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1. INTRODUCTION

Ensemble learning typically refers to methods that generate several models that are
combined to make a prediction, either in classification or regression problems. This
approach has been the object of a significant amount of research in recent years and
good results have been reported (e.g., Liu et al. [2000], Breiman [2001a], and Rodrı́guez
et al. [2006]). The advantage of ensembles with respect to single models has been
reported in terms of increased robustness and accuracy [Garcı́a-Pedrajas et al. 2005].

Most work on ensemble learning focuses on classification problems. Unfortunately,
successful classification techniques are often not directly applicable to regression.
Therefore, although both are related, ensemble learning approaches for regression
and classification have been developed somehow independently. As a consequence, ex-
isting surveys on ensemble methods for classification [Kuncheva 2004; Ranawana and
Palade 2006; Polikar 2009; Rokach 2009b, 2009c, 2010] are not suitable for providing
an overview of existing approaches for regression.
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10:2 J. Mendes-Moreira et al.

This article surveys existing approaches to ensemble learning for regression. The
amount of work that has been published on ensemble regression is substantial and it
is impossible to discuss all of it in one single work. The approach followed here was to
identify the main trends and describe the key papers that represent some of the most
representative ones for each of them. The relevance of this article is strengthened by the
fact that ensemble learning is an object of research in different communities including
pattern recognition, machine learning, statistics, and neural networks. These commu-
nities have different conferences and journals and often use different terminology and
notation. This makes it quite hard for a researcher to be aware of all contributions
that are relevant to his or her own work. Therefore, in addition to attempting to pro-
vide a thorough account of the work in the area, we also organize those approaches
independently of the research area they were originally proposed in. Furthermore, this
format is adequate for both classification and regression problems. Hopefully, this for-
mat will make it possible to identify opportunities for further research and facilitate
the classification of new approaches.

Although the information available is insufficient to identify definite rules concern-
ing which methods to use for which regression problems, this article provides some
guidelines that can help practitioners on method selection.

In the next section, we provide a general discussion of the ensemble learning pro-
cess. This discussion will lay the foundations for the remaining sections of the article:
ensemble generation (Section 3), ensemble pruning (Section 4) and ensemble integra-
tion (Section 5). Each of these three sections discusses aspects that are specific to the
corresponding step. Section 6 complements this by discussing general issues. Finally,
Section 7 concludes the article with a summary.

2. ENSEMBLE LEARNING FOR REGRESSION

This section presents the regression problem. Following this, a more accurate definition
of ensemble learning and the associated terminology are outlined. Additionally, this
section presents a general description of the process of ensemble learning and describes
a taxonomy of different approaches, both of which define the structure of the rest of
the article. The experimental setup for the evaluation of ensemble learning proposals
is then discussed. This is followed by an analysis of the error decomposition of ensem-
ble learning methods for regression. A complete example of an ensemble method for
regression concludes this section.

2.1. Regression

In this work we assume a typical regression problem. With a potentially infinite input
space X, the goal is to induce a function f̂ : X → � that approximates an unknown
true function f . The quality of the approximation is given by the generalization error,
which is typically defined as

mse( f̂ ) = E[( f̂ − f )2]. (1)

The function f̂ is obtained by running an induction algorithm (or learner) on data
consisting of a finite set of n examples of the form {(x1, f (x1)) , . . . , (xn, f (xn))}. The f̂
function is called a model or predictor. Then, given that it is not possible to determine
the true error of a model f̂ according to Eq. (1), the error is estimated on a different
set of data, consisting of ntest examples (see Section 2.3).

mse( f̂ ) ≈ 1
ntest

ntest∑
i=1

[ f̂ (xi) − f (xi)]2 (2)
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Many other generalization error functions exist for numerical predictions [Witten
and Frank 2011] that can also be used for ensemble regression. However, most of the
work on ensemble regression uses mse, so this issue will not be discussed here.

2.2. Definition of Ensemble Learning

First of all, it is important to clearly define what ensemble learning is and to define
a taxonomy of methods. Some of the existing definitions are partial in the sense that
they only focus on the classification problem or on part of the ensemble learning process
[Dietterich 1997]. For these reasons the following definition is proposed.

Ensemble learning is a process that uses a set of models, each of them obtained by applying a learning
process to a given problem. This set of models (ensemble) is integrated in some way to obtain the final
prediction.

This definition has important characteristics. Firstly, contrary to the informal defi-
nition given at the beginning of the article, this definition not only covers ensembles
in supervised learning (both classification and regression problems), but also in unsu-
pervised learning, namely the ensemble clustering research, also known as consensual
clustering [Strehl and Ghosh 2003; Monti et al. 2003].

Additionally, it clearly separates ensemble and divide-and-conquer approaches. This
last family of approaches splits the input space into several subregions and trains each
model separately in each one of the subregions. With this approach the initial problem
is converted into several simpler subproblems.

Finally, it does not separate the combination and selection approaches which most
definitions do. According to this definition, selection is a special case of combination
where all of the weights are zero except for one of them (to be discussed in Section 5).

2.2.1. The Ensemble Learning Process. The ensemble process can be divided into three
steps [Roli et al. 2001] (Figure 1), that are usually referred to as the overproduce-and-
choose approach. The first step is ensemble generation, which consists of generating a
set of models (Section 3). A number of redundant models are often generated during
the first step. In the ensemble pruning step, the ensemble is pruned by eliminating
some of the models generated earlier (Section 4). Finally, in the ensemble integration
step, a strategy to combine the base models is defined. This strategy is then used to
obtain the prediction of the ensemble (represented as f̂F) for new cases, based on the
predictions of the base models (Section 5).

Our characterization of the ensemble learning process is slightly more detailed than
the one presented by Rooney et al. [2004]. For those authors, ensemble learning consists
of the solution of two problems: (1) how to generate the ensemble of models (ensemble
generation); and (2) how to integrate the predictions of the models from the ensemble
in order to obtain the final ensemble prediction (ensemble integration). This last ap-
proach (without the pruning step), is called direct and can be seen as a particular case
of the model presented in Figure 1, labeled overproduce-and-choose. In some cases en-
semble pruning has been reported to reduce the size of the ensembles obtained without
degrading the accuracy. Pruning has also been added to direct methods successfully,
increasing the accuracy [Zhou et al. 2002; Martinez-Munoz et al. 2009].

Ensemble regression is characterized by the use of predictors to address the regres-
sion problem, as defined in Section 2.1.

2.2.2. Taxonomy and Terminology. With regard to the categorization of the different ap-
proaches to ensemble learning, the taxonomy used will be the one presented by the
same authors [Rooney et al. 2004]. They divide ensemble generation approaches into
homogeneous, if all of the models were generated using the same induction algorithm
and heterogeneous otherwise.
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10:4 J. Mendes-Moreira et al.

Fig. 1. Ensemble learning model.

Table I. Synonyms

ensemble committee, multiple models, multiple classifiers (regressors)
predictor model, regressor (classifier), learner, hypothesis, expert
example instance, case, data point, object
combination fusion, competitive classifiers (regressors), ensemble approach, multiple topology
selection cooperative classifiers (regressors), modular approach, hybrid topology

Ensemble integration methods are classified by some authors [Rooney et al. 2004;
Kuncheva 2002] as combination (also called fusion) or as selection. The former approach
combines the predictions of the models from the ensemble in order to obtain the final
ensemble prediction. The latter approach selects the most promising model(s) from the
ensemble and the prediction of the ensemble is only based on the selected model(s).
Here the classification of constant versus nonconstant weighting functions given by
Merz [1998] has been used instead. In the first case, the predictions of the base models
are always combined in the same way. In the second case, the way the predictions are
combined can be different for different input values.

As mentioned earlier, research on ensemble learning is carried out in different com-
munities. Therefore, different terms are sometimes used for the same concept. Table I
lists several groups of synonyms that have been adapted from a previous list by
Kuncheva [2004]. The first column contains the most frequently used terms in this
article.

2.3. Experimental Setup

The experimental setup used to test the ensemble learning methods differs significantly
in different papers. Since the goal of this work is not to survey experimental setups,
the most common setup will be described. It is based on splitting the data into three
parts: (1) the training set L, used to obtain the base predictors; (2) the validation set,
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Ensemble Approaches for Regression: A Survey 10:5

used to assess the generalization error of the base predictors; and (3) the test set, used
to assess the generalization error of the final ensemble method. If a pruning algorithm
is used, it is tested together with the integration method on the test set. Hastie et al.
[2001] suggest splitting the set; 50% for training, 25% for validation, and the remaining
25% to use as a test set. This strategy works for large datasets, but as stated by Hastie
et al., it is too difficult to state a general rule on how much training data is necessary.

As a general principle, for shorter datasets, the possibility of using resampling meth-
ods should be considered, such as cross-validation [Stone 1974], for instance, in order
to increase the number of examples in the training set.

For datasets that can be used to evaluate the research conducted on ensemble regres-
sion, it is important to use problems that are widely available. This makes it possible to
reproduce previous results and perform a more reliable comparison of methods. Several
repositories collect regression datasets. The most popular is the UCI machine learning
repository. However, only 15 of its 200 datasets are regression problems [Frank and
Asuncion 2010]. Another interesting repository that only archives regression datasets
is the one maintained by Luı́s Torgo [Torgo 2011]. Torgo’s repository also has a small
but carefully selected list of links to other repositories of regression datasets. Another
possible source of regression datasets is the homepage for the Delve project [Delve
2002]. It has both real and synthetically generated datasets. All of these repositories
identify the regression datasets clearly. In other repositories, this distinction is not so
clear. Examples of such repositories are: the datasets archive from StatLib [Vlachos
2005], the function approximation repository from Bilkent University, Turkey [Guvenir
and Uysal 2000], the repository from the Machine Learning Group at UCD School of
Computer Science and Informatics, Dublin, Ireland [MLG 2011], the Datamob datasets
collection that has 255 datasets [Flannagan and Sperber 2008], or the Data Wrangling
that announces 400 datasets, some of which are not free of charge [Skomoroch 2008].
It should be noted that many of the datasets are repeated in different repositories. The
list of repositories presented is not intended to be complete.

2.4. Understanding the Generalization Error of Ensembles

In order to accomplish the task of ensemble generation, the characteristics that the
ensemble should have must be known. Empirically, one can argue that a successful
ensemble is one with accurate predictors and that makes errors in different parts of the
input space [Perrone and Cooper 1993]. Therefore, understanding the generalization
error of ensembles is essential to knowing which characteristics the predictors should
have in order to reduce the overall generalization error. The decomposition of the
generalization error in regression is straightforward. In the following, a few alternative
ways of decomposing the mse (Eq. (2)) are presented that closely follow Brown’s [2004]
description. Despite the fact that most of these decompositions were originally proposed
for neural network ensembles, they are not dependent on the induction algorithm used.
The functions are represented, when appropriate, without the input variables, just for
the sake of simplicity. For example, instead of f (x), f is used.

Geman et al. present the bias/variance decomposition for a single neural network
[Geman et al. 1992].

E{[ f̂ − E( f )]2} = [E( f̂ ) − E( f )]2 + f E{[ f̂ − E( f̂ )]2} (3)

The first term on the right-hand side is called the bias and represents the distance
between the expected value of the estimator f̂ and the unknown population average.
The second term, the variance component, measures how the predictions vary with
respect to the average prediction. This can be rewritten as

mse( f ) = bias( f )2 + var( f ). (4)
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10:6 J. Mendes-Moreira et al.

