Review article

Anti-paralytic medicinal plants – Review

Khaling Mikawlrawng a,*, Roma Rani a, Suresh Kumar a, Ankur R. Bhardwaj a, Geeta Prakash b

a Department of Botany, Ramjas College, University of Delhi, India
b Department of Botany, Gargi College, University of Delhi, India

1. Introduction

Paralysis is a disease related to nervous disorder caused by damage of nerves and spinal cord that control muscles. The most common causes of paralysis are stroke, head injury, spinal cord injury (SCI) and multiple sclerosis. The search for cure of paralysis is yet to be found. Many ethnobotanical surveys have reported the use of medicinal plants by various ethnic communities in treating and curing paralysis. The present review discusses the use of medicinal plants in India for ameliorating and curing paralytic conditions, as well as discusses some of the important developments in future possible applications of medicinal plants in treatment of paralysis. This review reports the use of 37 medicinal plants for their application and cure of ailments related to paralysis. Out of the 37 plants documented, 11 plants have been reported for their ability to cure paralysis. However, the information on the documented plants were mostly found to be inadequate, requiring proper authentication with respect to their specificity, dosage, contradictions etc. It is found that despite the claims presented in many ethnobotanical surveys, the laboratory analysis of these plants remain untouched. It is believed that with deeper intervention on analysis of bioactive compounds present in these plants used by ethnic traditional healers for paralysis, many potential therapeutic compounds can be isolated for this particular ailment in the near future.

Keywords:
Paralysis
Anti-paralytic plants
Medicinal plants
Documentation
Review

Paralysis is the loss of the ability of one or more muscles to move, due to disruption of signaling between the nervous system and muscles. The most common causes of paralysis are stroke, head injury, spinal cord injury (SCI) and multiple sclerosis. The search for cure of paralysis is yet to be found. Many ethnobotanical surveys have reported the use of medicinal plants by various ethnic communities in treating and curing paralysis. The present review discusses the use of medicinal plants in India for ameliorating and curing paralytic conditions, as well as discusses some of the important developments in future possible applications of medicinal plants in treatment of paralysis. This review reports the use of 37 medicinal plants for their application and cure of ailments related to paralysis. Out of the 37 plants documented, 11 plants have been reported for their ability to cure paralysis. However, the information on the documented plants were mostly found to be inadequate, requiring proper authentication with respect to their specificity, dosage, contradictions etc. It is found that despite the claims presented in many ethnobotanical surveys, the laboratory analysis of these plants remain untouched. It is believed that with deeper intervention on analysis of bioactive compounds present in these plants used by ethnic traditional healers for paralysis, many potential therapeutic compounds can be isolated for this particular ailment in the near future.

© 2017 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
focused on assisting patients to attain a little degree of controlling their movement, as there is currently no cure for paralysis.

2. Alternative medicines used in paralysis

Across the globe, traditional medicines in the form of crude herbal extracts of single plant or combination of plants, with or without additional minerals have been used in alleviating and curing diseases related to problems of nervous system, some of which includes Calotropis procera, Satureja thymbra, Cordothymus capitatus, Thunbergia laurifolia, Annona reticulata, Annona squamosa, Plumeria rubra, Crapea magna, Crapea religiousa, Argyreia oysrensis, Suredaga multiflora, Cassytha filiformis, Oxycersus hordic, Citrus aurantifolia, Citrus medica, Cissus hastate, Cissus repsen, Aloe vera, Ricinus communis, Tamarindus indica, Alocasia macrorrhizaos, Murraya koenigii, Lygodium flexuosum, Cassia occidentalis, Datura metel, Phyllanthus reiculatus, Glycosmis arborea, Aerva persica, C. procera, Hyocynus niger, Cymbidium aloifolium, Gardenia ternifolia and Mikania hissutissima.1–7 In India many plants and plant products are vended in markets that claim for ability to treat paralysis, some of which are Punarnava powder (containing Hogweed or Poa annua), Ashwagandha powder (containing Withania somnifera),15 The polyherbal drug Majoon-e-Azaraqi is an ancient herbal Unani compound formulation which is therapeutically useful in nerve strengthening, hemiplegia, facial paralysis, tremor, trembiling, rheumatism, epilepsy and neurasthenia. Majoon-e-Azaraqi is constituted of 15 ingredients (Styrchnos nuxvomica, Borago officinalis, Lavandula stoechas, Cocos nucifera, Pinus gerardiana, Eletarria cardamomum, Curcuma zeodaria, Pastia naca secacul, Santalum album, Emblica officinalis, Terminalia chebula, Aegialtia agarlocha, Syzygium aromaticus and Sugar).16 In homeopathic approach, Rhus toxicodendron is used in treating paralysis of the lower extremities, treatment of all forms of paralysis which are of a rheumatic origin or brought on by getting wet or exposure to dampness in any form, and in treatment of paralysis due to nervous fevers and typhus. Aconite nappellus is considered as the sovereign remedy for almost every species of paralysis in homeopathy.17 Gelsemium sempervirens (Gels.) is another plant used in homeopathic treatment for paralysis.18 In addition, the homeopathy treatment use Agaricus muscarius, Cocculus indicus, Solanum dulcamara, Styrchnos nux-vomica, Hypericum perforatum and Atropa belladonna, which are all poison sources, in treatment of various paralytic manifestations.19 The use of Acanthus ilicifolius, Cedrus deodara and Rubia cordifolia in paralysis is also reported.20,21 Apart from these well known reports from different forms of alternative medicines for their application of paralysis, the present review emphasizes on the various ethnobotanical documentation of medicinal plants reported for their use in treatment of ailments related to paralysis in different parts of India. Extensive literature search using Pubmed, Medline, Scopus and Google were conducted in order to extract articles related to ethnobotanical surveys in different parts of India.

