð24Þ

A different version of the same inequalities can be written as
follows. It is related to whether the inventory hold at each period is
sufficient to fulfill future demands. In particular, if the inventory held
in period t1 by customer i is not sufficient to fulfill future demands,
then a visit to this customer must take place in the interval ½t1; t2�. This
condition can be enforced by the following set of inequalities:

∑
kAK

∑
t2

t0 ¼ t1

ykt0i Z
∑t2

t0 ¼ t1
dt0i � It1i

∑t2
t0 ¼ t1

dt0i
; iAV 0; t1; t2AT ; t2Zt1: ð25Þ

Even if these inequalities are redundant for our model, they are
useful in helping CPLEX generate new cuts.

It is relevant to note that this model distinguishes items of
different ages through the use of index g. The variables have a
meaning similar to those of the multi-product IRP [6]. In the case of
a single perishable product, the model works as if products of
different ages are different from each other (through their index)
and have different profits, but contrary to what happens in the
multi-product case, any of these products can be used to satisfy the
same demand. Another particularity of this model is that at each
period, an item transforms itself into another one through the
process of aging. Thus, our problem shares some features of the
multi-product problem [6], but it is structurally different from it.

3.1. Modeling an FF policy

We now show how the formulation just described can be used to
solve the problem under an FF policy under which the retailer sells
fresher items first. We add extra variables and constraints to the PIRP
formulation in order to restrict the choice of products age to be sold.

We implement this idea as follows. We first introduce new
binary variables Ligt equal to one if and only if products of age g can
be used to satisfy the demand of customer i in period t. The first set
of new constraints restricts the use of variables di

gt, i.e., the use of
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products of age g to satisfy the demand of customer i in period t,
only to those products allowed by the respective Li

gt variables, that is

dgti rCiL
gt
i ; iAV 0; gAS; tAT : ð26Þ

We also order the new variables in increasing order of age
index. The following set of constraints allows selling products of
age gþ1 only if products of age g have been used to satisfy the
demand of customer i in period t:

Lgti ZLgþ1;t
i ; iAV 0; gAS\fsg; tAT : ð27Þ

We then impose the following constraints to disallow the use
of older products if there exists enough inventory of fresher
products. The use of products of age gþ1 is allowed if and only
if the total inventory of products of ages g; g�1;…;0 is insufficient
to satisfy the demand of customer i in period t. This can be
enforced through the following constraints:

Cið1�Lgþ1;t
i ÞZ ∑

g

j ¼ 0
Ijti þ ∑

g

j ¼ 0
∑

kAK
qjkti �dti þ1; iAV 0; gAS\fsg; tAT :

ð28Þ

3.2. Modeling an OF policy

It is straightforward to model the OF policy from the constraints
developed for the FF case. This policy can be enforced by considering
the same Li

gt variables and the following three sets of constraints:

dgti rCiL
gt
i ; iAV 0; gAS; tAT : ð29Þ

Constraints (29) only allow the use of inventory of age g to
satisfy the demand if its associated Li

gt variable is set to one. Then,
we also rank the Li

gt variables in increasing order of age index. The
following set of constraints allow selling products of age g�1 only
if products of age g are being used to satisfy the demand of
customer i in period t:

Lg�1;t
i rLg;ti ; iAV 0; gAS\f0g; tAT : ð30Þ
Finally, we force some of the L variables to take value zero

by adding the following constraints to the model. If the total
inventory available of ages fg; gþ1;…; sg is sufficient to satisfy the
demand of customer i in period t, then the right-hand side of
inequalities (31) is positive, which in turn guarantees that Lg�1;t

i
will take value zero

Cið1�Lg�1;t
i ÞZ ∑

s

j ¼ g
Ijti þ ∑

s

j ¼ g
∑

kAK
qjkti �dti þ1; iAV 0; gAS\f0g; tAT :

ð31Þ

3.3. Extending the model to consider waste and salvage revenues

We note that the revenue function for aged products can easily
consider a salvage value for wasted products. This can be achieved by
including a revenue for a product when it is no longer fit for
consumption, and by artificially extending its shelf life in the model.
This has the disadvantage, however, that the demand for an old
(wasted) product is shared with the demand for products that are still
good. Salvage costs and an account for wasted products can be
modeled as follows.