Krogh and Vedelsby describe the ambiguity decomposition, for an ensemble of K
neural networks [Krogh and Vedelsby 1995]. Assuming that the prediction of the en-
semble is the weighted sum of the individual predictions, f̂F (x) = ∑K

i=1[αi × f̂i(x)]
(see Section 5.1) where

∑K
i=1(αi) = 1 and αi ≥ 0, i = 1, . . . , K, they show that the error

for a single example is

( f̂F − f )2 =
K∑

i=1

[αi × ( f̂i − f )2] −
K∑

i=1

[αi × ( f̂i − f̂F )2]. (5)

This expression shows explicitly that the ensemble generalization error is less than
or equal to the generalization error of a randomly selected single predictor. This is true
because the ambiguity component (the second term on the right) is always nonnegative.
Another important result of this decomposition is that it is possible to reduce the
ensemble generalization error by increasing the ambiguity without increasing the bias.
The ambiguity term measures the disagreement among the base predictors on a given
input x (omitted in the formulae just for the sake of simplicity, as previously mentioned).
Two full examples that prove the ambiguity decomposition [Krogh and Vedelsby 1995]
are presented in Brown [2004].

More recently, Ueda and Nakano presented the bias/variance/covariance decompo-
sition of the generalization error of ensemble estimators [Ueda and Nakano 1996]. In
this decomposition it is assumed that f̂F (x) = 1

K × ∑K
i=1[ f̂i(x)]. We have

E[( f̂F − f )2] = bias
2 + 1

K
× var +

(
1 − 1

K

)
× covar, (6)

where

bias = 1
K

×
K∑

i=1

[Ei( fi) − f ], (7)

var = 1
K

×
K∑

i=1

{Ei{[ f̂i − Ei( f̂i)]2}}, (8)

covar = 1
K × (K − 1)

×
K∑

i=1

K∑
j=1, j �=i

Ei, j{[ f̂i − Ei( f̂i)][ f̂ j − Ej( f̂ j)]}. (9)

The indexes i, j of the expectation mean that the expression is true for particular
training sets, respectively, Li and L j .

Brown et al. provide a good discussion of the relationship between ambiguity and
covariance [Brown et al. 2005b]. An important result obtained from the study of this
relationship is the confirmation that it is not possible to maximize the ensemble am-
biguity without affecting the ensemble bias component as well. This means that it is
not possible to maximize the ambiguity component and minimize the bias component
simultaneously.

The discussion of the present section is usually referred to in the context of ensemble
diversity, that is, the study of the degree of disagreement between the base predictors.
Many of the preceding statements are related to the well-known statistical problem of
point estimation [Lehmann 1998]. This discussion is also related to the multicollinear-
ity problem that will be discussed in Section 5. A more detailed discussion on these
issues can be found in Brown et al. [2005b].
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Fig. 2. The pseudo-code of bagging [Breiman 1996a] with ordered pruning [Hernández-Lobato et al. 2006].

2.5. A Detailed Example of an Ensemble Method for Regression

This section sketches the algorithm of a simple ensemble method for regression. It
provides a framework for the rest of the article that will be of interest for those readers
who are less familiar with ensemble learning, particularly in the context of regression.
It is based on one of the earliest and most popular ensemble methods: bagging [Breiman
1996a]. The pruning phase, proposed by Hernández-Lobato et al. [2006], is added in
order to reduce the ensemble size without meaningfully reducing the accuracy of the
ensemble predictions. This is an example of an ensemble method for regression with
all of the three phases described previously: generation, pruning, and integration.

The generation phase of bagging has three parameters: the dataset L, the base
learning algorithm B, and the number of models that will be generated K0 (K0 = 100 is
often used). An important assumption of bagging is that the base learning algorithm is
sensitive to variations in the training set. For this reason, bagging implementations are
usually based on decision trees or artificial neural networks, which are two unstable
algorithms. Bagging takes advantage of the instability by training the models using
random samples (with replacement) of the dataset, named bootstrap samples. The
size of the samples is equal to the size of the original dataset. The instability of the
base learning algorithm guarantees that the ensemble generated has the properties of
accuracy and diversity that were previously discussed. The generation step is described
in steps 1 to 4 in Figure 2.

The pruning step aims to reduce the ensemble size without significantly reducing the
accuracy of the ensemble. The algorithm proposed by Hernández-Lobato et al. [2006]
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Fig. 3. Ensemble integration using simple average.

has been used. It has a single parameter, K, that defines the number of models that will
be selected. Hernandez-Lobato et al. suggest that K ≈ 0.2K0. In summary, the method
selects the top K models with higher contribution to the accuracy of the ensemble.
Pruning goes from step 5 to step 21 of Figure 2. The first part of this algorithm (steps
5 to 9) computes the covariance matrix for the K0 predictors. Then, the algorithm uses
a sequential forward search method to obtain a subset of K predictors (steps 10 to
20). At each iteration, it selects the regressor from the pool that, when incorporated,
reduces the training error of the ensemble the most. The criterion used (step 14) for
the selection of the predictors favors the selection of accurate predictors with diversity
in the errors, as discussed in Section 2.4.

With regard to the last step, the integration function we use is the same that is used in
the original bagging algorithm [Breiman 1996a]: the simple average. The integration
function is not represented in Figure 2 because, while generation and pruning is a
onetime process, integration is performed for each prediction. The pseudocode of the
integration step is presented in Figure 3.

This example shows one specific approach for each step of the ensemble learning
process in detail. The remainder of this article surveys other approaches for each step.

3. ENSEMBLE GENERATION

As previously mentioned, the first step in ensemble learning is the ensemble generation
(Figure 1). The goal of ensemble generation is to obtain a set of models.

F0 = { f̂i, i = 1, . . . , K0} (10)

If the models are generated using the same induction algorithm, the ensemble is
called homogeneous, otherwise it is called heterogeneous.

Homogeneous ensemble generation is the area of ensemble learning best covered in
the literature. See, for example, the state-of-the-art surveys from Dietterich [1997],
or Brown et al. [2005a]. This section mainly follows the former [Dietterich 1997]. In
homogeneous ensembles, the models are generated using the same algorithm. Thus,
as detailed in the following sections, accurate and diverse predictors can be achieved
by manipulating the data (Section 3.1) or through the model generation process
(Section 3.2).

Heterogeneous ensembles are obtained when more than one learning algorithm is
used. This approach is expected to obtain models with more diversity [Webb and Zheng
2004] due to the different nature of the base learners. Of course, in order to guarantee
a low generalization error for the ensemble, the base learners must be as accurate as
possible, as previously discussed in Section 2.4. One problem is the lack of control over
the diversity of the base learners during the generation phase. In homogeneous en-
sembles, diversity can be systematically controlled during their generation, as will be
discussed in the following sections. Conversely, when using several algorithms, it may
not be so easy to control the differences between the generated models. This difficulty
can be solved by using the overproduce-and-choose approach. By generating a large
number of models (the “overproduce” step), the probability of obtaining an accurate
and diverse subset of predictors increases. The task of selecting that subset is then
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Fig. 4. The generation process.

left to the pruning phase (the “choose” step) [Caruana et al. 2004]. Another approach
that is commonly followed combines the two approaches by using different induction
algorithms mixed with the use of different parameter sets [Merz 1996; Rooney et al.
2004] (Section 3.2.1). Some authors claim that heterogeneous ensembles perform
better than homogeneous ensembles [Wichard et al. 2003]. Note that heterogeneous
ensembles can use homogeneous ensemble models as base learners. Another approach
that is commonly followed combines the two approaches by using different induction
algorithms mixed with the use of different parameter sets [Merz 1996; Rooney et al.
2004] (Section 3.2.1). Some authors claim that heterogeneous ensembles obtain
better performance than homogeneous ensembles [Wichard et al. 2003]. Note that
heterogeneous ensembles can use homogeneous ensemble models as base learners.

This section presents methods for ensemble generation. These methods are classi-
fied according to whether they manipulate the data or the modeling process in order to
generate different, and typically diverse, models. The modeling process can be manip-
ulated through the induction algorithm, the set of input parameters, or the generated
model. This is described in Figure 4.

3.1. Data Manipulation

Data can be manipulated in three different ways: subsampling from the training set,
manipulating the input features, and manipulating the output variable.

3.1.1. Subsampling from the Training Set. This approach generates models using different
subsamples from the training set and assuming that the algorithm is unstable, that
is, small changes in the training set imply important changes in the result. Decision
trees, neural networks, rule learning algorithms, and MARS are well-known unstable
algorithms [Breiman 1996b; Dietterich 1997]. However, some of the methods based on
subsampling (e.g., bagging and boosting) have been successfully applied to algorithms
that are usually regarded as stable, such as Support Vector Machines (SVM) [Kim et al.
2003].

One of the most popular of such methods is bagging [Breiman 1996a] (already de-
scribed in Section 2.5). It uses randomly generated training sets to obtain an ensemble
of predictors. If the original training set L has M examples, bagging (bootstrap ag-
gregating) generates a model by uniformly sampling M examples with replacement
(some examples appear several times while others do not appear at all). Both Breiman
[1996a] and Domingos [1997] give insights on why bagging works.

Some attempts have been made to reduce the computational cost of bagging. This
is the case of subagging, which obtains each base model using a random subset of the
examples [Buhlmann 2010]. Using decision trees as base learners, Buja and Stuetzle
[2006] report similar results between bagging and subagging when using subsamples
with half the size of the original training set.
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10:10 J. Mendes-Moreira et al.

Parmanto et al. describe the cross-validated committees technique for neural net-
works ensemble generation using υ-fold cross-validation [Parmanto et al. 1996]. The
main idea is to create an ensemble with the models obtained from the υ training sets
of a cross-validation process.

Another important family of subsampling-based ensemble methods is boosting,
which is discussed in the remainder of this subsection. Based on Schapire [1990], Fre-
und and Schapire present the AdaBoost (ADAptive BOOSTing) algorithm, the most
popular boosting algorithm [Freund and Schapire 1996]. The main idea is that it is
possible to convert a weak learning algorithm into one that arbitrarily achieves high
accuracy. A weak learning algorithm is one that performs slightly better than random
prediction. This conversion is performed by combining the estimations of several pre-
dictors. Like in bagging [Breiman 1996a], the examples are randomly selected with
replacement but, in AdaBoost, each example has a different probability of being se-
lected. Initially, this probability is equal for all of the examples, but in the following
iterations, examples with more inaccurate predictions have a higher probability of be-
ing selected. In each new iteration there are more “difficult examples” in the training
set. Boosting was originally developed for classification and is not directly applicable
to regression because the function that updates the weights at each iteration assumes
that the generalization error is ε ∈]0.5, 1].

The first attempt to adapt the AdaBoost algorithm to regression was AdaBoost.R
[Freund and Schapire 1997]. This method assumes that y ∈ [0, 1]. It transforms the
regression dataset into a binary classification dataset as follows: (1) the range of the
target value is split into a given number S of equal-sized intervals, with lower limits
l1 = 1/(S + 1), l2 = 2/(S + 1), . . . , lS = S/(S + 1); (2) each instance i is replaced by
S of its copies, where the target value of copy j is replaced with two new variables.
The first is a new independent variable with value lj and the second is the new target
variable of the binary classification problem, defined as 0 if yi < lj or 1, otherwise.
Therefore, each new instance j associated with the original instance i represents the
question “is yi < lj?” The new dataset has N ∗ S instances. This approach has two main
problems [Duffy and Helmbold 2002]: (1) the increase of the computational cost due
to the increase of the dataset size; and (2) the instability of the loss function across
iterations and even between instances.

Avnimelech and Intrator propose a very simple adaptation of AdaBoost by changing
the error function used internally. At each boosting iteration, the regression errors of
the models obtained in the previous iteration are discretized into two classes. In other
words, when the regression error of an example is higher than a given threshold, the
classification error is set to 1, otherwise, it is set to 0 [Avnimelech and Intrator 1999].
The remainder of the algorithm they propose is identical to AdaBoost. An improvement
to this work, called AdaBoost.RT, is presented in Shrestha and Solomatine [2006]. At
each iteration the error is calculated using only a subset of the examples. This subset
contains the examples with an error higher than a given threshold. In Schclar et al.
[2009], an alternative example selection rule is proposed. The subset of examples used
to compute the error contains the ones with an error that is higher than the mean of
the errors, plus a given deviation factor, multiplied by the standard deviation of the
errors. The advantage of this modification is that the threshold is calculated according
to the statistics of the errors. Since this is completed at each iteration, the threshold
changes at each iteration.

