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Abstract—Greedy algorithms for subgraph pattern matching
operations are often sufficient when the graph data set can
be held in memory on a single machine. However, as graph
data sets increasingly expand and require external storage and
partitioning across a cluster of machines, more sophisticated
query optimization techniques become critical to avoid explosions
in query latency. In this paper, we introduce several query
optimization techniques for distributed graph pattern match-
ing. These techniques include (1) a System-R style dynamic
programming-based optimization algorithm that considers both
linear and bushy plans, (2) a cycle detection-based algorithm that
leverages cycles to reduce intermediate result set sizes, and (3) a
computation reusing technique that eliminates redundant query
execution and data transfer over the network. Experimental
results show that these algorithms can lead to an order of
magnitude improvement in query performance.

I. INTRODUCTION

The graph data model is becoming an increasingly popular
way to represent data for various applications. Reasons for
this include: (1) It can be less complex for a user to shoehorn
semi-structured or sparse data into a vertex-edge-vertex data
model than a relational data model, (2) some increasingly
popular data sets (such as the Twitter, Facebook, and LinkedIn
social networks) are most naturally reasoned about using a
graph paradigm, and (3) graph operations, such as shortest
path calculations, subgraph pattern matching, and PageRank
are easily expressed over a graph data model.

Many graph data sets are becoming too large to manage
on a single machine, and therefore clusters of machines are
being deployed to process, store, manage, and analyze graph
data. For instance, as of 2012, Facebook’s user graph has
900 million vertices (and the average degree of a vertex is
130) [1]. In Semantic Web community, the Linking Open Data
movement has collected 6 billion triples (a triple is equivalent
to an edge in a graph) from 300 interconnected data sets
[3]. Since many graph algorithms were originally designed
with the assumption that the entire graph can be stored in
memory on a single machine, these distributed architectures
require revisiting these algorithms in a distributed context, as
considerations such as network latency and throughput can
bottleneck the traditional implementation of these algorithms.

Subgraph pattern matching is a particularly important op-
eration that must be revisited for distributed graph stores.
Subgraph matching operations are heavily used in social
network data mining operations (e.g. counting triangles for
gauging social influence of celebrities [33]), SPARQL queries
over the Linked Data graph, and machine learning algorithms
that power recommendation engines for e-commerce retail
applications and entertainment choices.

This paper is the first (to the best of our knowledge)

to explicitly use System-R style dynamic programming tech-
niques [30] in order to optimize distributed subgraph pattern
matching. However, we find that these traditional algorithms
need to be modified in three ways in order to work well for
graph data:

• Although others have noted that even in the tradi-
tional relational context, System-R’s consideration of
only left-deep join trees can lead to a suboptimal
optimization strategy [21], the consideration of bushy
plans for distributed graph pattern matching queries
is particularly important in order to reduce network
traffic and sizes of intermediate output. The heuristics
for which bushy plans to consider should leverage
graph characteristics.

• Cycles appear more frequently in query patterns over
a graph model than data represented in other models.
They can be potentially leveraged to improve query
performance and should be explicitly considered dur-
ing plan generation.

• In general, distributed subgraph pattern matching is
performed by finding components of the subgraph
separately, and joining these components together.
However, when pure graph patterns are being searched
for (without any selection predicates on vertex or
edge attributes), the intermediate result sets tend to
be extremely large.

In this paper we introduce two query optimization frame-
works for subgraph pattern matching. In particular, given a
data store represented in the graph data model, and a query
that requests all instances of a particular graph pattern within
the data store, we provide algorithms that generate a series
of query execution plans, estimate the cost of each of these
plans, and select the plan with lowest cost for execution. We
make no assumptions about how the graph data is partitioned
across a cluster, except that all (directed) edges emanating from
the same vertex are stored on the same physical machine,
and that a deterministic function (e.g. a hash function) can
be applied to any edge in order to determine its location.
Furthermore, we make no assumptions about the subgraph
being matched — our algorithms apply to both unattributed
subgraphs (where just the structure of the graph pattern is being
matched) and attributed subgraphs (where each vertex and edge
in the graph data set may have attributes associated with it,
and the subgraph may include predicates on these attributes in
order to reduce the scope of the search). Our work makes the
following contributions:

• We propose a dynamic programming-based optimiza-
tion framework that considers bushy plans without
encountering query plan space explosion (Section III).
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• We propose an cycle detection-based optimization
framework based on the observation that cycles tend
to significantly reduce the size of intermediate result
sets (Section IV).

• We introduce a computation reusing technique which
eliminates repetitive identical subquery execution and
redundant network transfer of intermediate result sets
within a query (Section VI).

Our experimental results show that our proposed tech-
niques improve performance of subgraph pattern matching
in a distributed graph store by an order of magnitude over
commonly used greedy algorithms, and often result in even
larger performance gains.

II. PRELIMINARIES

A. Subraph Patten Matching

The subgraph pattern matching problem is to find all
subgraphs that match certain patterns in a graph. Although
there are many variations on this problem [14], it is tra-
ditionally defined in terms of subgraph isomorphism [36],
which only considers the graph structure. In practice, many
graphs are annotated with semantic information, and this
semantic information can be included as part of a pattern to be
matched. Semantics are often represented as the types, labels
and attributes of vertices and edges. Types and labels can be
readily converted to attributes, so we will refer to all semantic
additions as “attributed graphs”. In this paper we consider both
subgraph isomorphism operations and more general matching
over attributed graphs. The formal definition that encompasses
both types of matching is given below.

Definition 1. A directed edge is represented as (A,B) or A→
B. Vertex A is called the originating vertex and vertex B is
the called the destination vertex.

Definition 2. A data graph is a directed graph G =
(V,E,AV , AE). V is a set of vertices, and E is a set of
directed edges. ∀e ∈ E, e = (v1, v2) and v1, v2 ∈ V . ∀v ∈ V ,
AV (v) is a tuple (A1 = a1, A2 = a2, ..., An = an), where Ai

is an attribute of v and ai is a constant, 1 ≤ i ≤ n. AE is a
similar function defined on E. A subgraph G′ = (V ′, E′) is a
subgraph of G if and only if V ′ ⊆ V and E′ ⊆ V ′×V ′ ⊆ E.

Definition 3. A pattern graph / query graph / query is
a directed graph Q = (VQ, EQ, fVQ

, fEQ
). VQ is a set

of vertices and EQ is a set of directed edges. ∀e ∈ EQ,
e = (v1, v2) and v1, v2 ∈ VQ. ∀v ∈ VQ, fVQ

(v) is a formula
which consists of predicates connected by logical operators
∨ (disjunction), ∧ (conjunction) and ¬ (negation). A predicate
takes attributes of v, constants and functions as arguments and
applies a comparison operator, such as <, ≤, =, 6=, > and
≥. fEQ

is a similar function defined on EQ.

Definition 4. A match of a pattern graph Q = (VQ, EQ,
fVQ

, fEQ
) in a data graph G = (V,E,AV , AE) is a subgraph

G′ = (V ′, E′) of G such that

(1) There are two bijections, one from VQ to V ′ and one
from EQ to E′. In other words, there are one-to-one corre-
spondences from VQ to V ′ and from EQ to E′, respectively.