3. Anti-paralytic plants from ethnobotanical surveys in India

The extensive literature survey on the use of medicinal plants for paralysis in India showed that relatively few documentation of medicinal plants have been done, and even lesser laboratory authentication and analysis have been done in relation to the applicability in paralysis. Among the total of 29 states and 7 union territories of India, researchers have reported the use medicinal plants for paralysis so far only from 16 states namely Tamil Nadu, Andhra Pradesh, Jammu & Kashmir, Rajasthan, Chhattisgarh, Odisha, Uttar Pradesh, Himachal Pradesh, Uttarakhand, Madhya Pradesh, Manipur, Karnataka, Assam, Maharashtra, West Bengal and Telangana, from where a total of 37 plants, belonging to 25 plant families (Table 1) have been reported for their application/cure of ailments related to paralysis.1–7,31–79 Amongst these families, plants belonging to Asteraceae represented the highest, followed by Fabaceae and Mimosaceae. Lesser number of plants from the family Euphorbiaceae, Lamiaceae, Liliaceae, Rubiaceae and Ranunculaceae are represented for their use in this regard. Members of plants belonging to Acanthaceae, Asclepiadaceae, Araliaceae, Bombacaceae, Caesalpinaceae, Cannabinaceae, Celastraceae, Meliaceae, Malvaceae, Menispermaceae, Moraceae, Oleaceae, Orchidaceae, Rutaceae, Vitaceae and Urticaceae represented the least for their use in paralysis (Fig. 1). Nine different plant parts were found to be used for various treatment of the ailment. In most of the cases, the leaves are mostly used, followed by roots, seeds, whole plants, stem, banks, fruit, flower head and bulb respectively (Fig. 2). Amongst the 37 plants reported, 11 plants are reported for their ability to cure paralysis (Table 2). However, in most of the ethnobotanical studies, the information mentioned and documented are inadequate, wherein the use of the plant, the mode of use, the methods of preparation, dosage, durations, specificity, effectiveness and contradictions are not discussed in details. In addition the type of paralysis (whether localized or general paralysis, monoplegia, hemiplegia, paraplegia or tetraplegia) for which the plants is used is mentioned only in 6 plants (Table 3). The remaining 26 plants are reported for their use in paralysis without specifying any details about their ability to cure, as well as the types of paralysis for which they are used for. No doubt, there information are undeniably useful, as ethnobotanical survey data and traditional knowledge of medicinal plants are one of the irreplaceable pools of knowledge, in which unplumbed information are stored. It is believe that with deeper research into the bioactive composition and mode of actions of the chemical contents of these documented medicinal plants, a goal for finding important lead compounds for treatment of ailments and complications associated with neural disorders leading to paralysis, can indeed be achieved in the future.

4. Laboratory studies on plants used in paralysis

In the last decades few laboratory studies have been conducted to understand the efficacy of medicinal plants for their application in ailments related to nerve injury or functions. Maryam Tehrani and Tooba Ghadamyari reported that alcohlic root extract of Salvia staminea could increase neuronal density of motoneurons in anterior horn of spinal cord following sciatic nerve compression.80 Spinal cord ischaemia/reperfusion (I/R) injury may lead to immediate or delayed paraplegia in 4%–33% of patients undergoing surgery on the thoracic aorta.81 Therefore, in an attempt to prevent any undesired complications, various methods of spinal cord protection have been suggested, including temporary shunts or partial bypass, hypothermia, drainage of cerebrospinal fluid, and pharmacologic measures.82–84 Despite the use of these methods, paraplegia remains a persistent complication.85 Tetramethylpyrazine (TMP), also called ligustrazine, is an alkaloid extracted from the Chinese herbal medicine, Ligusticum wallichii (chuanxiong).86 For hundreds of years, TMP has been routinely used for the treatment of heart, kidney, and brain diseases.87–89 Spinal cord I/R induce significant increase in the concentration of malondialdehyde (MDA) in the spinal cord, indicating lipid peroxidation.90 Studies showed that TMP treatment reverse the increase in MDA levels to a considerable extent, and ameliorated the down regulation of spinal cord superoxide dismutase (SOD) activity, thereby confirming the antioxidant role of TMP in I/R.91 In animals that had significant impairment of motor function, evidence of both necrosis and apoptosis was apparent. The Bcl-2 proteins comprise both anti-apoptotic family members, for example, Bcl-2, Bcl-XL, and Mcl-1, and proapoptotic molecules such
Table 1 List plants used in Paralysis.