The AdaBoost.R2 [Drucker 1997] algorithm follows a different approach to ensuring
that the error function behaves as expected in the original AdaBoost algorithm. It
uses different functions to transform the error values, guaranteeing that the average
(transfomed) error for all of the instances in the training set is within the interval
[0, 1]. The process finishes when the (transformed) average error is lower than 0.5.
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This approach was tested using different base learners (DART [Friedman 1996], PPR
[Friedman and Stuetzle 1981], and MARS [Friedman 1991]) [Borra and Ciaccio 2002].
The best base learners on four datasets were DART and PPR.

Friedman [2001] developed an approach which is quite different from the previous
ones but embodies the boosting spirit of focusing the learning process on the examples
that were incorrectly predicted by previous models in a nice way. Instead of assigning
higher weights to those examples, the target variable of the dataset at each iteration
is replaced by the residuals of the predictions made by the model of the previous
iteration. The ensemble obtained by using this type of approach is also known as a
forward stage-wise additive model. This method was later improved by using bootstrap
samples at each iteration [Friedman 2002]. This improvement avoids overfitting by
evaluating the error at each iteration in the out-of-bag set. This last version is known as
stochastic gradient boosting and is commercialized under the name Multiple Additive
Regression Trees (MART). It must be noted that it is arguable that this approach can
be classified as an ensemble learning method according to our definition (Section 2.2),
because only the first predictor addresses the original learning problem directly (i.e, the
remaining models predict the residuals of the previous model). However, we consider
that they address the original problem, even if indirectly.

In Zemel and Pitassi [2001], a regression-specific version of AdaBoost is proposed
that combines the objective function presented by Drucker [1997] with a gradient-based
approach [Friedman 2001; Duffy and Helmbold 2002] rather than the original additive
approach.

One of the difficulties of developing theoretically founded ensemble approaches to
regression is the infinite size of the model space. In Ratsch et al. [2002] a boosting-like
approach is proposed where the weight updating function is based on the dual of a
linear programming problem. Thus, it is independent of the number of models. Besides
the strong theoretical foundation, the method obtains good results on a few time-series.
However, some open issues remain, including a comparison to other ensemble methods.

3.1.2. Manipulating the Input Features. In this approach, different training sets are ob-
tained by changing the representation of the examples. A new training set L′ is gener-
ated by replacing the original representation {(xi, f (xi))} with a new one {(x′

i, f (xi))}.
There are two types of approaches. The first one is feature selection, that is, x′

i ⊂ xi. In
the second approach, the representation is obtained by applying some transformation
to the original attributes, that is, x′

i = g(xi).
A simple feature selection approach is the random subspace method [Ho 1998].

The models in the ensemble are independently constructed using randomly selected
feature subsets. Decision trees were originally used as base learners and the ensemble
was called decision forests [Ho 1998]. The final prediction is the combination of the
predictions of all of the trees in the forest. In Schclar and Rokach [2009] feature
extraction is used instead of feature selection. The original features are projected into
a new space by randomly combining them. The new set of features is smaller than the
original one. Tests using k-nearest neighbors as base learners show a slightly better
performance than random subspaces.

Alternatively, iterative search methods can be used to select the different feature
subsets. Opitz uses a genetic algorithm approach that continuously generates new
subsets, starting with a randomly selected subset [Opitz 1999]. The author tests the
approach on classification problems using neural networks as a learning algorithm. The
criterion used to select the feature subsets is the minimization of the individual error
and the maximization of ambiguity (Section 2.4). He reports better results using this
approach than using the popular bagging and AdaBoost methods. A similar approach is
proposed in Zenobi and Cunningham [2001]. Both are wrapper-based approaches but,
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10:12 J. Mendes-Moreira et al.

while Opitz [1999] searches for the best solution using a genetic algorithm, in Zenobi
and Cunningham [2001] a hill-climbing strategy is used instead.

A feature selection approach can also be used to generate ensembles for algorithms
that are stable with respect to the training set, but unstable with respect to the set of
features, namely the nearest-neighbors induction algorithm. In Domeniconi and Yan
[2004], feature subset selection is combined with adaptive sampling [Thompson and
Seber 1996] to reduce the risk of discarding useful information. When compared to
random feature selection, this approach reduces diversity between base predictors but
increases their accuracy.

A simple transformation approach is input smearing [Frank and Pfahringer 2006]. It
aims to increase the diversity of the ensemble by adding Gaussian noise to the inputs.
The goal is to improve the results of bagging. Each input value x is changed into a
smeared value x′ using

x′
i = xi + p ∗ N(0, σ̂X), (11)

where p is an input parameter of the input smearing algorithm and σ̂X is the sample
standard deviation of X, using the training set data. In this case, the examples are
changed, but the training set keeps the same number of examples. Although only the
numeric input variables are smeared in this work, similar strategies could be used for
the nominal ones. Results presented in this work compare favorably to bagging. A sim-
ilar approach called BEN (Bootstrap Ensemble with Noise) was previously presented
by Raviv and Intrator [1996].

An alternative transformation approach uses feature discretization [Cai and Wu
2008]. In this work, numerical features are replaced with discretized versions. By
repeating the process multiple times and varying the discretization method and its
parameters, different datasets are generated. This promotes the diversity of the models
generated.

Rodriguez et al. [2006] present a method that combines selection and transformation,
called rotation forests. The original set of features is divided into k disjoint subsets to
increase the chance of obtaining increased diversity. Then, for each subset, a Principal
Component Analysis (PCA) approach is used to project the examples into a set of new
features consisting of linear combinations of the original ones. Using decision trees
as base learners, this strategy promotes diversity (decision trees are sensitive to the
rotation of the axis) and accuracy (PCA generates features representing most of the
information contained in the data). The rotation forest method has also been used for
regression [Zhang et al. 2008]. In experiments on two real and three artificial datasets,
it obtained worse results than AdaBoost.R2, similar results as bagging, and better
results than random forest.

3.1.3. Manipulating the Output Variable. Manipulation of the output target values can also
be used to generate different training sets. However, not much research follows this
approach and most of it focuses on classification.

An exception is the work of Breiman, called output smearing [Breiman 2000]. The
basic idea is to add Gaussian noise to the target variable of the training set, in the same
way as is done for input features in the input smearing method (Section 3.1.2). Although
it was originally proposed using CART trees as base models, it can also be used with
other base algorithms. The comparison between output smearing and bagging shows a
consistent reduction of the generalization error, even if not outstanding.

An alternative approach consists of the following steps. First a model is generated
using the original data. This model is applied to the training data and a new training
set is obtained by replacing the target values with the errors of this model. Using the
new dataset, it generates a model that estimates the error of the predictions of the
first model. Then, it creates a first ensemble that combines the prediction of the first
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model with the correction predicted by the second one. Finally, it starts an iterative
process that: (1) generates models that predict the error of the current ensemble and
(2) updates the ensemble with the new model. The training set used to generate the
new model in each iteration is obtained by replacing the output targets with the errors
of the current ensemble. This approach was proposed by Breiman, using bagging as the
base algorithm and it was called iterated bagging [Breiman 2001b]. Iterated bagging
reduces generalization error when compared to bagging. This is mainly due to bias
reduction during the iterative process.

3.2. Modeling Process Manipulation

As an alternative to manipulating the training set, it is possible to change the model
generation process. This can be performed by using different parameter sets, by ma-
nipulating the induction algorithm, or by manipulating the resulting model.

3.2.1. Manipulating the Parameter Sets. Every induction algorithm is sensitive to the
values of the input parameters. The degree of sensitivity of an algorithm is different
for different input parameters. These parameters can be manipulated in order to obtain
ensembles with diverse and accurate predictors.

Neural network ensemble approaches quite often use different initial weights to ob-
tain different models. This is done because the resulting models may vary significantly
with different initial weights [Kolen and Pollack 1990]. Several authors, such as Rosen,
for example, use randomly generated seeds (initial weights) to obtain different mod-
els [Rosen 1996], while other authors combine this strategy with the use of different
number of layers and hidden units [Perrone and Cooper 1993; Hashem 1993].

The k-nearest-neighbors ensemble proposed by Yankov et al. [2006] only has two
members. They differ on the number of nearest neighbors used. They are both sub-
optimal, one of them because the number of nearest neighbors is too small, and the
other because it is too large. The purpose is to increase diversity (see the use of areas
of expertise described in Section 5).

3.2.2. Manipulating the Induction Algorithm. Diversity can also be achieved by changing
the way induction is performed. Therefore, the same learning algorithm may have
different results on the same data. Two main categories of approaches for this can
be identified as: sequential and parallel. In sequential approaches, the induction of a
model is only influenced by the previous ones. In parallel approaches it is possible to
have more extensive collaboration during the learning process: (1) each process takes
into account the overall quality of the ensemble and (2) information about the models
is exchanged between processes.

The most common sequential approach consists of changing the error function (e.g.,
Rosen [1996], Granitto et al. [2005], and Islam et al. [2003]). Rosen [1996] generates
ensembles by sequentially training neural networks. The error function that is opti-
mized during the training of a network includes a decorrelation penalty. Using this
approach, the training of each network tries to minimize the covariance component of
the error of the ensemble, according to Ueda and Nakano [1996] (Section 2.4), thus de-
creasing its generalization error and increasing diversity. This was the first approach
using the decomposition of the generalization error made by Ueda and Nakano [1996]
(Section 2.4) to guide the ensemble generation process. SECA (Stepwise Ensemble Con-
struction Algorithm) in addition uses bagging to obtain the training set for each neural
network [Granitto et al. 2005]. It stops when adding another neural network to the
current ensemble increases the generalization error. The Cooperative Neural Network
Ensembles (CNNE) method [Islam et al. 2003] begins with two neural networks and
then iteratively adds new networks to try to minimize the ensemble error. As in Rosen’s
approach, the error function includes a term that represents the correlation between
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10:14 J. Mendes-Moreira et al.

the models in the ensemble. Therefore, to stimulate diversity, all of the models already
generated are trained again at each iteration of the process. This means that this is
simultaneously sequential and parallel. Before adding new networks, this approach
starts by adding hidden nodes to them. Therefore, it combines the manipulation of
the algorithm with the manipulation of the model (Section 3.2.3). These methods were
tested on both classification and regression datasets with promising results.

A different approach is proposed by Tsang et al. [2006]. They adapt the CVM (Core
Vector Machines) algorithm [Tsang et al. 2005] to maximize the diversity of the models
in the ensemble by guaranteeing that they are orthogonal. This is achieved by adding
constraints to the quadratic programming problem that is solved using the CVM algo-
rithm. This approach can be related to AdaBoost because higher weights are given to
instances that have been incorrectly classified in previous iterations (Section 3.1.1).

Parallel approaches have, typically, three main characteristics: (1) simultaneous
training of the models; (2) use of an adapted error function; and (3) search with evolu-
tionary approaches.

The models are trained simultaneously but the learning processes are not indepen-
dent. They interact to guarantee that the training of each model is trying to accom-
plish global objectives, that is, concerning the overall ensemble. Interaction is typically
achieved by using an adapted error function. As in sequential approaches, this error
function has a penalty term that guarantees the diversity of the ensemble. Evolution-
ary approaches are commonly used to obtain the right values for the penalty terms.
In summary, the main difference between the parallel approaches and the sequential
ones is that the ensemble generation is performed simultaneously taking into account
(in each model of the ensemble) the behavior of the other models in previous iterations,
weighted by a penalty term.

In the ADDEMUP (Accurate anD Diverse Ensemble-Maker giving United Predic-
tions) method [Opitz and Shavlik 1996], the fitness metric for each network weighs
the accuracy of the network and the diversity of this network within the ensemble,
according to the bias/variance decomposition [Krogh and Vedelsby 1995]. Genetic oper-
ators of mutation and crossover are used to generate new models from previous ones.
The new networks are trained emphasizing misclassified examples, as in AdaBoost
(Section 3.1.1). The best networks are selected and the process is repeated until a
stopping criterion is met. This approach can be used on other induction algorithms.