Let wi
t be the quantity of wasted products at customer i in

period t. It is easily observed that

wt
i ¼ Is;t�1

i ; iAV 0; tAT \f1g: ð32Þ
If γ is the salvage cost per unit, the total salvage cost is then

∑
iAV 0

∑
tAT \f1g

γwt
i ; ð33Þ

which can be added to the objective function (1).

4. Branch-and-cut algorithm

For instances of very small sizes, the model presented in Section
3 can be fully described and all constraints and variables generated.
It can then be solved by feeding it directly into an integer linear
programming solver. However, for instances of realistic sizes, the
number of subtour elimination constraints (12) is too large to allow
full enumeration and these must be dynamically generated
throughout the search process. The exact algorithm we present is
then a classical branch-and-cut scheme in which subtour elimina-
tion constraints are only generated and incorporated into the
program whenever they are found to be violated. It works as
follows. At a generic node of the search tree, a linear program
containing a subset of the subtour elimination constraints is solved,
a search for violated inequalities is performed, and some of these
are added to the current program which is then reoptimized. This
process is reiterated until a feasible or dominated solution is
reached, or until there are no more cuts to be added. At this point,
branching on a fractional variable occurs. We provide a sketch of
the branch-and-bound-and-cut scheme in Algorithm 1.

Algorithm 1. Branch-and-cut algorithm

1. At the root node of the search tree, generate and insert all
valid inequalities into the program.

2. zn’1.
3. Termination check:
4. if there are no more nodes to evaluate then
5. Stop with the incumbent and optimal solution of cost zn.
6. else
7. Select one node from the branch-and-bound tree.
8. endif
9. Subproblem solution: solve the LP relaxation of the node

and let z be its cost.
10. if the current solution is feasible then
11. if zrzn then
12. Go to termination check.
13. else
14. zn ’z.
15. Update the incumbent solution.
16. Prune nodes with lower bound lower than or equal to zn.
17. Go to termination check.
18. endif
19. endif
20. Cut generation:
21. if the solution of the current LP relaxation violates any cuts

then
22. Identify connected components as in Padberg and

Rinaldi [32].
23. Determine whether the component containing the

supplier is weakly connected as in Gendreau et al. [13].
24. Add violated subtour elimination constraints (12).
25. Go to subproblem solution.
26. endif
27. Branching: branch on one of the fractional variables.
28. Go to the termination check.

5. Computational experiments

In order to evaluate the proposed algorithm, we have coded it
in Cþþ and used IBM Concert Technology and CPLEX 12.5
running in parallel with two threads. All computations were
executed on a machine equipped with an Intel XeonTM processor
running at 2.66 GHz with 24 GB of RAM, with the Scientific Linux
6.1 operating system.
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5.1. Instances generation

We have created randomly generated instances to assess the
performance of our algorithm on a wide range of situations.
We have generated a total of 60 different instances which vary
in terms of the number of customers, periods, vehicles and
maximum age of the product. Our testbed is composed of
instances generated with the following parameters:

� Number of customers n: 10, 20, 30, 40, 50.
� Number of periods H: 3 for up to n¼50; 6 for up to n¼40; and

10 for up to n¼30.
� Number of vehicles K: 1 for n¼10; 2 for n¼20 and 30; 3 for

n¼40 and 50.
� Maximum age of the products s: 2 for H¼3; 3 for H¼6; 5 for

H¼10.
� Demand di

t: randomly selected from the interval [30, 210].
� Position ðx; yÞ of the supplier and customers: randomly selected

from the interval [0, 1000].
� Customers inventory capacity Ci: R�maxtfdti g, where R is

randomly selected from the set {2, 3}.
� Initial inventory Ii

0 of fresh products: equal to Ci�d1i .� Revenue ui
g: equal to R1� R1�R2ð Þg=s, where R1 and R2 are

randomly selected from the intervals [10, 20] and [4, 7],
respectively.

� Inventory holding cost hi
g: equal to ðR1þgR2=ð1þgÞÞ=100,

where R1 and R2 are randomly selected from the intervals [0,
100] and [0, 70], respectively.