(2) AV satisfies fVQ
on V ′ and AE satisfies fEQ

on E′.

Intuitively, AV and AE define the vertex and edge at-
tributes while fVQ

and fEQ
specify the match conditions on

attributes. The task of subgraph pattern matching is to find
all matches.

B. Data Partitioning and Joins

In distributed and parallel database systems, data partition-
ing has a significant impact on query execution. The costs of
distributed joins depend heavily on how data is partitioned
across the cluster of machines that store different partitions
of the data. For data sets represented in the graph data
model, vertices (and any associated attributes of these vertices)
are typically partitioned by applying a deterministic function
(often a hash function) to the vertex, where the result of this
function indicates where the vertex should be stored. For edges,
one of the two vertices that the edge connects is designated
the partitioning vertex (for directed edges, this is typically
the originating vertex), and the same partitioning function is
applied to that vertex to determine where that edge will be
placed. For example, edges A→B and A→C, which share the
same originating vertex (A), are guaranteed to be placed in
the same partition. On the other hand, edges A→B and C→B
(which share the same destination vertex) may not be placed
together.

In general, the task of subgraph pattern matching is per-
formed piecewise — searching for fragments of the subgraph
independently and joining these fragments on shared vertices.
These fragments usually start as small as a single edge, and
get successively larger with each join. We call all matches that
have been found for each subgraph fragment an intermediate
result set. Each intermediate result set for a subgraph fragment
has a vertex in the fragment designated as the partitioning
vertex, and the same deterministic function that was used to
partition vertices and edges in the raw graph dataset is used
to partition the intermediate result sets based on this vertex.
The joining of intermediate result sets can be performed using
the standard join methods in distributed and parallel database
systems: co-located joins, directed joins, distributed hash joins,
and broadcast joins.

The co-located join is a local join (it does not require any
data transfer over the network). It can be used when the join
vertex is the partitioning vertex for all intermediate result sets
being joined. The partitioning vertex of the intermediate result
set of the join is the join vertex.

If only one of the intermediate result sets being joined
is partitioned by the join vertex, then a directed join can be
used. In this case, the intermediate result set that is not already
partitioned by the join vertex is repartitioned by the join vertex.
After the repartitioning, a co-located join is performed.

If none of the intermediate result sets being joined are
partitioned by the join vertex, then either a distributed hash
join or a broadcast join is used. The distributed hash join
repartitions all join inputs by the join vertex, and then does
a co-located join. Therefore the partitioning vertex of the
intermediate result set produced by this join is the join vertex.
The broadcast join replicates the smaller intermediate result set
in its entirety to each location holding a partition of the larger
intermediate result set. A join is then performed between each
partition of the larger intermediate result and the entire smaller
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intermediate result set. Therefore the partitioning vertex of the
output is the same as the partitioning vertex of the larger input
intermediate result set.

III. DYNAMIC PROGRAMMING-BASED OPTIMIZATION

Query optimization in traditional database systems can
be seen as a search problem, which consists of three parts,
namely, search space generation, cost estimation and search.
The query optimizer defines a space of query plans, explores
the space with a search algorithm and estimates the cost of
plans encountered. The problem of subgraph pattern matching
can be thought of in the same way, where the subgraph
pattern being matched is the “query” that is processed over
the raw graph data. As described in the previous section,
these queries can be performed via matching fragments of the
subgraph, and then joining these fragments together. Therefore,
the optimization problem for subgraph pattern matching can
be posed in terms of join ordering optimization (where the
number of joins is equal to the number of vertices in the
query subgraph), and traditional join ordering optimization
techniques can be applied.

In general, given n relations (vertices), there are ((2n −
2)!)/((n−1)!) different but logically equivalent join orders. If
each join has several different implementation options (such as
the the four join algorithms described Section II-B), then the
plan space further explodes. As a result, many of the research
prototypes and commercial implementations of traditional re-
lational database systems limit the search space to a restricted
subset [8] and bear the risk of missing the optimal plan.

In this section, we show how System-R style dynamic
programming can be applied to subgraph pattern matching
queries over distributed graph data while keeping the search
space managably small.

A. Search Algorithm

Figure 1 (which calls code defined in Figures 2, 3, 5
and 7) provides psuedocode for our FindPlan algorithm,
which, given an input query (or a query fragment), generates
a plan space for processing the query, and uses a dynamic
programming search algorithm to find the lowest cost execu-
tion plan for that query. Note that different execution plans
will result in the output query result set being partitioned in
different ways. In general, if a query (or query fragment) has
n vertices, there are n different ways that the output could
be partitioned. The output partitioning vertex is an important
consideration if the input is a query fragment and the output
will eventually be joined with a different query fragment.
Therefore, instead of producing a single lowest cost plan for
the entire query (fragment), it produces a lowest cost plan
for each unique output partitioning vertex. The output of
FindPlan is therefore an array of triples containing (1) the
output partitioning vertices, (2) the cost of the lowest cost plan,
and (3) the lowest cost plan. We now explain the algorithm in
more detail.

In short, FindPlan enumerates all possible decomposi-
tions of the query graph into two or more fragments, and
computes the costs of joining each pair of fragments. Since
the same fragment is visited by many branches of the recursive
algorithm, repetitive computation is avoided by mapping every

possible query fragment to an initially empty triples array that
is populated the first time FindPlan is called for that frag-
ment. Therefore, the first line of the FindPlan pseudocode
first checks to see whether the triples array associated with
this fragment is non-empty. If so, then FindPlan has already
been called for this fragment and need not be re-executed.

For any query that is repeatedly decomposed into smaller
and smaller fragments, eventually the fragments will become
as small as a single edge. This is the base case of the recursive
FindPlan algorithm. If the fragment has one edge, we
simply calculate the cost of matching the edge (which is a
scan of all edges, E, of the data graph), and return from the
function. However, we also add a second base case: if all edges
in a query fragment all originate from the same vertex, then
an n-way co-located join is clearly the optimal way to process
this fragment, and no further composition is necessary.

If the if-statements in the pseudocode corresponding
to these base cases all fail, then the query will be
decomposed into fragments by LinearDecomposition
and BushyDecomposition. We then recursively call
FindPlan for each of these fragments. Once the
query plans for these fragments have been calculated,
the lowest cost plans for joining them back together
is calculated by the GenerateLinearPlans and
GenerateBushyPlans functions respectively. After
these plans are generated, the non-promising ones are
discarded by the EliminateNonMinCosts function. For
instance, suppose we have three triples, that is t1=(A, 100,
p1), t2=(A, 200, p2) and t3=(B, 400, p3). Although t2 has
a lower cost than t3, it will be removed because its cost is
higher than that of t1 and hence will not be used by any
future join. Therefore, the output of FindPlan is just [(A,
100, p1), (B, 400, p3)].

We now discuss linear and bushy plan generation.

B. Linear Plans

There are two steps to generate a linear plan for a query.
First the query is decomposed into two fragments, at least one
of which is not decomposable, and then a feasible join method
is used to join the fragments. These two steps are done by
LinearDecomposition and GenerateLinearPlans
in Figure 2, respectively. As explained above, a fragment with
all edges sharing the same originating vertex is considered
non-decomposable.