The method Ensemble Learning via Negative Correlation (ELNC) [Liu and Yao
1999] also learns the neural networks simultaneously. However, the error function
uses a negative correlation term, according to Ueda and Nakano [1996], instead of the
bias/variance decomposition from Krogh and Vedelsby [1995] used in Opitz and Shavlik
[1996]. A combination of ELNC with an evolutionary programming framework, called
Evolutionary Ensembles with Negative Correlation Learning (EENCL), was later pro-
posed [Liu et al. 2000]. In this case, the only genetic operator used is mutation, which
randomly changes the weights of an existing neural network. Furthermore, the ensem-
ble size is obtained automatically.

A parallel approach is one in which each learning process does not take the quality
of the others into account, but in which the exchange of information about the models
is given by the cooperative coevolution of artificial neural network ensembles method
[Garcı́a-Pedrajas et al. 2005]. It also uses an evolutionary approach to generate ensem-
bles of neural networks. It combines a mutation operator that affects the weights of the
networks, as in EENCL, with another which affects their structure, as in ADDEMUP.
As in EENCL, the generation and integration of models are also part of the same
process. The diversity of the models in the ensemble is encouraged in two ways: (1) by
using a coevolution approach, in which subpopulations of models evolve independently;
and (2) by using a multiobjective evaluation fitness measure, combining network and
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ensemble fitness. Other groups of objectives (measures) besides the cooperation objec-
tives are: performance objectives, regularization, diversity, and ensemble objectives.
The authors conduct a study on the sensitivity of the algorithm to changes in the set of
objectives. The results are interesting but they cannot be generalized to the regression
problem, since the authors only studied the classification problem. This approach can
be used for regression, but with a different set of objectives.

Finally we mention two other parallel techniques. In the first one, the learning
algorithm generates the ensemble directly. Lin and Li formulate an infinite ensemble
based on the SVM (Support Vector Machines) algorithm [Lin and Li 2005]. The main
idea is to create a kernel that embodies all of the possible models in the hypothesis
space. The SVM algorithm is then used to generate a linear combination of all of those
models, which is, in fact, an ensemble of an infinite set of models. They propose the
stump kernel that represents the space of decision stumps.

Breiman’s random forests method [Breiman 2001a] uses an algorithm for the induc-
tion of decision trees that is also modified to incorporate some randomness: the split
used at each node takes into account a randomly selected feature subset. The subset
considered in one node is independent of the subset considered in the previous one. This
strategy, based on the manipulation of the learning algorithm, is combined with sub-
sampling, since the ensemble is generated using the bagging approach (Section 3.1).
The strength of the method is the combined use of bootstrap sampling and random
feature selection.

3.2.3. Manipulating the Model. When given a learning process that produces a single
model f , it can potentially be transformed into an ensemble approach by producing a set
of models fi from the original model f . Jorge and Azevedo have proposed a postbagging
approach for classification [Jorge and Azevedo 2005] that takes a set of Classification
Association Rules (CAR’s) produced by a single learning process and obtains nmodels by
repeatedly sampling the set of rules. Predictions are obtained using a large committee
of classifiers constructed as described before. Experimental results on 12 datasets show
a consistent, although small, advantage over the singleton learning process. The same
authors also propose an approach with some similarities to boosting [Azevedo and Jorge
2007]. Here, the rules in the original model f are iteratively reassessed, filtered, and
reordered according to their performance on the training set. Once again, experimental
results show a small but consistent improvement over using the original model, and
also show a reduction in the bias component of the error. Both approaches replicate
the original model without relearning and obtain very homogeneous ensembles with
a kind of jittering effect around the original model [Azevedo and Jorge 2010]. Model
manipulation has only been applied in the realm of classification association rules, a
highly modular representation. Applying it to other kinds of models, such as decision
trees or neural networks, does not seem trivial. However, it could be easily attempted
with regression rules.

3.3. Discussion on Ensemble Generation

Two relevant issues arise from the previous discussion. The first is how can the user
decide which method to use on a given problem. The second, which is more inter-
esting from a researcher’s point of view, is what are the promising lines for future
work.

It is possible to distinguish the most interesting/promising methods from some of
the most commonly used induction algorithms. For regression trees, bagging [Breiman
1996a], due to its consistency and simplicity, and random forest [Breiman 2001a], due
to its accuracy, are the most appealing ensemble methods. For neural networks, the
methods based on negative correlation (e.g., EENCL [Liu et al. 2000]) are particularly
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appealing, due to their theoretical foundations [Brown et al. 2005b] and successful
empirical results. Islam et al. [2003] and Garcia-Pedrajas et al. [2005] also present
interesting methods: the first one because it builds the base learners and the ensem-
ble simultaneously, thus saving time when compared to generating all of the models
and then combining them; the second one because it integrates operational research
methods into the ensemble learning process.

Although ensembles are mostly used with unstable algorithms, it has been shown
that process manipulation approaches (Section 3.2) obtain good results with stable
algorithms [Ferrer et al. 2009].

With regard to the second issue, an important line of work is the adaptation of
the methods described here to other algorithms, such as Support Vector Regression
(SVR) and k-Nearest Neighbors (k-NN). k-NN is an unstable algorithm so it would
be interesting to understand better exactly how it behaves with different ensemble
generation techniques. SVR is stable so it does not make sense to build ensembles using
the data manipulation approaches (Section 3.1). Furthermore, it has many parameters,
including the kernel function, that significantly affect its results. Therefore, it would be
interesting to analyze its performance with different modeling process manipulation
approaches (Section 3.2). Although some attempts have been made along these lines,
there is still much work to be done.

It can also be observed that there is less work on heterogeneous ensembles than
in homogeneous ones. This is because it is more difficult to control the interaction
between the different learning processes. Given that the quality of ensembles is linked
to the accuracy and diversity of the models, combining models from different algorithms
seems to be a promising approach in order to achieve diversity. The accuracy of the
models should be ensured by its adequate choice.

Additionally, it must be noted that most research focuses on one specific approach to
build the ensemble (e.g., subsampling from the training set or manipulating the induc-
tion algorithm). The successful results obtained by random forests indicate that mixing
different generation processes is a promising approach [Meyer et al. 2003]. However,
further investigation into the advantages of combining several approaches is necessary.

In general, the observations made here with regard to regression also apply to clas-
sification. One exception is when the induction algorithm is manipulated and in the
boosting approach. Approaches that manipulate the induction algorithm take advan-
tage of the error decomposition, which is naturally different in regression and in clas-
sification. Boosting algorithms for regression must be different due to the different
nature of the generalization error for classification and for regression.

Tables II and III present a summary of some methods for ensemble generation.
Table IV presents some real examples where some of these methods are used.

We conclude this section by summarizing pair-wise evaluations between different
methods on ensemble generation for regression (Table V). Although such studies are
useful, they should be read carefully. In fact, even though ensemble methods typically
have a small number of parameters that meaningfully affects the ensemble’s accuracy,
these parameters should be previously tuned in order to obtain the best of each method.
This is done in Meyer et al. [2003] but not in Zhang et al. [2008] and Yu et al. [2007],
for instance. And the question is: is this the reason why bagging beats random forests
in 5 out of 5 datasets in Zhang et al. [2008], but loses 12 out of 12 datasets in Meyer
et al. [2003]? Additionally, it would be even more important to understand under
which conditions do the methods perform best and worst. One approach on this kind
of analysis is metalearning [Brazdil et al. 2009]. The results of such an analysis would
not only support users in selecting the most suitable model for a given problem, but
would also provide important insights for researchers in this area concerning, among
others, which characteristics of each method should be improved.
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Table II. Summary on Methods for Ensemble Generation

Abbrev. Name Ref. Base learners
Bagging [Breiman 1996a] DT & ANN
Random subspace [Ho 1998] DT
Ensemble feature selection [Opitz 1999] ANN
Using diversity in [Zenobi and Cunningham 2001] ANN
preparing ensembles
Nearest Neighbor Ensemble [Domeniconi and Yan 2004] KNN

BEN Bootstrap Ensemble with Noise, or [Raviv and Intrator 1996] DT
Input smearing [Frank and Pfahringer 2006]
Ensembles based on RSBRA [Cai and Wu 2008] SVM
Rotation forests [Rodrı́guez et al. 2006] DT

[Zhang et al. 2008]
Output smearing [Breiman 2000] DT
Iterated bagging [Breiman 2001b] DT
AdaBoost.R2 [Drucker 1997] DT
AdaBoost.RT [Shrestha and Solomatine 2006] DT

MART Multiple Additive Regression Trees [Friedman 2002] DT
SECA Stepwise Ensemble [Rosen 1996] ANN

Construction Algorithm
CNNE Cooperative Neural [Islam et al. 2003] ANN

Network Ensembles
CVM Core Vector Machines [Tsang et al. 2006] SVM
ADDEMUP Accurate anD Diverse Ensemble- [Opitz and Shavlik 1996] ANN

Maker giving United Predictions
EENCL Evolutionary Ensembles with [Liu et al. 2000] ANN

Negative Correlation Learning
Cooperative coevolution of [Garcı́a-Pedrajas et al. 2005] ANN
neural network ensembles
Infinite ensemble [Lin and Li 2005] SVM
Random forests [Breiman 2001a] DT
Jittering ensembles [Jorge and Azevedo 2005] AR

[Azevedo and Jorge 2010]

DT: Decision Trees; ANN: Artificial Neural Networks; KNN: K-Nearest neighbors; SVM: Support Vector
Machines; AR: Association Rules.

4. ENSEMBLE PRUNING

Many of the previously discussed methods on ensemble generation generate diverse
ensembles although they do not guarantee the use of the smallest ensemble capable
of maximum accuracy. Some of those generation processes involve randomness,
for instance, varying the training set, but they cannot foresee how diverse are the
generated models.

Ensemble pruning consists of selecting a subset F of the models generated in the
previous step, F0 (Eq. (10)). In this circumstance, F0 is also known as pool of models.

F ⊆ F0 (12)

The aim of ensemble pruning is to improve its predictive ability or reduce costs.
It can also be used to avoid the problem of multicollinearity [Perrone and Cooper
1993; Hashem 1993] (to be discussed in Section 5). This is the “choose” step in the
overproduce-and-choose approach. Even in the case of approaches that are designed to
be direct (i.e., in which all the models are originally intended to be used, e.g., bagging
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Table III. Summary on Methods for Ensemble Generation (continuation)

Name Approach Description
Bagging SS Constructs trees randomly selecting instance subsets using

bootstrapping
AdaBoost.R2 SS Adapts the AdaBoost classification algorithm by mapping the

absolute error to [0, 1]
AdaBoost.RT SS Adapts the AdaBoost classification algorithm by discretizing

the error in a binary one
Multiple additive regression
trees

SS Adapts the AdaBoost classification using a forward
stage-wise additive model

Random subspace MIF Constructs trees randomly selecting features
Ensemble feature selection MIF Uses genetic algorithms for feature selection
Using diversity in preparing
ensembles

MIF Uses wrapper hill-climbing for feature subset selection

Nearest neighbor ensemble MIF Combines feature subset selection with adaptive sampling
Input smearing, or Bootstrap
ensemble with noise

MIF Constructs different trees adding Gaussian noise to the
inputs

Ensembles based on RSBRA MIF Generates different models by transforming the input
variables using random discretization

Rotation forests MIF Constructs trees randomly selecting feature subsets but
retaining some features in all subsets using principal
component analysis

Output smearing MOV Constructs different trees adding Gaussian noise to the
output

Iterated bagging MOV Iteratively adds trees to the ensemble by training the trees
using the error obtained with the current ensemble

Stepwise ensemble
construction algorithm

MIA Uses a decorrelation penalty in the error function during the
sequential training of the neural networks

Cooperative neural network
ensembles

MIA It also uses a correlation term, but all neural networks are
retrained whenever a new network is added to the ensemble

Core vector machines MIA Manipulates the quadratic problem of SVMs by adding
constraints in order to guarantee orthogonality

Accurate and diverse
ensemble-maker giving
united predictions

MIA Uses genetic algorithms for the generation of new models
from previous ones emphasizing misclassified examples

Evolutionary ensembles with
negative correlation learning

MIA Uses a negative correlation term according to the
bias/variance/covariance decomposition combined with
evolutionary programming

Cooperative coevolution of
neural network ensembles

MIA Uses a multi-objective method in order to favor the
cooperation among networks

Infinite ensemble MIA Uses a kernel for SVM that embodies all possible models in
the hypothesis space

Random forests MIA Uses a random subset of the input features at each split in
the tree construction together with bootstrapping for example
selection

Jittering ensembles MM Uses sub-sampling over the rules of a single base model

SS: Sub-Sampling; MIF: Manipulating the Input Features; MOV: Manipulating the Output Variable; MIA:
Manipulating the Induction Algorithm; MM: Manipulating the Model.