� Vehicle capacities Qk: equal to ⌊1:25∑iAV 0∑tAT d
t
i=ðHKÞc.

For each combination of the n, s, K and H parameters we have
generated five instances, yielding a total of 60 instances.

In what follows we provide average statistics over five
instances per combination. Detailed results are presented in
Appendix A. These results along with the instances are also
available for download from http://www.leandro-coelho.com.

5.2. Solutions for an OP policy

We provide in Table 1 average computational results for these
instances under the OP policy. We have allowed the algorithm to
run for a maximum of 2 h. When the time limit is reached, we
report the best available lower and upper bound (solution value)
and the optimality gap. We report the instance sizes as (n-s-K-H),
where n is the number of customers, s is the maximum age of the
product, K is the number of vehicles, and H is the length of the
planning horizon. The next columns report the average best
solution value obtained, the average best bound, the average

Table 1
Summary of the computational results for the PIRP under the OP policy.

Instance size
(n-s-K-H)

Best known
solution value

Best known
upper bound

Gap
(%)

#
solved

Time
(s)

PIRP-10-2-1-3 31 529.90 31 529.90 0.00 5/5 0.4
PIRP-10-3-1-6 61 684.44 61 684.44 0.00 5/5 2.4
PIRP-10-5-1-10 81 094.96 81 094.96 0.00 5/5 210.2
PIRP-20-2-2-3 62 936.24 62 936.24 0.00 5/5 27.8
PIRP-20-3-2-6 126 736.20 128 894.40 1.75 0/5 7200.6
PIRP-20-5-2-10 180 919.00 186 553.20 3.30 0/5 7201.4
PIRP-30-2-2-3 97 580.90 97 580.90 0.00 5/5 322.0
PIRP-30-3-2-6 192 817.80 196 322.20 1.79 0/5 7201.0
PIRP-30-5-2-10 294 582.20 300 742.00 2.17 0/5 7201.4
PIRP-40-2-3-3 127 961.60 129 832.00 1.45 0/5 7201.4
PIRP-40-3-3-6 250 435.80 258 103.40 3.10 0/5 7201.2
PIRP-50-2-3-3 177 157.40 179 724.40 1.46 0/5 7201.8

Table 2
Summary of the computational results for the PIRP under an FF policy.

Instance size (n-s-K-H) % decrease Opt gap (%) # solved Time (s)

PIRP-10-2-1-3 0.00 0.00 5/5 0.6
PIRP-10-3-1-6 0.17 0.00 5/5 3.2
PIRP-10-5-1-10 0.51 0.64 3/5 3251.0
PIRP-20-2-2-3 0.01 0.00 5/5 50.6
PIRP-20-3-2-6 0.14 1.97 0/5 7200.4
PIRP-20-5-2-10 0.10 3.42 0/5 7202.4
PIRP-30-2-2-3 0.12 0.33 4/5 1526.0
PIRP-30-3-2-6 �0.01 1.83 0/5 7201.2
PIRP-30-5-2-10 0.35 2.45 0/5 7202.6
PIRP-40-2-3-3 0.14 1.62 0/5 7201.0
PIRP-40-3-3-6 0.25 3.38 0/5 7202.8
PIRP-50-2-3-3 0.35 1.89 0/5 7202.6

Table 3
Summary of the computational results for the PIRP under an OF policy.

Instance size (n-s-K-H) % decrease Opt gap (%) # solved Time (s)

PIRP-10-2-1-3 13.91 0.00 5/5 0.2
PIRP-10-3-1-6 14.99 0.00 5/5 35.8
PIRP-10-5-1-10 10.43 0.85 3/5 3638.6
PIRP-20-2-2-3 18.84 0.00 5/5 6.0
PIRP-20-3-2-6 11.94 2.10 1/5 6622.0
PIRP-20-5-2-10 8.64 4.91 0/5 7201.6
PIRP-30-2-2-3 18.09 0.00 5/5 40.4
PIRP-30-3-2-6 9.97 1.76 0/5 7201.6
PIRP-30-5-2-10 7.95 3.22 0/5 7202.0
PIRP-40-2-3-3 16.09 0.60 2/5 6249.4
PIRP-40-3-3-6 9.56 3.36 0/5 7202.0
PIRP-50-2-3-3 16.53 1.38 0/5 7202.8

Table 4
Percentage decrease in profit when using alternative revenue functions.