Example 1. Given query A→B, A→C, B→D, B→A, C→E,
edges are grouped into three fragments based on the originat-
ing vertices of the edges: Q1: A→B,A→C. Q2: B→D,B→A.
Q3: C→E. Three decompositions are generated as follows:

1:{Q1},{Q2,Q3} 2:{Q2},{Q1,Q3} 3:{Q3},{Q1,Q2}

In decomposition 1, it (1) joins the two edges in Q1 , (2)
joins the two edges in Q2, (3) joins the result of (2) with
Q3, and finally joins the results of (1) and (3). Technically
speaking, it is not a linear plan. However, the joins in steps
(1) and (2) are done via co-located joins, which are so much
cheaper than the distributed joins that they are considered
atomic (non-decomposable) entities, and the plan is linear with
respect to all non-local joins.
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function FindPlan(Q)
if (Q.triples != null) // already generated plans for Q

return
if (Q has only one edge e = (v1, v2))
Q.triples ={(v1, scan cost of E (all edges), “match e”)}
return

if (all edges in Q share the same originating vertex v)
Q.triples ={(v, co-l join cost, “co-located join of Q”)}
return

T = ∅ // a set of triples
LD =LinearDecomposition(Q)
for each linear decompositon (q1, q2) in LD

FindPlan(q1)
FindPlan(q2)
T = T ∪ GenerateLinearPlans(q1, q2)

LDAGs = GenerateLayeredDAGs(Q)
for each layered DAG d in LDAGs

(q1, q2, ..., qn−1, qn) = BushyDecomposition(d)
for i from 1 to n

FindPlan(qi)
T = T ∪ GenerateBushyPlans(q1, ..., qn)

Q.triples = EliminateNonMinCosts(T )

// for each vertex, remove the plans with non-minimum costs
function EliminateNonMinCosts(Triples)

for each unique partitioning vertex v in triples of Triples
let cv be the min cost of all triples of v
remove all triples (v, c, p) from Triples such that c > cv

return Triples

Fig. 1. Dynamic programming search algorithm that produces the lowest
cost execution plan for each unique output partitioning vertex of a given input
query (or query fragment). Functions undefined here are defined in Figures 2,
3, 5 and 7.

After FindPlan calls LinearDecomposition
to generate a linear decomposition, query plans are
generated for each pair of fragments returned by
LinearDecomposition (via recursive calls to FindPlan
for each fragment). The plan for reassembling each pair of
fragments (and the associated costs) is then performed by the
GenerateLinearPlans function. This function generates
every possible pairwise combination of plans — one from
each fragment — and calculates the cost of joining these
plans together for each different distributed join algorithm
that can possibly be applied given the partitioning vertex of
each fragment.

Finding linear plans has time complexity O(|V |2 · |E|!).

C. Bushy Plans

As mentioned above, the complete search space of query
plans is extremely large and the cost of an exhaustive enu-
meration of all plans (including bushy plans) is prohibitive.
However, limiting the search to just linear plans can result in
significant network bandwidth bottlenecks for distributed joins.
Therefore, in this section, we propose a heuristic that allows
us to explore certain promising bushy plans by taking into
account the characteristics of graph pattern matching queries
in a cost-effective manner. The heuristic consists of the three
steps: (1) transform the query graph into a special type of
directed acyclic graphs (DAGs); (2) decompose the DAGs into
several fragments at vertices with more than one incoming
edge; (3) form bushy query plans by joining the fragments
with bushy hash joins and broadcast joins.

function LinearDecomposition(Q = (V,E))
D = ∅ // a set of decomposition
group edges in E on the originating vertices into

fragments q1, q2, ..., qn
for each fragment q

D = D ∪ {(q,Q− q)}
return D

// Generate linear plans given a decomposition of q1 and q2
function GenerateLinearPlans(q1, q2)

T = ∅ // a set of triples
for each triple (v1, c1, p1) in q1

for each triple (v2, c2, p2) in q2
for each common vertex between q1 and q2

for each feasible join method j from Section II-B
C = c1 + c2+ cost of j
P = “run p1; run p2; join them using j”
// v is the partitioning vertex of j
T = T ∪ {(v, C, P )}

return T

Fig. 2. Pseudocode for producing linear plans.

1) Transformation: The motivation of the transformation
is two-fold. Firstly, many query graphs contain cycles, which
complicates the fragmentation of the query, so removing
cycles by transforming the query into a DAG leads to more
straightforward fragmentation. Secondly, since the bushy plan
space is enormous, rewriting the query as a DAG helps restrict
the search space, so that only a few promising candidates are
explored.

The result of a transformation is a set of a special type
of DAG, called a layered DAG. A graph is a layered DAG
if the following two conditions are met: (1) it is a DAG; (2)
each vertex v in the graph is assigned a layer ID l and edges
emanating from v go to vertices with layer ID l + 1.

Figure 3 shows the major functions used in the
transformation process, namely, GenerateLayeredDAGs,
GenerateLayeredDAG, GenerateComponent, and
Merge. GenerateLayeredDAGs generates, for every
vertex in an input query graph, a layered DAG starting with
that vertex. The code for generating a layered DAG starting
with a given vertex, v, is found in GenerateLayeredDAG.
It does this by finding all vertices and edges that are reachable
from v without ever traversing an edge twice. This set
of vertices and edges (a subset of the input query graph)
is termed a “component” (and the code for generating a
component is given in the GenerateComponent function).
If the component generated that started from v is not equal to
the entire input query graph, then an additional vertex (that
was unreachable from v) is selected as a starting point for a
second component. This process repeats until all vertices and
edges from the original query graph are accounted for in at
least one component. At this point, all components that were
generated are merged together using the Merge function, and
the result is a single layered DAG.

The GenerateComponent function itself also produces
a layered DAG. The input vertex exists by itself in the zeroth
layer of the DAG. All vertices reachable from it via a single
edge comprise the first layer, and all vertices reachable from
those vertices via a single edge comprise the second layer. This
process continues, with the i+1th layer comprising of vertices
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function GenerateLayeredDAGs(Q = (V,E))
S = ∅ // a set of layered DAGs
for each vertex v ∈ V

S = S ∪ {GenerateLayeredDAG(Q, v)}
unmark all edges in E

return S

function GenerateLayeredDAG(Q = (V,E), v0)
S = ∅ // a set of layered DAG components
v = v0
while (there are unmarked edges in E)

S = S ∪ {GenerateComponent(Q, v)}
v = the originating vertex of an unmarked edge in E

return Merge(S)

function GenerateComponent(Q = (V,E), v0)
C = ∅ // layered DAG component
add v0 to layer 0 of C
l = 0 // current layer ID
while (there are unmarked edges in E)

for each vertex v in layer l
for each unmarked edge e = (v, v′) ∈ E

add e to layer l of C and mark e
add v′ to layer (l + 1) of C

if (no edges are added to layer l)
break while

else
l++

return C

// Merge a set of layered DAG components into one
function Merge(S: a set of layered DAG components)

while (there are more than one component in S)
find two components C1, C2 with a vertex v in common
let i and j be the layer IDs of v in C1 and C2

for k from 0 to max(maxLayer(C1)),maxLayer(C2))
merge layer k from C1 and layer (k + j − i) from C2

let the result of merging be C3

add C3 to S and remove C1 and C2 from S
return the only component left in S

Fig. 3. Transformation of a query graph into layered directed acyclic graphs.