[Breiman 1996a]), it has been shown that the addition of a pruning step may not only
reduce computational costs, but also increase prediction accuracy in some cases [Zhou
et al. 2002; Hernández-Lobato et al. 2006]. Additionally, some pruning approaches (e.g.,
Bakker and Heskes [2003]) generate profiles for the different types of classifiers. These
profiles summarize the knowledge in the ensembles, thus providing new insight on the
data [Bakker and Heskes 2003].
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Table IV. Summary on Methods for Ensemble Generation (applications)

Name Applications Refs
Bagging e.g.: project management [Aggarwal et al. 2010]

real estate appraisals [Lasota et al. 2009]
image processing [Meng et al. 2010]

Cooperative neural network ensembles e.g.: Mechanics [Zhang et al. 2009]
Evolutionary ensembles with negative
correlation learning

e.g.: Telecommunications [Yao et al. 2001]

Random forests e.g.: biology [Tian et al. 2010]
software engineering [Weyuker et al. 2010]

transportation [Mendes-Moreira et al. 2012]

Table V. Pair-wised Comparison between Ensemble Generation Methods for Regression

GM BL LWin/RWin GM BL References
Bagging DART 1/1 AdaBoost.R2 DART [Borra and Ciaccio 2002]
Bagging PPR 0/2 AdaBoost.R2 PPR [Borra and Ciaccio 2002]
Bagging CART 1/1 Iterated bagging CART [Breiman 2001b]
Bagging CART 1/3 Subagging CART [Buja and Stuetzle 2006]
Bagging CART 1/7 AdaBoost.R2 CART [Drucker 1997; Zhang et al. 2008]
Bagging ANN 0/5 SECA ANN [Granitto et al. 2005]
Bagging ANN 5/43 Bagging LR [Yu et al. 2007]
Bagging ANN 6/41 Random forest C4.5 [Yu et al. 2007]
Bagging LR 22/26 Random forest C4.5 [Yu et al. 2007]
Bagging CART 5/12 Random forest CART [Zhang et al. 2008; Meyer et al. 2003]
Bagging CART 3/2 Rotation forest CART [Zhang et al. 2008]
Random forest CART 0/5 AdaBoost.R2 CART [Zhang et al. 2008]
Random forest CART 0/5 Rotation forest CART [Zhang et al. 2008]
AdaBoost.R2 CART 5/0 Rotation forest CART [Zhang et al. 2008]
Bagging CART 4/8 MART CART [Meyer et al. 2003]
Random forest CART 10/2 MART CART [Meyer et al. 2003]

GM: Generation Method; BL: Base Learner; LWin: the method on the left is the winner; RWin: the method
on the right is the winner; Draws were ignored.
DART: Recursive covering algorithm [Friedman 1996]; PPR: Projection Pursuit Regression; CART: Clas-
sification And Regression Trees; ANN: Artificial Neural Networks; LR: Logistic Regression; C4.5: C4.5
decision tree.

Even though there are surveys on ensemble pruning [Tsoumakas et al. 2008;
Martinez-Munoz et al. 2009], they only address classification. However, some of the
approaches used for classification cannot be applied to regression. The pruning algo-
rithm described in Section 2.5 is an example of that. It uses the decomposition of the
generalization error for regression, which is different from the one for classification.
Moreover, parts of the ensemble pruning algorithms for regression are necessarily
different from those for classification, namely the evaluation measures.

It is possible to make a comparison between pruning ensembles and feature selection
[Molina et al. 2002], even though there are differences between the two tasks. There-
fore, we draw some inspiration from feature selection to characterize existing methods
on ensemble pruning.

Methods for ensemble pruning can be classified as partitioning-based or as search-
based. Partitioning-based methods divide the pool of models into subgroups using a
given partitioning criterion. For ensemble pruning only the use of clustering is known
as a partitioning method. Then, for each subgroup one or more models are selected using
a given selection criterion. Partitioning-based methods are discussed in Section 4.1.
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Search-based methods search for a subset of the original pool of models by iteratively
adding or removing models from the candidate subset according to a given evaluation
measure and search algorithm (i.e., a strategy to add or remove models from the
candidate subset). Search-based methods can be classified according to: (1) the object
of evaluation; (2) the search algorithm; and (3) the evaluation measure. As far as (1) is
concerned, single models or subsets of models can be evaluated. The search algorithm
(2) depends on the object of the evaluation. The approaches that evaluate single models
are known as ranking approaches. For ranking approaches the search is exhaustive,
which means that all the base models are evaluated. On the other hand, the approaches
that evaluate subset of models can use exhaustive, randomized, or sequential search
algorithms, as will be discussed in Section 4.2.

The studies on the evaluation measures for ensemble pruning (3) are strongly related
to the studies on the generalization error of the ensembles (Section 2.4). Evaluation
measures are discussed in Section 4.3.

Additional classification criteria could be used in order to characterize search-based
ensemble pruning methods. The stopping criterion defines when search should be
stopped. It is direct if the number of models to be selected is given or by evaluation if
it depends on the quality of the ensemble (single model or subset of models).

4.1. Partitioning-Based Approaches

This approach assumes that the pool contains many similar models and only a few
of them are not redundant. The main idea of partitioning-based approaches is to di-
vide the models into several subgroups using a partitioning criterion and to choose
representative models (one or more) from each subgroup.

All the partitioning-based approaches take into consideration the generation of the
subgroups using clustering algorithms. Lazarevic represents the models in the pool
according to the prediction vectors made by them [Lazarevic 2001]. The k-means clus-
tering algorithm is used on these vectors to obtain clusters of similar models. The
number of clusters is an input parameter of this approach. In practice, this value must
be tested by running the algorithm for different values or, as in Lazarevic’s case, using
an algorithm to obtain a good default value [Lazarevic 2001]. Coelho and Von Zuben
use the ARIA - Adaptive Radius Immune Algorithm [Coelho and Von Zuben 2006] for
clustering. This algorithm does not require the number of clusters to be prespecified
[Bezerra et al. 2005].

As far as the selection of the models from the partitions is concerned, the goal is, as
previously discussed, to generate the best possible ensemble, which typically means
that the selected models must be accurate and diverse. In partitioning-based meth-
ods this is achieved, at least partially, while generating the subgroups of models. By
choosing models from different groups, some diversity is guaranteed in the ensem-
ble. Consequently, in practice, evaluation measures for the selection component of
partitioning-based approaches are typically different (and simpler) than the ones used
in the search-based approaches, which usually favor the accuracy of the ensemble.
Evaluation measures are discussed in Section 4.3.

4.2. Search-Based Approaches for Model Subset Selection

Here, the same classification of algorithms that was used for feature subset selection
are used [Aha and Bankert 1996; Molina et al. 2002]: exponential, randomized, and
sequential.

4.2.1. Exponential Search Algorithms. Exponential algorithms search the complete input
space. When selecting a subset of models from a pool F′ with K models, the search space
has 2K − 1 nonempty subsets. The search for the optimal subset is an NP-complete
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problem [Tamon and Xiang 2000]. Perrone and Cooper suggest this approach for small
values of K [Perrone and Cooper 1993]. However, according to Martı́nez-Muñoz and
Suárez it is intractable for values of K > 30 [Martinez-Munoz and Suárez 2006].

An example of this approach is presented in Aksela [2003] where the evaluation
measure is calculated for each nonempty candidate subsets. They use a pool of eight
models.

4.2.2. Randomized Search Algorithms. Randomized algorithms perform a heuristic
search in the input space using stochastic methods, such as evolutionary algorithms.

Ruta and Gabrys use three randomized algorithms to search for the best subset
of models [Ruta and Gabrys 2001]: genetic algorithms, tabu search, and population-
based incremental learning. The main result of the experiments on three classification
datasets, using a pool of K = 15, was that the three algorithms obtained most of the
best selectors comparatively to the exhaustive search. These results may have been
conditioned by the small size of the pool.

4.2.3. Sequential Search Algorithms. Sequential algorithms iteratively change one solu-
tion by adding or removing models. Three types of sequential search algorithms are
used according to how the successors of a solution are generated [Molina et al. 2002].

—Forward: The search begins with an empty ensemble. Models are added to the en-
semble in each iteration. This is referred to as Forward Subset Selection (FSS).

—Backward: The search begins with all the models in the ensemble. Models from the
ensemble are eliminated in each iteration. This is referred to as Backward Subset
Selection (BSS).

—Combined: If the selection can have both forward and backward steps, it is called
combined.

In the FSS and BSS algorithms, the stopping criterion assumes that the evaluation
measure is monotonic [Coelho and Von Zuben 2006]. However, in practice, this cannot
be guaranteed.

An interesting sequential forward search method for pruning ensembles is based
on AdaBoost [Martinez-Munoz and Suárez 2007]. Instead of learning a new model
in each iteration, this method selects the one from the initial pool of models that
minimizes the error function. By changing the weights of the instances, as in the
original AdaBoost approach, this method ensures that the selected models are diverse
as well as accurate. Although this method was originally proposed for classification, it
can be directly applied to regression using AdaBoost.R or AdaBoost.R2 (described in
Section 3.1.1). Furthermore, the use of gradient descent boosting algorithms, if possible,
is not direct due to their additive nature.

A rather different and interesting approach is based on frequent itemsets [Zhao et al.
2009]. Here, a pattern mining algorithm is adapted so as to iteratively build the final
ensemble by adding accurate subsets of base models. It depends on two important
classification-specific issues: a 0-1 loss function and integration with majority voting.
One possibility of adapting this method for regression is to discretize the error into two
classes as discussed previously (Section 3.1.1).

Combined methods address this difficulty by mixing forward and backward steps.
The aim is to avoid local minima, that is, situations where the fast improvement
obtained in the initial iterations leads to a solution which is not the best globally.
Examples of combined search methods for ensemble pruning are Moreira et al. [2006]
and Margineantu and Dietterich [1997].

Moreira et al. describe an algorithm that starts by randomly selecting a predefined
number of K models [Moreira et al. 2006]. At each iteration, one forward step and one
backward step are applied. The forward step is the same as in common FSS methods,
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that is, it selects the model from the pool which improves the accuracy of the ensemble
the most. At the end of this step, the ensemble has K + 1 models. The second step
selects the K models with higher ensemble accuracy. This means that, in practice, one
of the K + 1 models is removed from the ensemble. The process stops when the same
model is selected in both steps.

Margineantu and Dietterich present another compound search algorithm called
reduce-error pruning with back fitting [Margineantu and Dietterich 1997]. This al-
gorithm is similar to the FSS in the two first iterations. After the second iteration,
that is, when the third candidate and the following ones are added, a backward step
is performed. Here f̂1, f̂2, and f̂3 are considered the current set of models. Firstly, f̂1
is removed from the ensemble and the addition of each of the remaining candidates
f̂i(i > 3) to the ensemble is tested. This step is repeated for f̂2 and f̂3 and the one
with the best improvement is added to the selected set. Then, further iterations are
executed until a predefined number of iterations is reached.