Instance size (n-s-
K-H)

FF policy OF policy

Base
case

Mild Steep Flat Base
case

Mild Steep Flat

PIRP-10-2-1-3 0.00 0.00 0.00 0.00 13.91 21.37 10.76 0.01
PIRP-10-3-1-6 0.17 0.00 0.00 0.02 14.99 19.69 10.52 0.46
PIRP-10-5-1-10 0.51 0.00 0.00 0.35 10.43 16.27 9.19 1.59
PIRP-20-2-2-3 0.01 0.00 0.00 0.00 18.84 25.02 14.01 0.11
PIRP-20-3-2-6 0.14 �0.01 �0.11 0.12 11.94 15.83 8.59 0.80
PIRP-20-5-2-10 0.10 0.05 �0.03 0.40 8.64 11.22 7.44 1.58

Fig. 1. Four alternative revenue functions.
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optimality gap, the number of instances out of the five that were
solved to optimality, and the average running time in seconds.

These results clearly indicate that the performance of the
algorithm is directly related to the number n of customers and
to the length H of the planning horizon. For the instances with
shorter planning horizons (H¼3), the algorithm is always able to
find optimal solutions within a few seconds of computational
time. This remains true even when the number of customers and
vehicles increases, e.g., all five instances with 30 customers and
three periods were solved to optimality, taking on average 5 min.
Larger instances with up to 40 and 50 customers also with three
periods were solved with a gap of less than 1.50% on average.

5.3. Solutions for an FF and an OF policy

We also compare the solution cost of the optimized policy with
respect to the age of the products sold with the cost of the
alternative FF and OF policies. We first consider the FF policy
which maximizes the revenue by always selling fresher items. This
policy, on the other hand, leads to more spoilage, which in turn
increases the need for more deliveries, thus increasing distribu-
tions costs. The results are shown in Table 2 as percentages
representing the profit decrease of the FF policy with respect to
the OP policy. We also report the optimality gap, the number of
instances solved optimally, and the running time in seconds. We
note that the difficulty of solving the PIRP under an FF policy is
similar to that observed for the OP policy, and the profit is only
slightly lower. Finally, we provide the same comparison with
respect to the OF policy. The summary of the results is shown in
Table 3.

As was the case of the FF policy, the difficulty of obtaining
optimal and quasi-optimal solutions is not affected by the inclu-
sion of the new binary variables and the new constraints. How-
ever, unlike the previous policy, the effect on cost of selling older
items first, thus deriving lower revenues, has a major effect on
the total profit observed, which decreases substantially over all
instances.

5.4. Solutions for alternative revenue functions

In order to assess the trade-off between the OP, FF and OF
policies, we have changed how the product revenue varies linearly
as a function of age. We have generated three variations. In the
first mild scenario, the difference in cost between fresh and old
products is reduced. In the second steep scenario, the difference is

Fig. 2. Variable revenue functions. The horizontal axis indicate the revenue for one
unit of the oldest item as a fraction of the revenue of a fresh item. Low values on
the horizontal axis indicate a steep revenue function with respect to the age of the
products. High values on the horizontal axis indicate a mild revenue function with
respect to the age of the products.

Fig. 3. Examples of the six different non-monotonic revenue functions tested. (a) Case with aocob. (b) Case with coaob. (c) Case with a¼ cob. (d) Case with a4c4b.
(e) Case with c4a4b. (f) Case with a¼ c4b.
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increased. Finally, we have also created a flat scenario case in
which the revenue of the product is constant as a function of age.
These three scenarios and the base case are depicted in Fig. 1. The
slopes of the linear functions in the increasing order are equal to
�2.4, �1.8 and �1.2.

We have designed the following experiments in order to
evaluate the impact of these changes in the trade-off between
the different policies. We have selected all 30 instances containing
10 and 20 customers. Each instance was solved under the three
policies and under the three alternative revenue functions. In
Table 4 we report the percentage decrease in profit with respect to
the optimized policy for each of the revenue functions considered.