that are reachable via an edge from any vertex in the ith layer,
as long as the edge connecting them had not already been
traversed in a previous layer. Along with the vertices, each
layer contains the set of edges that were traversed to reach the
vertices in the succeeding layer. Although each edge can only
exist once in the entire layered DAG, vertices can exist more
than once. For example, if the vertices A and B are connected
via one edge from A to B and another edge from B to A, the
layered DAG that is generated starting from A is A→B→A,
where A appears twice (in the zeroth and second layers). To
distinguish multiple instances of a vertex in a component, we
also use the layer ID as a subscript to the vertex ID to identify
a vertex. Therefore, the previously mentioned layered DAG
is represented as: A0 →B1 →A2. All instances of a vertex
found in the same layer are merged into a single version of
that vertex.

As mentioned above, GenerateLayeredDAG continues
to generate components until all vertices and edges are in-
cluded in at least one component. At this point the Merge
function is called to merge all components. Two components
are merged by finding a vertex that is shared between them and
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Fig. 4. Graphs for Example 2.
connecting the two components at this vertex. For instance,
suppose two components C1 and C2 have vertices B1 (i.e.
vertex B in layer 1) and B3 (i.e. vertex B in layer 3),
respectively. Since B1 and B3 correspond to the same vertex
B in the query graph, two components can be merged on B1

and B3. The merging of layers works as follows: merge layer
0 from C1 and layer 2 from C2, merge layer 1 from C1 and
layer 3 from C2, and so forth. If a layer has no corresponding
layer to merge, it becomes a layer by itself in the new merged
component (e.g. layers 0 and 1 from C2) and keeps its relative
position to other merged layers.

Example 2. This example shows what happens if Genera-
teLayeredDAG is called on the sample input query from
Figure 4 with starting vertex D. Only one vertex is reachable
from D (E), so the first component, shown in Figure 4(a),
consists of just D → E. Assume A is picked as the next starting
vertex. This results in the component shown in Figure 4(b)
being produced. Note that the D → E edge had been used in
Figure 4(a) and hence cannot be added to Figure 4(b). C is the
only vertex left with edges emanating from it, so it is chosen
as starting vertex for the next component, and the component
shown in Figure 4(c) is generated. At this point, all edges are
accounted for in one of the three components, and the next step
is merging. The components from Figure 4(a) and Figure 4(b)
are merged on vertex E (though D could have been used as an
alternative) and component shown in Figure 4(d) is generated.
Components from Figure 4(c) and Figure 4(d) are merged on
vertex B (though A could have also been used), and the final
layered DAG shown in Figure 4(e) is generated.

Note that although GenerateLayeredDAGs produces a
layered DAG for each vertex in the graph, it is possible some
of these layered DAGs are identical. For example, a simple
path query A→B→C of length 2 will result in the same exact
layered DAGs for all three starting vertices.

The important end result of the transformation step is that
all layered DAGs that are produced are logically equivalent
to the input query graph. If the DAG is searched for over
the raw data set, any results that match the DAG will also
match the original query. Therefore the transformation step
can be thought of as corresponding to the query rewrite step
of traditional database optimizers.

2) Bushy Decomposition: Once layered DAGs have been
produced by the transformation step, they can then be decom-
posed into fragments that can be planned for and executed
independently, and then joined together. Vertices with several
incoming edges are natural decomposition points, where one
fragment is produced for the branch of the DAG corresponding
to each incoming edge and one additional fragment for the
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function BushyDecomposition(G = (V,E))
current layer = bottom layer
D = ∅ // a bushy decomposition
while (current layer 6= top layer)

for each vertex v in current layer
if (v has more than 1 incoming edge)

if (Decomposable(G, v, D))
break while

current layer = one layer above current layer
return D // D is modified in Decomposable

// given a vertex v as the decomposition vertex, decide
// whether the input layered DAG is decomposable
function Decomposable(G = (V,E), v, D)

// add all edges below v as one fragment to D
D = {ReachableDAG(G, {v}, null)}
// for each incoming edge of v, add one fragment to D
for each (v′, v) ∈ E

Vrrv = ReversiblyReachableVertices(G, v′)
D = D ∪ {ReachableDAG(G,Vrrv , v)}

if (fragments in D are pairwise disjoint in terms of edges)
return true

else
D = ∅ // reset D to ∅ due to the decomposition failure
return false

// find vertices that are reversibly reachable given a vertex;
// vertex v′ is reversibly reachable from v if there is a
// directed path from v′ to v
function ReversiblyReachableVertices(G = (V,E), v)

Vall = ∅ // all reversibly reachable vertices (RRVs) found
Vnew = ∅ // newly found RRVs
Vcur = {v} // current RRVs
while (Vcur 6= ∅)

Vnew = ∅ // reset new RRVs
for each vertex v1 ∈ Vcur

for each edge (v2, v1) ∈ E
Vnew = Vnew ∪ {v2}

Vall = Vall ∪ Vcur , Vcur = Vnew

return Vall

// find all reachable edges given a set of vertices
function ReachableDAG(G = (V,E), Sv , vs)

Se = ∅ // a set of edges
for each vertex v ∈ Sv

for each e = (v1, v2) in E
if there exists path from v to e without traversing vs

Se = Se ∪ {(v1, v2)}
return Se

Fig. 5. Functions for producing a bushy decomposition of the layered DAG
generated from Figure 4.

descendants of this vertex.

Figure 5 shows the pseudocode for the above described
bushy decomposition. The procedure starts from the bottom
layer of the DAG and attempts to find vertices with more
than one incoming edge. If such a vertex v is found, the
Decomposable function is called that checks to see if
it is possible to decompose the DAG into disjoint frag-
ments around v, and if so, returns this set of fragments
as the decomposition. The Decomposable function first
calls ReachableDAG which creates a fragment consisting
of all descendants of v (which is empty if v is in the
bottom layer). Then for each incoming edge, it calls the
ReversiblyReachableVertices function to find all
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A B

Fig. 6. Graphs for Example 3

vertices that are reversibly reachable from v starting with that
edge, and then creates a fragment that contains all descendants
of all of these vertices that are reachable without traversing
through v (again through a call to ReachableDAG). De-
pending on how the ancestors of v overlap, these fragments
either overlap or they are pairwise disjoint. If they overlap, the
Decomposable function returns false. Otherwise, it returns
true, along with the set of disjoint fragments it generated.

Example 3. Assume the input DAG shown in Figure 6(a).
The algorithm starts from the bottom layer and moves up.
Vertex B is the first vertex that is encountered that has two
incoming edges and therefore we decompose around it. First,
we produce the fragment containing all of B’s descendants,
shown in Figure 6(b). Then, we produce one fragment for
each incoming edge. For the edge coming from C, we find all
reversibly reachable vertices (which is just C in this case),
and then find all descendants from C, which leads to the
DAG shown in Figure 6(d). For the edge coming from A, the
fragment simpler, containing just one edge, as shown in Figure
6(c).