A combined search technique that obtained good results on the feature subset se-
lection problem, and yet has never been applied to ensemble pruning, is the floating
search [Pudil et al. 1994].

4.3. Evaluation Measures for Ensemble Pruning

Evaluation measures can be used to guide the search schema and to establish the stop-
ping criterion. Both situations are discussed here. In ranking approaches, evaluation
measures are used to assess the models individually and the values obtained are used
to rank them. In partitioning approaches, they are used in a similar way, but sepa-
rately for each group of models. Model subset selection evaluates each of the candidate
subsets as a whole.

Examples of ranking evaluation are given in Partridge and Yates [1996] and Coelho
and Von Zuben [2006]. The authors rank the K0 models according to accuracy. Then,
the K most accurate models (K is a given parameter such that K ≤ K0) are selected.
The main disadvantage of this approach is that it does not guarantee diversity, as the
selected models may be very similar to each other. This problem is not so important in
partitioning approaches because the process of dividing models into subgroups already
ensures that models in different groups are diverse. For instance, two clustering-based
partitioning approaches, ARIA [Coelho and Von Zuben 2006] and the clustering by
deterministic annealing [Bakker and Heskes 2003] methods, select a single model
from each cluster based on accuracy ranking.

Perrone and Cooper [1993] describe an algorithm that also ranks the models in
the pool according to their accuracy. However, instead of predefining the number of
models to be selected, they use an iterative procedure in order to define this number,
that is, they use a different stopping criterion for the search. The authors include the
candidate model in the ensemble only if the ensemble accuracy increases with the new
model. Otherwise, the process stops. This method evaluates the accuracy of the base
models to rank them, and evaluates the accuracy of the ensemble to decide whether
the selection process should be continued or not. The description given here implies
an FSS search schema. However, in Coelho and Von Zuben [2006] this evaluation
procedure is integrated with both FSS and BSS search schemas under the postfix
name “without exploration”.

In another approach based on accuracy, Kotsiantis and Pintelas define an implicit
ranking by comparing each base model with the most accurate one using t-tests
[Kotsiantis and Pintelas 2005]. Again, this approach is different because it uses a
different stopping criterion.

With the exception of the clustering approaches, the approaches discussed so far
[Partridge and Yates 1996; Kotsiantis and Pintelas 2005; Coelho and Von Zuben 2006]
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do not guarantee diversity in the searching schema. Other authors try to address this
issue. Aksela selects the subset with minimal mean pair-wise correlation [Aksela 2003].
Rooney et al. use a metric that tries to balance accuracy and diversity. They define
the accuracy of each model as the ratio between the generalization error of the most
accurate model in the pool and each particular model. The models with an accuracy that
is higher than a prespecified threshold will be selected. In a second step, the authors
define the diversity for each model as the percentage of models with a correlation
less than or equal to 0.6. Finally they sum the accuracy and the diversity for each
model and select the K (this is a given value) models with the highest values [Rooney
et al. 2004]. Rokach uses an evaluation measure that takes into account both the error
of the models and the agreement on the predictions of the models [Rokach 2009a].
This pruning algorithm, known as Collective-Agreement-Based Pruning (CAP), was
originally developed for classification. Although it has not been adapted for regression,
this seems to be possible. An interesting approach that was developed specifically for
regression is the one presented in Hernández-Lobato et al. [2006]. It evaluates each
model individually using an evaluation metric that represents its bias, variance, and
covariance, based on the decomposition of the error proposed in Ueda and Nakano
[1996], as described in Section 2.4.

The following approaches only evaluate the performance of the ensemble. GASEN
(Genetic-Algorithm-based Selective ENsemble) [Zhou et al. 2002] optimizes the per-
formance of an ensemble that is a linear combination of all the models generated (see
Section 5 for a discussion on the issue of model integration). This optimization is based
on a genetic algorithm that evolves the weights of the models. However, the weights that
are found in the search are not used in the integration step. Instead, GASEN prunes the
ensemble by selecting those models that have a weight on the solution that is greater
than a given threshold. The approach was tested with neural networks and decision
trees, outperforming bagging and boosting [Zhou et al. 2002; Zhou and Tang 2003].

4.4. Discussion on Ensemble Pruning

Pruning is usually associated with methods that generate a large number of models in
an independent way (e.g., Caruana et al. [2004]). This may explain why it receives less
attention from the research community, which focuses more on direct approaches. Nev-
ertheless, there is some evidence that performance improves when pruning is used with
ensemble generation methods that are typically used without pruning (e.g., bagging)
[Hernández-Lobato et al. 2006].

No extensive comparisons between ensemble pruning methods have been published
that can provide some guidance on which method to use on a given problem. A few
studies compare the method proposed by the corresponding authors with a previously
proposed method [Roli et al. 2001; Partridge and Yates 1996; Coelho and Von Zuben
2006; Ruta and Gabrys 2001]. However, they all use a very small number of datasets,
limiting the generality of the results.

As far as search method is concerned, a simple and yet effective search method for
ensemble pruning is the FSS approach (see Section 4.2.3), described in Coelho and
Von Zuben [2006] under the name constructive with exploration. As for more complex
approaches, there are no comparative studies. Given that search-based approaches are
very similar to wrapper-based feature selection, we may establish a parallel between
results in both areas. The forward version of the compound method (Section 4.2.3)
proposed in Pudil et al. [1994] is, according to Jain and Zongker [1997], the most
effective suboptimal method on feature subset selection. Stochastic search methods,
genetic algorithms [Vafaie and Jong 1993; Skalak 1994; Yang and Honavar 1997; Oh
et al. 2004], simulated annealing [Loughrey and Cunningham 2005], and ant colony
optimization [Al-Ani 2005] have obtained good results [Skalak 1994; Oh et al. 2004;
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Table VI. Summary on Methods for Ensemble Pruning Using Partitioning-Based Approaches

Name Stopping criterion Evaluation measure
Clustering by
deterministic
annealing

Partitioning: given number of clusters Partitioning: weighted distance
(different distance measures are
described)

Selection: the best from each cluster Selection: accuracy of the base models
Adaptive Partitioning: an edge will be removed Partitioning: Euclidean distance
Radius if the ratio of its evaluation and the and local density information
Immune minimum evaluation of its neighbor
Algorithm edges is larger than a given threshold
(ARIA) Selection: the best from each cluster Selection: accuracy of the base models

Al-Ani 2005] on feature subset selection. Despite the parallel that can be established,
it remains to be proven that these results also apply to ensemble pruning.

As far as the evaluation measure is concerned, it is advisable to use one that measures
both accuracy and diversity, as the one presented in Rooney et al. [2004]. The clustering
approach [Bakker and Heskes 2003; Coelho and Von Zuben 2006] can also be used for
this purpose.

Pruning has been tested only with ensemble generation approaches that manipu-
late training data [Hernández-Lobato et al. 2006] (Section 3.1) and parameter val-
ues [Mendes-Moreira 2008] (Section 3.2.1). The combination with methods that ma-
nipulate the learning algorithm does not make sense because these methods usually
control the generation process in order to ensure that an optimal ensemble is obtained.
However, it would be interesting to investigate the combination of pruning with gen-
eration approaches that manipulate the model.

Additionally, it would be interesting to integrate ensemble pruning with approaches
where the size of the ensemble is not determined during the generation process (i.e.,
typically when the number of models is defined a priori).

We believe that ensemble pruning will regain some importance in the application
of ensemble methods to data streams [Wang et al. 2003; Bifet et al. 2009]. In data
streams, the phenomenon that generates the data may change (referred to as concept
change in classification). In that case, the best set of models to use in the ensemble
may change. This means that some models may be kept while others become outdated
and must be replaced with new ones that are generated with new data. Addressing
this problem by relearning the complete ensemble will often be impractical. So, the
application of ensembles to data streams will be based on a repetition of the generation
and pruning steps.

As in the ensemble generation step, the majority of the methods for ensemble pruning
can be used both in classification and regression.

Tables VI, VII and VIII present a summary of some pruning algorithms that can be
used for ensemble regression.

5. ENSEMBLE INTEGRATION

Now that we have described the process of ensemble generation, the next step is under-
standing how it is possible to combine the predictions of the models in the ensemble so
as to obtain a single answer. In regression problems, ensemble integration is performed
using a linear combination of the predictions. This can be stated as

f̂F (x) =
K∑

i=1

[hi(x) ∗ f̂i(x)], (13)

where hi(x) are the weighting functions.
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Table VII. Summary of Methods for Ensemble Pruning Using Search-Based Approaches

Search
Name Approach Stopping criterion Evaluation measure
Pruning statistical R p-value < 0.05 in Accuracy of the base models
inaccurate models the t-test against the

most accurate model
GASEN R Given threshold for Fitness (=1/error) of the base

the fitness models
50% threshold R Given nr. of models Firstly by accuracy above a

given threshold and then by
accuracy + diversity

Correlation between E Given nr. of models Mean pairwise correlation
errors between errors
Forward without F Ensemble accuracy Ranking: base models’ accuracy
exploration starts decreasing Stopping criterion: ensemble accuracy
Forward with F Ensemble accuracy Ensemble accuracy
exploration starts decreasing
Boosting to prune F Error < 0.5 Minimum weighted error
Bagging
Pruning in ordered F Given nr. of models Minimum estimate of
regression bagging the ensemble error
Backward without B Ensemble accuracy Ranking: base models’ accuracy
exploration starts decreasing Stopping criterion: ensemble accuracy
Backward with B Ensemble accuracy Ensemble accuracy
exploration starts decreasing
Greedy search C Last added model = Ensemble accuracy
with initial seed (1) last removed model
Reduce-error pruning C Given nr. of models Ensemble accuracy
with back-fitting (2)
PMEP F Doesn’t apply Number of validation examples that

are correctly classified by more than
half of the base models in the ensemble

R: Ranking; E: Exponential; F: Forward; B: Backward; C: Compound.
(1): The search schema starts with a randomized subset of a given number of models.
(2): The search schema starts with an empty subset of models.

Merz divides the integration approaches into constant and nonconstant weighting
functions [Merz 1998]. In the first case, the hi(x) are constant, that is, hi(x) = αi. In
nonconstant weighting functions, the weights vary according to the input values x.

When combining predictions, a possible problem is the existence of correlation
between the predictions of the ensemble models, referred to as the multicollinearity
problem. As a consequence, the confidence intervals for the αi coefficients will be
larger, that is, the estimators of the coefficients will have higher variance [Merz 1998].
This happens because we must determine the inverse of a linearly dependent matrix
to obtain the αi ’s. A common approach is to handle multicollinearity in the ensemble
generation (Section 3) or in the ensemble pruning (Section 4) phases. If the principles
referred to in Section 2.4 are guaranteed, namely those of accuracy and diversity, then
it is possible, if not to avoid completely, at least to ameliorate this problem.

Most methods use the validation data (Section 2.3) to estimate the parameters of the
weighting functions, hi (Eq. (13)). This is the case of the constant weighting functions
as defined by Merz [1998]. However, some methods use only a subset of the validation
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Table VIII. Summary of Methods for Ensemble Pruning (references)

Name Reference
Clustering by deterministic annealing [Bakker and Heskes 2003]
ARIA: Adaptive Radius Immune Algorithm [Coelho and Von Zuben 2006; Bezerra et al. 2005]
Pruning statistical inaccurate models [Kotsiantis and Pintelas 2005]
GASEN [Zhou et al. 2002]
50% threshold [Rooney et al. 2004]
Correlation between errors [Aksela 2003]
Forward without exploration [Coelho and Von Zuben 2006]
Forward with exploration [Coelho and Von Zuben 2006]
Boosting to prune bagging [Martinez-Munoz and Suárez 2007]
Pruning in ordered regression bagging [Hernández-Lobato et al. 2006]
Backward without exploration [Coelho and Von Zuben 2006]
Backward with exploration [Coelho and Von Zuben 2006]
Greedy search with initial seed [Moreira et al. 2006]
Reduce-error pruning with back-fitting [Margineantu and Dietterich 1997]

Fig. 5. Constant weighting functions model.

data in order to obtain weights that are more specialized to the given test example.
This approach obviously increases the probability of overfitting.