To better understand how different revenues for products of
different ages affect the trade-off between each of the three
policies, we have conducted the following experiments. We have
selected one instance (PIRP-10-5-1-10-1) and we have solved it
using the three policies for several slopes of the revenue functions.
Specifically, we have set the revenue of a fresh product to 20 and
we have set the revenue of the oldest item ranging from zero to
20, in steps of one unit. We have then plotted the values of the
objective functions of each one in the graph of Fig. 2.

These new sets of experiments confirm that on our data set the
FF policy provides solution values that are almost identical to the
OP policy. Note how the thin continuous line of the OP policy is
only slightly higher than the dotted line of the FF policy, but
visually indistinguishable from it. This implies that here the
optimal policy tends to favor the sale of fresher products. The OF
policy, on the other hand, provides solutions whose cost is greatly
affected by the revenue value of older products. The difference
between the policies is largest when these products are valued
very low. When the revenue value for older products increases, so
does increase the profit of applying an OF policy, and the
difference between this policy and the other two tends to vanish.

Finally, we have also tested the performance of the three policies
with respect to non-monotonic revenue functions. The shape of the
non-monotonic instances is depicted in Fig. 3. There are three cases
in which the revenue increases before decreasing, and three cases in
which the revenue first decreases and then increases again. The six
cases are illustrated in Fig. 3. We have created five instances of each
type. Average results are presented in Table 5. We observe that for all
cases, the OP policy outperforms both the FF and the OF policies.

6. Conclusions

We have introduced the joint replenishment and inventory
control of perishable products. We have modeled the problem
under general assumptions as a MILP, and we have solved it
exactly by branch-and-cut. We have also introduced, modeled and
solved exactly two variants of the problem defined by applying the
OF and the FF selling priority policies, in which the retailer sells
with higher priority older and fresher items, respectively. Our
model remains linear even when the product revenue decreases in
a non-linear or even in a non-convex fashion over time. It keeps
track of the number of items of each age, and considers different
holding costs for products of different ages. The model identifies
products of different ages independently from each other, which is
very similar to dealing with several products, as in a multi-product
environment, but not identical since the state of the product
changes over time. The model optimally determines which items
to sell at each period based on the trade-off between cost and
revenue. The algorithm can effectively compute optimal joint
replenishment and delivery decisions for perishable products in
an inventory-routing context for medium size instances. We have
also shown that on our testbed, the profit changes drastically
depending on the shape of the revenue of the product. OnTa
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Table 6
Detailed results of the computational experiments for the PIRP.

Instance size
(n-s-K-H)

OP policy FF policy OF policy

Best known
solution value

Best known
upper bound

Gap (%) Time (s) Best known
solution value

Best known
upper bound

Gap (%) Time (s) Best known
solution value

Best known
upper bound

Gap (%) Time (s)