3) Generating Bushy Plans: Recall from Figure 1 that
after a bushy decomposition is produced, FindPlan gen-
erates the plans for each fragment in the decomposition
and then calls GenerateBushyPlans to plan how the
decomposed fragments should be combined. The code for
GenerateBushyPlans is presented in Figure 7.

The function iterates through each combination of taking
one triple from each input fragment, and produces a plan
for performing the join (on a common vertex vj) of the
intermediate results specified by these triples. A directed join
can be used if the partitioning vertex of at least one of the
triples is the same as the join vertex. Otherwise a hash join
must be used.

Example 4. Suppose a bushy decomposition consists of three
fragments, namely, q1, q2 and q3, which have the following
plan triples:

q1: triples t1=(A, 100, p1) and t2=(B, 200, p2).

q2: triples t3=(A, 300, p3) and t4=(B, 400, p4).

q3: triples t5=(A, 500, p5) and t6=(B, 600, p6).

There are 23 = 8 different ways of choosing one triple from
each fragment. One such way is t1, t4 and t5. If A is the join
vertex, then a directed join can be used, and the plan would
look like the following: “execute p1; execute p4; partition p4
on A; execute p5; join on A;”. The cost of the plan is 100 +
400 + 500 + (cost of the join) + (network cost of partitioning
p4).

Finding bushy plans has time complexity O(|V |2 · |E| ·
|E|!).
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function GenerateBushyPlans(q1, ..., qn)
T = ∅ // a set of triples
for each triple (v1, c1, p1) in q1

......
for each triple (vn, cn, pn) in qn

for each common vertex vj of q1, ..., qn
cost = cost of joining q1, ..., qn on vj locally
plan = empty
for i from 1 to n

cost += ci
plan += “execute pi;”
if (vi 6= vj)

cost += network cost of partitioning pi
plan += “partition pi on vj ;”

plan += “join on vj ;”
T = T ∪ {(vj , cost, plan)}

return T

Fig. 7. Pseudocode for planning the join of fragments produced by bushy
decomposition

IV. CYCLE-BASED OPTIMIZATION

In this section, we present another optimization framework
which is based on cycle detection. The dynamic programming-
based optimization framework presented in the previous sec-
tion always groups edges originating from the same vertex
together because of its preference to do co-located joins
whenever possible. However, if the graph contains cycles, it
may be advantageous to match cycles first (even before co-
located joins). This is because matching a cycle serves as a
type of selection predicate — it restricts the subset of the
raw data set that needs to be explored. Therefore, matching
cycle patterns first may lead to smaller intermediate result sets
and consequently yield better performance. For example, given
a query A→B, A→C, B→A, a cycle-based algorithm would
match A→B, B→A first, while the algorithms presented in the
previous section would match A→B, A→C first. However, if
a vertex in the raw data set has 20 outgoing edges, then there
are 190 matches to the A→B, A→C join. However, if only 2
of the 10 outgoing edges from that vertex have a return edge in
the other direction, then joining A→B, B→A first significantly
reduces the intermediate result set. Note that both directed and
undirected cycles are able to reduce the size of intermediate
result sets.

Example 5. Pattern A→B, B→C, C→A is a directed cycle.
Pattern A→B, A→C, B→C is an undirected cycle.

Figure 8 shows the pseudocode for the cycle detection-
based optimization framework. It first converts the graph into
an undirected graph and finds all cycles. After cycles are
identified, two approaches are employed to combine them.
The first approach is a greedy one. It chooses a cycle as a
starting point and then keeps adding overlapping cycles to it
greedily. Overlapping cycles are two cycles which share at
least one edge (see Example 6). If overlapping cycles are not
found, non-overlapping cycles are added instead. Overlapping
cycles take precedence over non-overlapping cycles since it is
more efficient to add overlapping cycles than non-overlapping
ones (because part of the overlapping cycles have already been
matched).

The second approach is a bushy approach. Similar to the
formation of bushy plans described in the previous section,
the algorithm decomposes the graph into several fragments,

function CycleDetectionOptimization(Q)
convert directed query graph Q into an undirected graph
find all cycles with a depth-first search on Q
// greedy approach
for every cycle c found

current cycle = c
matched = ∅ // the fragment that has been matched
while (current cycle 6= null)

add current cycle to matched and compute the cost
if (there is a cycle co overlapping with matched)

current cycle = co
else if (there is a cycle cl left)

current cycle = cl
else

current cycle = null
// for edges that do not belong to any cycles
if (there are any edges left)

add them to matched and compute the cost
// bushy approach
decompose Q into fragments such that overlapping

cycles stay in the same fragment
for each decomposition D

compute the cost of matching each fragment in D
compute the costs of joining them

return the plan with the lowest cost in both approaches

Fig. 8. Query optimization with cycle detection.

finds matches in each fragment separately, and then joins
the intermediate results associated with these fragments. A
heuristic is used for decomposition in which overlapping cycles
stay in the same component. The rationale for this heuristic is
that overlapping cycles tend to produce smaller intermediate
output than non-overlapping cycles, so it is beneficial to group
the overlapping cycles together. Example 7 illustrates how the
cycle detection-based optimization works.

Example 6. We use Q3, Q4 and Q5 in Figure 11 to illustrate
the concept of (non-)overlapping cycles. In Q3, cycles ABC
and DE do not overlap because they don’t share any edges.
In Q4, cycles AB and CBD do not overlap. They share vertex
B, but do not share any edges. In Q5, cycles BD and BDE
overlap because they share edge BD.

Example 7. There are three cycles in Q4 of Figure 11, namely,
AB, BCD and BCE. Cycles BCD and BCE overlap by
sharing edge BC. For the greedy approach, if it first matches
BCD, it next adds edges B→E and C→E because BCE
and BCE overlap. Finally, it adds edges A→B and B→A.
For the bushy approach, the pattern is decomposed into two
fragments. The first one contains cycle AB and the second
has cycles BCD and BCE. Matching is done on the two
fragments separately and then the results are joined.

Greedy and bushy cycle-detection optimization have time
complexity O(|V |2 ·C2) and O(|V |2 ·C!), respectively, where
C is the number of cycles in the query.

V. COST ESTIMATION

The cost of a join depends on the size and other statistics
of its inputs. Given a join q1 ./ q2, we estimate its cost by
summing up four parts, namely, (1) the cost of q1, (2) the
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Join Method Condition Partitioning Vertex Network Cost
Collocated Join A=B A 0

Distributed Hash Join All C |q1|+ |q2|

Directed Join B=C C |q1|
A=C C |q2|

Broadcast Join All A |q2| × n
All B |q1| × n

Fig. 9. Join methods between two subqueries q1 and q2 on vertex C. Output
of q1 and q2 are partitioned on vertices A and B, respectively. |q1| denotes
the size of output of q1. n is the number of machines involved.