We start this section by describing different integration functions (Section 5.1). Then
we present different approaches in order to refresh hi(x) weights. However, the methods
used for ensemble integration differ not only on how the weights are obtained, but
also when and on which ensemble the data is used. All these issues are discussed
in Section 5.2 and it corresponds to the dynamic approach. We also describe some
comparative studies (Section 5.3) and conclude the section with a short discussion on
ensemble integration.

5.1. Integration Functions

In this section, we discuss how the hi weights are estimated, independently of whether
they are estimated globally, that is, the same set of weights for all test examples, or
dynamically, according to the test example. For simplification, we start by describ-
ing the integration function assuming that the entire validation set is used to define
the weights. Figure 5 describes this particular situation. Nevertheless, many of the
functions we describe in this section are also used in other ensemble frameworks, as
described in Figure 6.

We start with simple methods that suffer the problem of multicollinearity. Then
we discuss some statistical methods that address this problem, some of which are
combined with search procedures.
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Fig. 6. Dynamic approach model.

The Basic Ensemble Method (BEM) [Perrone and Cooper 1993] simply calculates the
mean of the predictions of the models in the ensemble, that is, hi = 1/K.

f̂BEM(x) = 1
K

K∑
i=1

f̂i(x) (14)

This method, unlike most of the others, does not depend on the models nor on the
data. It assumes that the errors of the models ( f (x) − f̂i(x)) are mutually independent
with zero mean. The same authors proposed a more complex method, the Generalized
Ensemble Method (GEM) [Perrone and Cooper 1993]. In GEM, the αi are inversely
proportional to the error in the validation set and they are also estimated taking into
account the correlation between the errors of the models.

The well-known Linear Regression (LR) model is another combination method pos-
sible. The predictor is the same as in the GEM case but without the constraint∑K

j=1 αi = 1. The use of a constant in the LR formula is not relevant in practice (the
standard linear regression formulation uses it) because E[ f̂i(x)]  E[ f (x)] [LeBlanc
and Tibshirani 1996]. It would only be necessary if predictors were meaningfully biased.

All the methods discussed so far suffer the multicollinearity problem with the ex-
ception of BEM.1 Another method that does not suffer multicollinearity is the simple
median. The use of this integration function in bagging (Section 2.5) is known as brag-
ging [Buhlmann 2010]. Good results are reported using MARS [Friedman 1991] as
base learner.

A different approach consists of methods that aim to avoid multicollinearity. Breiman
presents the stacked regression [Breiman 1996c] method based on the well-known
stacked generalization framework [Wolpert 1992] that was first presented in the con-
text of classification. Given a L learning set with M examples, the goal is to obtain the
αi coefficients that minimize

M∑
j=1

[
f (x j) −

K∑
i=1

αi ∗ f̂i(x j)

]2

(15)

1However, in the case of linear regression, multicollinearity affects the coefficients but not the accuracy of
the predictions [Hastie et al. 2001].
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using the learning set. This raises the possibility of overfitting which can, however, be
addressed by obtaining the estimates with a cross-validation process. Additionally, this
method may also be affected by the multicollinearity problem. Several approaches to
address this problem were investigated and it was observed that a method that con-
sistently gives good results is the minimization of the equation presented before under
the constraints αi ≥ 0, i = 1, . . . , K [Breiman 1996c]. One of the methods tried out was
the ridge regression method, a regression technique for solving badly conditioned prob-
lems, but results were not promising [Breiman 1996c]. An important result presented
by Breiman is the empirical observation that, in most cases, many of the αi weights
are zero. This result provides further evidence that pruning (Section 4) is an important
step, either as an individual phase or included in the ensemble integration phase.

Merz and Pazzani use Principal Component Regression to avoid the multicollinearity
problem [Merz and Pazzani 1999]. The PCR* method obtains the Principal Components
(PC), ranks them in decreasing order of the amount of variation explained, and then
selects the top ones. The choice of the number of PCs is an important issue in this
approach. An adequate choice is necessary to avoid underfitting or overfitting.

Wang et al. use weights that are inversely proportional to the expected error of f̂i(x)
[Wang et al. 2003]. This approach is similar to the variance-based weighting presented
in Tresp and Taniguchi [1995].

Dynamic Weighting (DW) assigns a weight to each base model according to its per-
formance [Puuronen et al. 1999; Rooney et al. 2004] and the final prediction is based
on the weighted average of the predictions of the related models.

Kuncheva presents a hybrid approach that combines selection and combination ap-
proaches [Kuncheva 2002]. It uses statistical tests to verify whether one predictor is
meaningfully better than the others. If positive, it uses the best predictor; if not, it uses
a combination approach.

Search methods have also been applied to the problem of estimating the αi. In a
classification setting, evolutionary algorithms outperformed BEM and GEM on 25
datasets [Ortiz-Boyer et al. 2005].

Caruana et al. also follow a search approach, but embedding ensemble integration
in the ensemble pruning phase [Caruana et al. 2004]. In this approach, models can
be selected multiple times. Similarly to BEM, the weighting function is the simple
average and so the αi coefficients are implicitly calculated as the number of times that
each model is selected over the total number of models in the ensemble (including
repeated models).

A different approach from the ones described in Figure 5 is obtained by identifying
regions of the input space where each model performs well. These regions are areas
of expertise. Given a new example, it determines the combination of models that is
expected to make the best prediction based on their areas of expertise. These methods
follow a metalearning approach which uses machine learning algorithms to induce
models that relate the characteristics of the problems with the performance of the
models [Brazdil et al. 2009]. The integration function is embedded in the definition of
the areas of expertise, being different for different test examples.

The work on meta decision trees [Todorovski and Dzeroski 2003] for classification
applies a common algorithm for induction of decision trees on dataset containing the
following independent variables: (a) the original variables, (b) characteristics of the
data (e.g., mean correlation between the original variables), and (c) information about
the model (e.g., the confidence it has on its prediction). The target variable of the
meta tree is the model to recommend. In practice, the meta decision tree recommends
a predictor rather than making a prediction directly. Although this work has been
developed for classification, it is adaptable for regression by an appropriate choice of
the meta attributes.

ACM Computing Surveys, Vol. 45, No. 1, Article 10, Publication date: November 2012.



Ensemble Approaches for Regression: A Survey 10:29

Yankov et al. use support vector machines with the Gaussian kernel to select, from
an ensemble with two models, the predictor to use [Yankov et al. 2006].

5.2. Dynamic Approach

In the dynamic approach, the selection of predictors is done on-the-fly. Given a new
example, it chooses the predictors that are expected to make the best combined predic-
tion. While in the approach by areas of expertise the region of the input space where
each model is expected to perform best is previously defined, in the dynamic approach
the areas are defined on-the-fly. Sometimes, in the dynamic approach only a subset of
the ensemble is used for prediction, avoiding the use of models potentially inaccurate
for a given test example. This selection is referred to as postpruning.

Figure 6 summarizes the dynamic approach. Given an input vector x, it first se-
lects similar data. Then, according to the performance of the models on similar data,
a number Kx of models are selected from the ensemble F (Eq. (10)). Merz describes
this approach in detail, namely the use of a performance matrix to evaluate the models
locally [Merz 1996]. It consists of a M × K matrix, where M is the number of train-
ing examples and K is the number of models in F . The matrix contains errors of the
models on the training examples. In regression, the error measure can be, for instance,
the squared error, the absolute error, or other performance measure. If Kx = 1, usually
known as the dynamic selection or adaptive selection approach [Giacinto and Roli 1997;
Woods 1997; Kuncheva 2002], then the prediction of the ensemble is obviously the pre-
diction of the selected model. If Kx > 1, known as the dynamic combination or (model)
fusion approach [Woods 1997], then the integration method uses the performances of
similar data (sd) obtained from the validation data (vd) to estimate the hi(x) weights.

This approach consists of the following steps (assuming that the ensemble models
are already available):

(1) Given an input value x, find a similar dataset (LS) from the validation set (LV ),
such that LS ⊆ LV .

(2) Select a model’s subset Fx ⊆ F from the ensemble according to their performance
for the selected similar data LS, that is, postpruning.

(3) Obtain the prediction f̂i(x) for the given input value, for each selected f̂i ∈ Fx.
(4) Obtain the ensemble prediction f̂Fx . This is straightforward if just one model is

selected; otherwise, it is necessary to combine results using, typically, one of the
integration functions discussed in Section 5.1.

While step (3) is straightforward, the others are not. In this section, related works
concerning the remaining three steps are reviewed.

The standard method for obtaining similar data (step 1) in the context of ensemble
learning is the well-known k-nearest neighbors with the Euclidean distance [Woods
1997]. The Heterogeneous Euclidean Overlap Measure [Wilson and Martinez 1997] is
used when there are symbolic input variables [Tsymbal et al. 2006a]. One limitation of
these methods is that they weigh equally all the input variables even if there are input
variables with different levels of relevance in the explanation of the target variable.
Some authors measure similarities using attribute weighted metrics in the context
of random forests [Robnik-S̆ikonja 2004; Tsymbal et al. 2006b] obtaining increased
accuracy comparatively to the standard integration method of random forest, the sim-
ple average. Didaci and Giacinto also test a kind of similarity measure according to
the outputs [Didaci and Giacinto 2004] embedded in DANN - Discriminant Adaptive
Nearest Neighbor [Hastie and Tibshirani 1996]. DANN locally reshapes the nearest
neighborhood. In practice, some of the explanatory variables are discarded, reducing
the dimensionality of the problem. Experiments performed by Didaci and Giacinto
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show that this approach, as well as a dynamic choice of the number k of neighbors,
can meaningfully improve the results when compared with the standard Euclidean
distance [Didaci and Giacinto 2004].

The simplest postpruning method (step 2) is choosing the one with the best perfor-
mance according to a given metric [Woods 1997; Giacinto and Roli 1997]. However, the
dynamic selection approach can use more than one model [Merz 1996]. The dynamic
weighting with selection [Rooney et al. 2004] uses the 50% more accurate models locally
from the ensemble.

When more than one model is selected, their results are combined (step 4). This is
typically done with a linear function as in Eq. (13), where hi(x) = αx,i is the weight
of model f̂i specifically for example x. This subject has already been discussed in
Section 5.1. Furthermore, we have also described some of the integration functions
already used in the dynamic framework [Rooney et al. 2004; Wang et al. 2003].

5.3. Comparative Studies

The main study comparing constant weighting functions in regression is presented
by Merz [1998]. The functions used are: GEM, BEM, LR, LRC (the LR formula with
a constant term), gradient descent, EG, EG+

− (the last three methods are gradient
descent procedures discussed in Kivinen and Warmuth [1997]), ridge regression,
constrained regression (Merz [1998] uses the bounded variable least squares method
from Stark and Parker [1995]), stacked constrained regression (with ten partitions),
and PCR*. In one experiment, an ensemble of 12 models on 8 regression datasets
were used: six of the models were generated using MARS [Friedman 1991] and the
other six using the neural network back-propagation algorithm. The three globally
best functions were constrained regression, EG, and PCR*. The other experiment
tested how the functions perform with many correlated models. The author used
neural network ensembles size ten and fifty. Just three datasets were used. The PCR*
function presented more robust results.

The main study on the dynamic approach is the one performed by Mendes-Moreira
et al. [2009]. They present two main studies, one on methods for the selection of similar
data, and another on postpruning methods and (nonconstant) integration functions.