PIRP-10-2-1-3-1 28 863.4 28 863.4 0.00 1 28 863.4 28 863.4 0.00 1 26 221.0 26 221.0 0.00 1
PIRP-10-2-1-3-2 34 368.0 34 368.0 0.00 1 34 368.0 34 368.0 0.00 1 29 637.7 29 637.7 0.00 0
PIRP-10-2-1-3-3 27 895.7 27 895.7 0.00 0 27 895.7 27 895.7 0.00 1 23 062.5 23 062.5 0.00 0
PIRP-10-2-1-3-4 33 688.1 33 688.1 0.00 0 33 688.1 33 688.1 0.00 0 30 923.3 30 923.3 0.00 0
PIRP-10-2-1-3-5 32 834.3 32 834.3 0.00 0 32 834.3 32 834.3 0.00 0 25 874.1 25 874.1 0.00 0
PIRP-10-3-1-6-1 67 552.8 67 552.8 0.00 1 67 542.2 67 542.2 0.00 1 60 057.5 60 057.5 0.00 5
PIRP-10-3-1-6-2 53 367.7 53 367.7 0.00 1 53 330.5 53 330.5 0.00 2 43 119.8 43 119.8 0.00 1
PIRP-10-3-1-6-3 67 946.0 67 946.0 0.00 3 67 908.3 67 908.3 0.00 4 59 064.9 59 064.9 0.00 7
PIRP- 10-3-1-6-4 65 375.6 65 375.6 0.00 2 64 918.2 64 918.2 0.00 5 55 391.3 55 391.3 0.00 8
PIRP-10-3-1-6-5 54 180.1 54 180.1 0.00 5 54 176.5 54 176.5 0.00 4 44 555.6 44 555.6 0.00 158
PIRP-10-5-1-10-1 80 471.9 80 471.9 0.00 30 79 740.7 79 740.7 0.00 641 69 734.9 69 734.9 0.00 2000
PIRP-10-5-1-10-2 72 194.8 72 194.8 0.00 205 72 149.4 72 149.4 0.00 1018 66 685.6 67 738.8 1.57 7201
PIRP-10-5-1-10-3 101 043.0 101 043.0 0.00 427 100 508.0 102 792.0 2.27 7200 96 025.7 96 025.7 0.00 687
PIRP-10-5-1-10-4 82 829.4 82 829.4 0.00 28 82 336.3 82 336.3 0.00 196 73 296.0 73 296.0 0.00 1104
PIRP-10-5-1-10-5 68 935.7 68 935.7 0.00 361 68 657.0 69 301.6 0.93 7200 57416.6 58 956.7 2.68 7201
PIRP-20-2-2-3-1 61780.2 61780.2 0.00 24 61780.2 61780.2 0.00 136 50 548.4 50 548.4 0.00 16
PIRP-20-2-2-3-2 75 757.3 75 757.3 0.00 1 75 753.0 75 753.0 0.00 2 64 271.6 64 271.6 0.00 2
PIRP-20-2-2-3-3 72 546.5 72 546.5 0.00 97 72 546.5 72 546.5 0.00 76 62 656.7 62 656.7 0.00 7
PIRP-20-2-2-3-4 52 850.8 52 850.8 0.00 14 52 842.2 52 842.2 0.00 36 42 008.2 42 008.2 0.00 4
PIRP-20-2-2-3-5 51746.4 51746.4 0.00 3 51746.4 51746.4 0.00 3 35 895.6 35 895.6 0.00 1
PIRP-20-3-2-6-1 110 437.0 112 517.0 1.88 7200 110 343.0 112 340.0 1.81 7200 87 287.3 90 277.8 3.42 7200
PIRP-20-3-2-6-2 133 377.0 136 382.0 2.25 7200 133 126.0 136 980.0 2.89 7201 117 342.0 120 768.0 2.91 7200
PIRP-20-3-2-6-3 106 120.0 108 651.0 2.38 7202 106 033.0 108 735.0 2.54 7200 91104.1 94 204.4 3.40 7202
PIRP- 20-3-2-6-4 135 267.0 137 210.0 1.43 7200 134 850.0 137 238.0 1.77 7201 122 779.0 122 779.0 0.00 4306
PIRP-20-3-2-6-5 148 480.0 149 712.0 0.83 7201 148 395.0 149 662.0 0.85 7200 139 502.0 140 613.0 0.79 7202
PIRP-20-5-2-10-1 200 786.0 206 053.0 2.62 7202 200 646.0 206 351.0 2.84 7201 183 235.0 191178.0 4.33 7202
PIRP-20-5-2-10-2 152 951.0 161 040.0 5.28 7201 153 008.0 160 525.0 4.91 7201 132 874.0 141 960.0 6.83 7202
PIRP-20-5-2-10-3 182 710.0 188 156.0 2.98 7200 182 683.0 188 459.0 3.16 7202 172 490.0 179 249.0 3.91 7201
PIRP-20-5-2-10-4 146 990.0 153 093.0 4.15 7202 146 316.0 153 154.0 4.67 7204 133 093.0 141 996.0 6.68 7201
PIRP-20-5-2-10-5 221158.0 224 424.0 1.47 7202 221 003.0 224 387.0 1.53 7204 204 667.0 210 435.0 2.81 7202