Q1: A→B, C→B
Step Action
(1) Match V1→V2.Partition on V2

(2) Self join (1) on V2

Q2: B→A, C→B, D→B
Step Action
(1) Match V1→V2

(2) One copy of (1) stays put
(3) Partition second copy of (1) on V2

(4) Perform self-join of (3) on V2

(5) Join V1 from (2) with V2 from (4)

Fig. 10. Query plans with computation reusing.

cost of q2, (3) the network cost of moving the intermediate
results of q1 and/or q2 and (4) the cost of performing the join
locally after the network transport. (1) and (2) are computed
recursively and (4) is a standard cost estimation in the DBMS.
Figure 9 gives the network costs of the four different joins
used in our system.

Traditional estimation techniques do not work well on
graphs with cycles because it is hard to predict how much the
presence of a cycle reduces the intermediate output size. To
obtain more accurate estimates, we precompute and maintain
in the catalog the size of all directed/undirected cycles up to
three edges in the dataset, because cycles of size two and
three appear frequently in input queries. Standard selectivity
estimation techniques are used if there are predicates on
attribtues within these cycles that further reduce selectivity.

VI. COMPUTATION REUSING

We will introduce the concept of computation reusing
with several intuitive examples on structural pattern matching.
Given a simple query, A→B, C→B, one of the possible
plans is to first execute A→B and C→B separately and then
perform a distributed hash join on B. But one should note
that matching A→B and C→B are the same exact match
(despite the different variable names). They are both simply
selecting all edges in the graph where the originating vertex is
different from the destination vertex, and can be represented as
V1 → V2. Consequently, the two input relations of the hash join
on each machine are identical. Therefore, instead of generating
the same intermediate result set twice, we can generate it just
once, and do a self-join. The resulting query plan is shown as
Q1 in Figure 10.

Another example query could be: B→A, C→B, D→B.
Similar to above, we can get the set of all edges V1→V2. In
this case, we use 3 copies of the intermediate result. One copy
stays put (since it is already partitioned by V1), and the other
two copies are repartitioned by V2. At this point, the three sets
of intermediate results: V1→V2, V2→V1, and V2→V1 can all
be joined (locally on each node) on the partitioning vertex of
each intermediate result set. The query plan is shown as Q2
in Figure 10. Note that as an optimization, we do a self-join
of V2→V1 instead of making a third copy.

As long as multiple fragments produce the same inter-
mediate result sets independent of the data sets, fragment

execution is reusable. Computation reusing mostly occurs in
structural pattern matching and relatively rarely in semantic
pattern matching since the matching of attributes prior to
the generation of intermediate results sets makes them less
reusable.

VII. EXPERIMENTAL EVALUATION

In this section, we measure the performance of our opti-
mization algorithms on four graph data sets of varying nature
and size. The code and queries used in this evaluation are
available at http://db.cs.yale.edu/icde2014.

A. Experimental Setup

1) Experimental Environment and System Setup: Experi-
ments were conducted on a cluster of machines. Each machine
has a single 2.40 GHz Intel Core 2 Duo processor running 64-
bit Red Hat Enterprise Linux 5 (kernel version 2.6.18) with
4GB RAM and two 250GB SATA-I hard disks. According to
hdparm, the hard disks deliver 74MB/sec for buffered reads.
All machines are on the same rack, connected via 1Gbps
network to a Cisco Catalyst 3750E-48TD switch. Experiments
were run on 10 machines, unless stated otherwise.

Our system was implemented in Java and Python. It utilizes
PostgreSQL 9.2.1 on each machine as the query processing
unit.

2) Graph Data sets: Our experiments benchmark perfor-
mance of subgraph pattern matching on four publicly avail-
able (real-world) graph data sets: the Amazon product co-
purchasing graph, the Youtube video co-watching graph, the
Google Web graph, and the Twitter follower graph.

Wherever possible, the sub-graphs that we search for within
these data sets are extracted from previous research papers
published by other groups that use these same data sets to
study subgraph pattern matching. In particular, the Amazon
data set was experimented with in [24] and [25], the Youtube
video data set was experimented with in [24], and the Web
graph data set was experimented with in [25]. The following
is a detailed description of the data sets.

Amazon product graph is a co-purchasing directed graph
of Amazon products with 548,552 vertices and 1,788,725
edges. It was collected from the “Customers Who Bought
This Item Also Bought” section of Amazon’s Website in the
summer of 2006. An edge from product A to B means some
customers bought B after A. Products were assigned zero to
multiple categories (such as “Health, Mind and Body” and
“Medicine”), which are treated as attributes.

Youtube video graph is a directed graph gathered from
Youtube in 2007 with 155,513 vertices and 3,110,120 edges.
An edge from video A to B means that viewers who watched
A also watched B. Videos were assigned a type (such as
“Music” or “Sports”), which were treated as attributes in our
experiments.

Web graph is a Web graph in which nodes represent web
pages and directed edges represent hyperlinks between them. It
has 875,713 vertices and 5,105,039 edges and was released in
2002 by Google as a part of a Google Programming Contest.
Vertices do not have attributes in this data set.
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Twitter graph is a graph of Twitter follower information
in which an edge from A to B means that A follows B on
Twitter. It has 1,652,252 vertices and 1,468,365,182 edges and
was collected in 2009. We assigned a random date to each edge
intended to represent the date that the edge was created, and
treated it as an edge attribute.

3) Pattern Queries: Our benchmark consists of “structural”
and “semantic” pattern matching, where structural queries
search purely for a particular pattern of connected vertices
and edges (the subgraph does not use attributes on vertices or
edges to reduce the scope of the search), and semantic queries
include attributes on graph objects.

There are six structural queries in our benchmark, which
consists of two queries from related research [24] and four
more complicated ones which are more difficult to optimize.
These six queries are shown in Figure 11.

For the semantic queries, we simply add attributes to the
vertices in the structural queries. To cover different use cases,
we varied the numbers of vertices with attributes. Some queries
have attributes on each vertex in the subgraph, while others
have only one attributed vertex.

In addition to the above mentioned subgraphs, we include
an additional subgraph for the Twitter data set (see Figure 11).
Previous work has shown that finding triangles (three vertices
connected to each other) is a crucial step in measuring the
clustering coefficient of nodes in a social network [33]. For
Twitter, three accounts who follow each other are regarded as
a triangle. Therefore, our benchmark includes a search for the
triangle pattern in the Twitter data set. In particular, the query
finds triangles which were established before the year 2009.
Unlike the semantic queries mentioned above, the attributes in
this query are on the edges of the graph. Therefore, we analyze
the results of this query separately from the above queries.

4) Algorithms: We experimented with five query optimiza-
tion algorithms. A greedy algorithm serves as the baseline,
which, in each iteration, adds one edge with the lowest cost
to the already matched subgraph until all edges are matched.
The other four approaches are based on the algorithms pre-
sented in this paper. The DP-linear (DP is short for dynamic
programming) algorithm considers only linear query plans in
the dynamic programming framework, while the DP-bushy
algorithm considers both bushy and linear plans and picks a
plan with the lowest cost. The cycle-greedy algorithm adds
the cycle detection optimization technique to the greedy ap-
proach, while cycle-bushy algorithm considers all approaches
(leveraging the cycle detection optimization when possible)
and picks a plan with the lowest cost. We ran each algorithm
for each query five times and report the average.