The study on methods for the selection of similar data compares the algorithm k-
nearest neighbors using different distance measures, namely, the Euclidean, kd-tree
[Bentley 1975], and RReliefF measures [Robnik-S̆ikonja and Kononenko 2003], and all
examples that fall together with the test instance in the same leaf node of a decision
tree. The use of k-nearest neighbors with kd-tree and RReliefF measures presents
globally the best results in five regression datasets. The optimal number of nearest
neighbors is problem-dependent. In the CART approach, the number of similar ex-
amples depends on the size of the leaf node where the test example falls. This fact
can influence the comparison between the CART approach and all the others. This
experience shows that the best distance measures are those that weigh the features
according to what extent the target variable can be explained.

The study on postpruning methods and integration functions compares DW and
DWS with different settings, as well as the selection of the best model and forward
selection with replacement [Caruana et al. 2004]. Results on five regression datasets
confirm the results presented in Rooney et al. [2004], that is, the best results are
obtained using DWS.

5.4. Discussion on Ensemble Integration

The comparative study published by Merz in 1998 [Merz 1998] is the most com-
plete source of information concerning the selection of ensemble integration methods.
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However, since 1995, most research has been focusing on the ensemble generation step.
Advances in the studies on the generalization ensemble error (Section 2.4) show that
an important part of the problems that arise in the integration phase can be solved by
a joint design of the three phases (generation, pruning, and integration) [Rosen 1996;
Liu et al. 2000; Zhou et al. 2002; Rodrı́guez et al. 2006]. Constant weighting functions
were used on all the studies mentioned in Section 3.3. The reason for this is that the
decomposition of the generalization error (Section 2.4) for the simple average is known.
This enables the development of ensemble generation methods that minimize the
error. The approach seems to have changed from “which integration function to use for
a given ensemble?” to “how to generate the ensemble for a given integration function?”.

The main disadvantage of constant weighting functions is that the αi weights, be-
ing equal for the entire input space, can, at least theoretically, be less adequate for
some parts of the input space. This is the main argument for using nonconstant
weighting functions [Verikas et al. 1999]. Little effort has been devoted to the prob-
lem of how to generate the best ensemble for a given nonconstant weighting function
(e.g., Mendes-Moreira [2008]). This is due to the difficulty of decomposing the error
when using this kind of integration functions. Nevertheless, we believe that this is an
interesting topic for future research.

As far as dynamic integration methods are concerned, the question of which is the
best approach, as well as the selection of a single model versus the combination of
multiple models, were debated for a long time [Kuncheva 2002]. Recently, it has been
shown that there is no advantage in the former over the combination approach [Ko
et al. 2008; Mendes-Moreira et al. 2009]. The right question for the dynamic approach
is on the choice of the nonconstant integration function to use, as discussed previously.

The dynamic approach is reported to give good results in time changing phenomena
[Wang et al. 2003; Kolter and Maloof 2007; Tsymbal et al. 2008]. This makes it partic-
ularly suitable for data streams, for the same reasons that make pruning an important
step in this kind of data (Section 4.4) [Wang et al. 2003; Bifet et al. 2009]. In fact,
pruning can be regarded as a particular case of model integration, where eliminated
models are assigned a null weight.

As observed previously, dynamic approaches are essentially mapping (characteristics
of the) data for model performance. This is the type of problem that is addressed in
metalearning [Brazdil et al. 2009]. However, little work has been carried out on the use
of this approach for ensemble integration, which is another interesting topic for future
research.

Ensemble integration is the step where the biggest differences between classification
and regression can be identified. This is due to the difference in the nature of the
outputs. For instance, majority voting, which is often used in classification, cannot be
used in regression. On the other hand, mean values cannot be used in the integration
of models for classification tasks.

Tables IX and X present a summary of some integration methods that can be used
for ensemble regression.

6. GENERAL DISCUSSION

Several empirical studies confirm the advantage of using ensembles over single models.
For instance, random forests are consistently among the best three models in the
benchmark study carried out by Meyer et al. [2003], which included many different
algorithms.

To decide whether ensemble methods should be considered for a given regression
problem, an important criterion is the amount of data available. If data are plentiful,
then they should be divided into training, validation, and test sets (Section 2.3). Oth-
erwise, data may not be sufficient for obtaining reliable models and/or assessing their
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Table IX. Summary on Methods for Ensemble Integration

Integration
Ref. Name function Dynamic?
[Perrone and Cooper 1993] Basic ensemble method SA No
[Perrone and Cooper 1993] Generalized ensemble method WA No
[Breiman 1996c] Linear regression model WA No
[Merz and Pazzani 1999] PCR* WA No
[Caruana et al. 2004] Forward selection with replacement WA No
[Todorovski and Dzeroski 2003] Meta decision trees S No
[Rooney et al. 2004] Dynamic selection S Yes
[Rooney et al. 2004] Dynamic weighting WA Yes
[Rooney et al. 2004] Dynamic weighting with selection S & WA Yes

SA: Simple Average; WA: Weighted Average; S: Selection.

Table X. Summary on Methods for Ensemble Integration (continuation)

Data used for
Name weight estimation Description
Basic ensemble Validation set It weighs all models equally, i.e., the simple
method average
Generalized ensemble Validation set The weighs, which sum is 1, are inversely
method proportional to the error in the validation set
Linear regression Validation set The weighs are inversely proportional to the
model error in the validation set but there is no

constraint on the sum of the weights
PCR* Validation set It selects the top models (components)

according to how much variation they explain
under principal component analysis

Forward selection Validation set It selects with reposition the model that
with replacement increases the ensemble accuracy in a

validation set and averages results
Meta decision trees Validation set It uses a tree where the nodes are meta-

characteristics of the models to recommend
the model to use

Dynamic selection k-nn It selects the model with less error on the
k-nearest neighbors set

Dynamic weighting k-nn The weights are inversely proportional to the
error in neighbors set

Dynamic weighting k-nn It is like dynamic weighting but discards the
with selection models with an error higher than a pre-defined

threshold by comparison against the most
accurate model

quality in a reliable way. One possibility is not to create a separate validation set and
use the training set for internal validation during the ensemble learning process. In
this case, overfitting can occur.

Availability is also an important criterion when deciding whether to use ensemble
methods or not. The successful results of these methods have led data mining tool
vendors to incorporate them into their tools. For example, SAS Enterprise Miner im-
plements bagging, boosting, and heterogeneous ensembles [Matignon 2007]. Another
leading tool that claims to use ensemble methods is SPSS Modeler. Open-source tools
usually focus more on the methods and, thus, typically have a larger offer of ensem-
ble methods, for both regression and classification. Tools such as RapidMiner, WEKA
[Witten and Frank 2011], and R implement not only the most common methods like
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bagging and boosting, but also more advanced ones, such as stacking, random forest,
and rotation forest.

An advantage of most ensemble methods is their ease of use. Typically they have few
parameters and are reasonably robust to their values.

As far as computational complexity is concerned, ensemble methods should not be
expected to be the fastest methods as they require, by definition, multiple executions of
one or more algorithms. The problem becomes particularly important in methods that
are based on search, either in the generation step 3 or in the pruning step 4. These
methods typically require the evaluation of multiple solutions (i.e., multiple executions
of the learning algorithm). For some of the methods, such as bagging or random forest,
this problem may be easily addressed by parallelization because each model of the
ensemble is generated independently from the others. The scalability regarding the
number of both examples and features is not determined by the ensemble method but
by the base-level learning algorithm.

There is not much information available on the choice of method. As shown in this
article, many alternative methods can be used at each step of the ensemble learning
process. However, there is very little knowledge about the strengths and weaknesses
of each method. In fact, the results reported in different papers are not comparable
because of the use of different experimental setups [Islam et al. 2003; Garcı́a-Pedrajas
et al. 2005]. A contribution that would be of major importance to the field is the thorough
empirical investigation of each approach and the characterization of the conditions
under which each one should and should not be used. An approach to carrying empirical
studies that would be useful in this case is called experiment databases [Blockeel and
Vanschoren 2007].

As for future work, one approach that can be explored and seems to be promising
but has not been discussed earlier, because it does not pertain to one particular step, is
to combine different ensemble integration methods. The method wMetaComb [Rooney
and Patterson 2007] uses a weighted average to combine stacked regression (described
in Section 5.1) and the DWS dynamic method (Section 5.2). The cocktail ensemble
for regression [Yu et al. 2007] combines different ensemble approaches, whichever
they are, using a combination derived from the ambiguity decomposition. It combines
different ensembles using forward selection to choose the one that reduces the combined
estimated error the most. The same ensemble can be selected more than once.

7. CONCLUSIONS

Ensemble learning is concerned with methods that combine several models to make
predictions. The main advantage of ensemble methods is their accuracy and robustness
comparatively to the use of a single model.

For ensemble learning, as for other research areas, methods for regression and for
classification are based on different solutions, at least partially. This is particularly
true in approaches that manipulate the induction algorithm in the ensemble generation
phase and in the ensemble integration phase, which depends on the type of output to be
combined. This has caused a significant amount of work to be carried out independently
on ensembles for regression. However, despite the importance of regression, the only
surveys on ensemble learning that are available to both researchers and practitioners
focus on classification. This article tries to address this problem by presenting a review
of ensemble learning for regression. Nevertheless, we believe that this article can
also be useful to the field of ensembles for classification. Besides the methods that
are independent of the learning task, the taxonomy that is proposed to organize the
methods is also applicable to ensembles of classifiers.

Ensemble learning is typically divided into three phases: generation, pruning, and
integration. The generation phase aims to obtain an ensemble of models. It can be
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Table XI. Main Homogeneous Ensemble Generation Methods for Regression

Method Reference Algorithm Class/Regr
Bagging [Breiman 1996a] Unst. learners yes / yes

Random forests [Breiman 2001a] Decis. trees yes / yes
EENCL [Liu et al. 2000] ANN yes / yes
CNNE [Islam et al. 2003] ANN yes / yes

Coop. Coev. [Garcı́a-Pedrajas et al. 2005] ANN yes / ?

classified as homogeneous or as heterogeneous depending on the number of induction
algorithms used. The most successful methods for ensemble generation are developed
for unstable learners, that is, learners that are sensitive to changes in the training
set, namely decision trees or neural networks. Table XI summarizes some of the most
important methods on homogeneous ensemble generation. The “?” symbol means that
this method has not been tested for regression, and consequently it is not known how
it would work for regression.

Ensemble pruning selects a subset from a pool of models to reduce computational
complexity and, if possible, to increase accuracy. It has many similarities with the
well-known feature subset selection task. This happens because in both cases the goal
is to select a subset from a set of objects in order to optimize a given objective function.
As in the feature subset selection case, randomized heuristics, such as evolutionary
algorithms or tabu search, seem very effective. Despite the recent reduction of impor-
tance of the direct ensemble generation methods (without a pruning step), research
on pruning has meanwhile been done by addressing generating approaches initially
designed to be direct.

Ensemble integration functions use the predictions made by the models in the en-
semble to obtain the final ensemble prediction. They can be classified as constant or
nonconstant weighting functions. As previously underlined, constant weighting func-
tions are the most frequently used, possibly because it is easier to generate ensembles
in order to minimize known generalization error functions in regression. However, since
nonconstant weighting functions seem to be attractive in order to increase accuracy,
further research is needed to obtain ensemble methods that take advantage of such
integration functions.

This article describes the complete process for ensemble-based regression and dis-
cusses each phase thoroughly. As shown previously, there are many alternative methods
that can be used for each step. However, very little guidance is available for practition-
ers to select which ensemble method should be used on a given regression problem.
This work also identifies many challenging problems to be solved at each step and
many ideas that still need theoretical and experimental development.

The number of papers published on ensemble regression is too large to be exhaus-
tively discussed in a single survey. Furthermore, many papers represent small variants
of previously proposed approaches. Here, we have identified the main trends and de-
scribed some of the most representative papers for each of them. We believe that this
work provides a thorough road map that can serve as a stepping stone to new research
ideas as well as provide support for practitioners to choose the most appropriate solu-
tion for their regression applications.
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