PIRP-30-2-2-3-1 85 251.9 85 251.9 0.00 1101 84 740.0 86 178.2 1.69 7202 71 288.4 71 288.4 0.00 137
PIRP-30-2-2-3-2 94 711.4 94 711.4 0.00 114 94 633.3 94 633.3 0.00 118 75 580.3 75 580.3 0.00 13
PIRP-30-2-2-3-3 99 037.0 99 037.0 0.00 46 99 037.0 99 037.0 0.00 41 77 017.0 77 017.0 0.00 24
PIRP-30-2-2-3-4 113 737.0 113 737.0 0.00 12 113 737.0 113 737.0 0.00 80 91 090.1 91 090.1 0.00 13
PIRP-30-2-2-3-5 95 167.2 95 167.2 0.00 337 95 140.5 95 140.5 0.00 189 84 626.6 84 626.6 0.00 15
PIRP-30-3-2-6-1 190 666.0 196 082.0 2.84 7201 190 788.0 196 539.0 3.01 7201 176 515.0 181188.0 2.64 7202
PIRP-30-3-2-6-2 195 358.0 196 565.0 0.61 7200 195 318.0 196 563.0 0.63 7201 177 796.0 179 130.0 0.75 7201
PIRP-30- 3-2-6-3 185 507.0 188 220.0 1.46 7200 185 153.0 188 306.0 1.70 7201 166 860.0 169 568.0 1.62 7202
PIRP-30-3-2-6-4 174 064.0 176 545.0 1.42 7201 174 029.0 176 540.0 1.44 7202 147 141.0 149 654.0 1.70 7201
PIRP-30-3-2-6-5 218 494.0 224 199.0 2.61 7203 218 991.0 224 188.0 2.37 7201 199 631.0 203 846.0 2.11 7202
PIRP-30-5-2-10-1 232 289.0 238 098.0 2.50 7201 230 669.0 237 852.0 3.11 7202 210 635.0 219 618.0 4.26 7201
PIRP-30-5-2-10-2 257 061.0 263 149.0 2.36 7201 256 029.0 262 717.0 2.61 7204 237 088.0 245 671.0 3.62 7202
PIRP-30-5-2-10-3 321116.0 325 615.0 1.40 7202 320 413.0 326 010.0 1.74 7203 294 469.0 300 721.0 2.12 7202
PIRP-30-5-2-10-4 372 682.0 377 550.0 1.30 7201 372 132.0 377 642.0 1.48 7202 346 923.0 354 108.0 2.07 7203
PIRP-30-5-2-10-5 289 763.0 299 298.0 3.29 7202 288 474.0 298 017.0 3.30 7202 266 616.0 277 415.0 4.05 7202
PIRP-40-2-3-3-1 134 602.0 136 680.0 1.54 7200 133 995.0 136 662.0 1.99 7202 113 171.0 113 836.0 0.58 7200
PIRP-40-2-3-3-2 129 497.0 132 107.0 2.01 7205 129 618.0 132 099.0 1.91 7200 109 140.0 109 140.0 0.00 5353
PIRP-40-2-3-3-3 127 505.0 129 425.0 1.50 7202 127438.0 129 524.0 1.63 7201 110 936.0 111849.0 0.82 7201
PIRP-40-2-3-3-4 120 444.0 121 953.0 1.25 7200 120 255.0 121 919.0 1.38 7201 101 223.0 101 223.0 0.00 4292
PIRP-40-2-3-3-5 127 760.0 128 995.0 0.96 7200 127 601.0 129 128.0 1.19 7201 102 356.0 103 990.0 1.59 7201
PIRP-40-3-3-6-1 234 408.0 244 405.0 4.26 7201 233 405.0 244 450.0 4.73 7204 206 077.0 216 220.0 4.92 7202
PIRP- 40-3-3-6-2 216 410.0 223 526.0 3.28 7200 215 836.0 223 805.0 3.69 7203 194 909.0 201 572.0 3.41 7202
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monotonically decreasing revenue functions, the value of the
solution obtained under the OP is reduced when an OF policy is
applied, but the decrease is only marginal under an FF policy.
Extensive computational experiments carried out on randomly
generated instances support these conclusions.
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Appendix A. Detailed computational results for the OP, FF and
OF policies

We present in Table 6 the detailed computational results for all
instances under the OP, the FF and the OF policies.
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