B. Performance of Structural Matching

Figure 12 presents the execution time of each technique on
the task of structural pattern matching (i.e. without attributes)
for the Amazon products, Youtube videos and Web graph
data sets (DP-bushy and/or cycle-greedy bars are omitted if
they produce the same plan as DP-linear; cycle-bushy bars
are omitted if they produce the same plan as cycle-greedy).
Overall, cycle detection optimization algorithms fare the best
and the greedy algorithm is outperformed by other algorithms
by a large margin for most of the queries.
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Fig. 12. Structural matching performance on three graph datasets. DP-bushy
and/or cycle-greedy bars are omitted if they produce the same plan as DP-
linear; cycle-bushy bars are omitted if it produces the same plan as cycle-
greedy.

Greedy plans fail to finish within one hour on queries 2
and 5 for the Youtube dataset, and on queries 2, 3, 4, 5 and
6 for the Web graph. Its performance on the Amazon data set
is not as bad because of its relatively smaller size.

To further analyze these results, we examine queries 2 and
4 in more detail. Query 2 is relatively simple compared to the
other queries but the plan generated by the greedy algorithm
fails to finish on two data sets. The reason is that after joining
A→C and A→D, it next matches B→C and joins it to the
existing intermediate result set. However, this join produces an
enormous intermediate result set and dramatically increases the
cost of the following join (with B→D). A better plan would
involve joining A→C and A→D and then joining B→C and
B→D. After these two joins have completed, the two sets
of intermediate result sets are joined with each other1. By
doing so, the step that produces a large intermediate result
set is avoided. DP-Linear, DP-Bushy, and both cycle detection
algorithms generate this superior plan.

Query 4 is perhaps more interesting than query 2, since the
greedy, DP-linear, DP-bushy and cycle-greedy algorithms all
produce different plans (cycle-greedy and cycle-bushy produce
the same plan for this query). These plans are summarized in
Figure 14. The greedy, DP-linear, and DP-bushy algorithms

1Recall from Section III-B that co-located joins are treated as atomic units,
and therefore this plan is produced via the linear algorithm even though that
it looks bushy.
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Fig. 11. Structural queries and triangle finding query. “Before year 2009” means that the following relation is established before year 2009. The year restriction
is applied to all edges, however, only two are shown.

DP-Bushy Cycle-Bushy
Data set Queries Time Size Time Size

Amazon
Q3 59.95 7.8G 50.41 2.4G
Q4 65.47 3.9G 47.68 0.9G
Q5 71.23 5.8G 46.61 1.2G

Fig. 13. Execution time vs. intermediate result set size for the DP and Cycle
plans. (Since the plans for queries 1, 2 and 6 are the same for both algorithms,
they are omitted here.)

make use of six, four, and three joins, respectively. The
greedy algorithm, by adding one edge at a time, misses
several opportunities for collocated joins, and therefore five
out of the six joins it performs are either directed joins or
broadcast joins. Both directed and broadcast joins involve
sending an entire table (or a set of intermediate result set)
across the network. The DP-Linear and DP-Bushy plans both
perform two collocated joins, with DP-Linear performing two
more directed joins and DP-Bushy doing one (the DP-Bushy
algorithm does one three-way directed join while DP-Linear
does two 2-way directed joins). This results in slightly better
performance for the DP-Bushy plan.

However, looking only at the number of joins is not
sufficient to explain the difference in performance of the plans.
The plan generated by the cycle algorithms has six joins —
the same number as the greedy plan. However the performance
of its plan is significantly better than all alternatives. This is
because it discovers several cycles in the query graph and
matches these cycles first. The structural limitations that the
cycles present serve as a sort of query predicate that limits the
size of the intermediate result sets, thereby reducing network
traffic and upstream join costs. Therefore, even though more
joins are performed to match these cycles, the plan produced
results in lower cost and better performance.

To highlight the performance difference between dynamic
programing-based and cycle detection-based optimization al-
gorithms, we list the execution time and the size of inter-
mediate result sets for bushy and cycle-bushy plans on the
Amazon data set in Figure 13 for the three queries for which
these algorithms produce difference plans. While it is clear
that the cycle plans reduce the intermediate result set by
factors of 3-5X, the performance in improvement is not quite
commensurate with this. This is due to the bottleneck shifting
from data movement to PostgreSQL join performance. Many
read-optimized commercial analytical databases that build on
top of PostgreSQL modify PostgreSQL’s poorly optimized join
algorithms. We would expect to see larger performance im-
provements for the cycle plans under more optimized settings.

C. Performance of Semantic Matching

Figure 15 presents the performance of each algorithm
on semantic pattern matching (i.e. with selections on at-
tributes of vertexes) for the Amazon and Youtube data

Greedy Plan
Step Action
(1) Match A→B
(2) Match B→A. Partition on A
(3) Join (1) and (2)
(4) Match B→D
(5) Partition (3) on B
(6) Join (4) and (5)
(7) Match B→E
(8) Co-located join (6) and (7)
(9) Match C→B. Partition on B

(10) Join (8) and (9)
(11) Match C→D and broadcast
(12) Join (10) and (11)
(13) Match C→E and broadcast
(14) Join (12) and (13)

DP-Linear Plan
Step Action
(1) Co-located join:

B→A,B→D,B→E
(2) Match A→B. Partition on B
(3) Join (1) and (2)
(4) Co-located join:

C→B,C→D,C→E.
Partition on B

(5) Join (3) and (4)

DP-Bushy Plan
Step Action
(1) Co-located join:

B→A,B→D,B→E
(2) Match A→B. Partition on B
(3) Collocated-join:

C→B,C→D,C→E
Partition on B

(4) Join (1), (2) and (3)
Cycle-Greedy Plan

Step Action
(1) Match A→B. Partition on B
(2) Match B→A
(3) Join (1) and (2)
(4) Match B→D
(5) Co-located join (3) and (4)
(6) Match C→B. Partition on B
(7) Join (5) and (6). Partition on C
(8) Match C→D. Partition on C
(9) Join (7) and (8)
(10) Match C→D. Partition on C
(11) Join (9) and (10). Partition on B
(12) Match B→E. Partition on B
(13) Join (11) and (12)

Fig. 14. Query plans of query 4 (without computation reusing)

sets. The particular predicates we used can be found at:
http://db.cs.yale.edu/icde2014.

The key difference between this set of experiments and
the structural matching experiments is that the relative perfor-
mance of the dynamic programming-based algorithms and the
cycle detection-based algorithms are reversed. This is because
the key advantage of the cycle detection algorithms is that
cycles serve as a sort of selection predicate, the most effective
way for reducing the scope of structural matching (and thereby
reducing the size of the intermediate data). However, semantic
matching allows for other selection predicates (in these exper-
iments the selection predicates were on the vertices). These
selection predicates do much more for reducing the scope
of the search than cycle detection. The table below shows
the sizes of the intermediate result sets for queries 3 and 4
on the Amazon data set. With the main benefit of the cycle
detection algorithms reduced, its disadvantage in terms of the
number and types of joins is more evident, and the dynamic-
programming based algorithms which optimize for reducing
the number of joins and ensuring that they are as local as
possible outperform the cycle plans.

Data set Query DP-Bushy Cycle-Bushy

Amazon Q3 164M 223M
Q4 53M 89M

D. Performance of Triangle Finding

The table below presents the execution time (in seconds)
of each technique on the task of triangle finding in the Twitter
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Fig. 15. Semantic matching performance on two graph data sets. DP-bushy
and/or cycle bars are omitted if they produce the same plan as DP-linear.

DP-bushy Plan
Step Action
(1) Co-located join :

A→B,A→C
(2) Co-located join :

B→A,B→C. Partition on A
(3) Co-located join :

C→A,C→B. Partition on A
(4) Join (1), (2) and (3)

Cycle-bushy Plan
Step Action
(1) Match A→B
(2) Match B→A. Partition on A
(3) Join (1) and (2)
(4) Match A→C
(5) Match C→A. Partition on A
(6) Join (4) and (5)
(7) Join (3) and (6). Partition on B
(8) Match B→C
(9) Match C→B. Partition on B
(10) Join (8) and (9)
(11) Join (7) and (10)

Fig. 16. Query plans of query 4 (without computation reusing)

social graph. Since the data set is large, the experiment was
run on 50 machines. Cycle-G and Cycle-B stand for Cycle-
Greedy and Cycle-Bushy algorithms, respectively. We find that
the DP-Bushy plan performs the best. To understand why this
is the case, we explore the DP-Bushy and Cycle-Bushy plans
in more detail in Figure 16. Both plans decompose the query
into three fragments. However, because the fragments from
dynamic programming are done via co-located joins (without
any network traffic), they take less time than those from
cycle detection (note that steps (1), (2), and (3) are identical
except for variable naming, and therefore can leverage the
computation reusing technique). Meanwhile the advantage of
cycle detection in terms of reducing the scope of the search
is reduced due to the culture on Twitter of following people
back who follow you.

Greedy DP-linear DP-bushy Cycle-G Cycle-B
Time 375.35 114.72 93.89 129.72 107.51

E. Effects of Computation Reusing

To study the effects of computation reusing, we compare
the query execution time (in seconds) on the Amazon and
Twitter data sets with and without the computation reusing
technique being leveraged. The results are shown in the
following table. All queries benefit from computation reusing,
although to different extents. The queries that improve the most

are queries 1 and 2 on the Amazon data set and the triangle
query on the Twitter data set. They have one or both of the
following characteristics: (1) the total execution is short so
that the saved computation accounts for a big portion of the
execution; (2) the structure of the pattern is highly symmetrical
so all/most of the fragments are identical and can be reused.
(Query 2 has both of these characteristics.)

Data set Query w/o reusing w/ reusing ratio

Amazon

Q1 23.51 18.97 1.24
Q2 21.26 17.28 1.23
Q3 65.78 59.95 1.09
Q4 73.14 65.47 1.11
Q5 80.64 71.23 1.13
Q6 45.29 39.79 1.14

Twitter triangle 131.23 93.89 1.40

F. Summary of Experimental Findings

After performing our experimental evaluation, we come
to the following conclusions: (1) Cycle detection-based al-
gorithms tend to perform the best in structural matching,
(2) dynamic programming-based algorithms tend to perform
the best in semantic matching, and (3) computation reusing
reduces the execution time for symmetrical queries, and should
be used whenever possible.

However, these rules are only heuristics. The relative ben-
efits of cycle detection are highly dependent on the graph data
sets being queried. When cycles are rare, the cycle detection
algorithm significantly reduces the scope of the search, but
when cycles are common (or at least more common than other
predicates available to the query) cycle detection is far less
helpful. Therefore, in general, both DP and cycle-based plans
should be generated and cost-estimated, and the cost-based
optimizer should choose the plan with the lowest cost.

VIII. RELATED WORK
There has been an increasing amount of interest in large-

scale graph data processing. In this section we survey related
work in the following three areas: graph pattern matching, dis-
tributed graph processing and query optimization in relational
databases.

Graph pattern matching has been studied extensively [9],
[10], [13], [16], [34], [35], [39]. Three surveys summarize the
recent progress on this topic [12], [14], [31]. Graph pattern
matching is particularly well-explored in the context of the
Resource Description Framework (RDF) [28], [22] and [5].
The majority of the work in this area assumes that the whole
graph dataset can fit into the memory of a single machine,
and proposes efficient centralized pattern matching algorithms.
Most of these algorithms can be applied to the matching of
subqueries on individual worker machines in our system.

Several recent papers studied distributed graph pattern
matching. [18] proposes a parallel RDF system in which
vertices and edges within multiple hops were guaranteed to
be stored on the same machine, in order to minimize network
traffic. However, query optimization is not considered. [24]
and [25] focus on pattern matching in the context of graph
simulation. [32] and [38] are built on top of Trinity [7]
and use graph exploration in query optimization for large
vertex-labeled undirected graphs and RDF graphs, respectively.
The optimization techniques described in this paper can be
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added to the above-mentioned systems to further improve their
performance.

In the wave of big data, many large-scale graph data
management systems were proposed to satisfy the needs of
different applications, such as Pregel [26] (and its open-
source version Giraph [2]), Neo4j [4], Trinity [7], Pegasus
[20], GraphBase [19] and GraphLab [23]. Pregel programs
are written in Bulk Synchronous Parallel model [37] and
are suitable for iterative algorithms like PageRank [6] and
finding shortest paths. Neo4j is a centralized transactional
graph database. Pegasus and GraphLab are best suited for
graph mining and machine leaning. Mondal et. al. [27] present
a horizontally-partitioned system managing dynamic graphs.
However, none of these systems introduce sophisticated query
optimization algorithms for graph pattern matching operations.

Our work is closely related to traditional database system
query optimization, particularly in parallel databases. The use
of dynamic programming as a search strategy dates back to the
System R project [30]. Chaudhuri gives a survey [8] on various
aspects of query optimization in centralized systems. Query
optimization in parallel database systems has also been well
studied. The Papyrus [11] project employed a formulation [15]
minimizing response time subject to constraints on throughput.
Lanzelotte et. al. [21] maintained that bushy search space
should be included in order not to miss the optimal plan and
advocated a simulated annealing search strategy. The XPRS
[17] project, aiming at shared memory systems, proposed a
two-phase approach. The Gamma project [29] studied several
execution strategies but did focus on query optimization. Each
of these papers targeted SQL queries over relational data. The
key contribution of our work is that we introduce an approach
that exploits the particular characteristics of graph data and
graph pattern matching queries.

IX. CONCLUSIONS
In this paper, we presented optimization techniques for

distributed graph pattern matching. We proposed two opti-
mization frameworks that are based on dynamic programming
and cycle detection, respectively. These frameworks explore
greedy, linear and bushy plans. In addition, we proposed
a computation reusing technique that eliminates redundant
subquery pattern matching and reduces network traffic. With
the proposed techniques, our system is able to outperform
greedy query optimization by orders of magnitude.
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