<table>
<thead>
<tr>
<th>Sl. no.</th>
<th>Botanical name</th>
<th>Vernacular name/ common name</th>
<th>Family</th>
<th>Part use</th>
<th>Common use</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abrus precatorius Linn.</td>
<td>Rosary Pea</td>
<td>Fabaceae</td>
<td>Seed</td>
<td>Paste of seeds applied externally to treat stiffness of shoulder joint and paralysis in Thanjavur district, Tamil Nadu, India.</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Acacia mangium Wild.</td>
<td>Hickory Wattle</td>
<td>Mimosaceae</td>
<td>Bark</td>
<td>Bark is used in paralysis by the tribal communities of Salgu Parshchayati of Paderu Mandalam, Visakhapatnam, Andhra Pradesh, India.</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Actaea spicata Linn.</td>
<td>Banparthi (H)</td>
<td>Ranunculaceae</td>
<td>Fruit & root</td>
<td>Powder of fruits and roots mixed with water are given to treat paralysis in cattle in some rural areas of Bandipora district of Jammu and Kashmir, India.</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Adenanthera pavonina Linn.</td>
<td>Bead Tree</td>
<td>Mimosaceae</td>
<td>Seed</td>
<td>Used for the treatment of paralysis.</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Allium sativum Linn.</td>
<td>Garlic</td>
<td>Liliaceae</td>
<td>Bulb</td>
<td>Bulbs are used in paralysis in Shekhawati region, Rajasthan, India.</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Anacyclus pyrethrum Linn.</td>
<td>Spanish Chamomile</td>
<td>Asteraceae</td>
<td>Root & whole plant</td>
<td>Roots are used in paralysis by Malayali tribes in Kolli hills of Eastern ghats, Tamilnadu, India. The paste of the whole plants mixed with mustard oil is also used as remedy for paralysis.</td>
<td>27,28</td>
</tr>
<tr>
<td>7</td>
<td>Anthocephalus indicus Rich.</td>
<td>Common Bur-flower</td>
<td>Rubiaceae</td>
<td>Root</td>
<td>Roots are used in paralysis by boiling the grinded root with Mustard oil, and massaged on affected part twice a day for one month by Kamar tribes of Chhattisgarh, India.</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>Asparagus racemosus Wild.</td>
<td>Satavari</td>
<td>Liliaceae</td>
<td>Root</td>
<td>Root juice mixed with year old Ghee is massaged on whole body to cure paralysis in Kalabandi district of Odisha, India.</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Atalanta monophylla Linn.</td>
<td>Indian Atalanta</td>
<td>Rutaceae</td>
<td>Leaf</td>
<td>Essential oil from leaves is used in paralysis.</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Bombax ceiba Linn.</td>
<td>Cotton Tree</td>
<td>Bombacaceae</td>
<td>Bark</td>
<td>Bark is molded and fried in Dissenia portyngae oil, and then massaged on affected part to cure paralysis by Rawat and Sahariya tribes of Jhansi district, Uttar Pradesh, India.</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Cannabis sativa Linn.</td>
<td>Hemp</td>
<td>Cannabinaceae</td>
<td>Seed</td>
<td>Oil extracted from dry seeds is applied to cure paralysis by tribal communities of Chhota Bhangal, Western Himalaya, India.</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>Cassia fistula Linn.</td>
<td>Golden Shower Tree</td>
<td>Caesalpinaceae</td>
<td>Leaf</td>
<td>Leaves are used in facial paralysis in Bageshwar valley (Kumaun Himalaya) of Uttarakhand, India.</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>Celastrus paniculata Wild.</td>
<td>Black Oil Plant</td>
<td>Celastraceae</td>
<td>Seed</td>
<td>Seeds are used in paralysis.</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>Centipeda minima Linn.</td>
<td>Spreading Sneeze Weed</td>
<td>Asteraeaceae</td>
<td>Seed</td>
<td>Seed paste is applied externally to get relief from arthralgia and paralysis by Theoraon tribe of Jashpur District, India.</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>Cissampelos pareira Linn.</td>
<td>Velvet Leaf</td>
<td>Menispermacae</td>
<td>Root</td>
<td>Bark powder is used in paralysis in Bageshwar valley (Kumaun Himalaya) of Uttarakhand, India. Root/stem bark extract mixed with Mustard oil, and massaged on affected part twice a day for one month, by Birhor tribes of Chhattisgarh, India.</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>Cissus quadrangularis Linn.</td>
<td>Veldt Grape</td>
<td>Vitaceae</td>
<td>Stem</td>
<td>Spoonful of stem paste is taken orally for 20–30 days for the treatment of paralysis in Godavari district of Andhra Pradesh, India.</td>
<td>38</td>
</tr>
<tr>
<td>17</td>
<td>Cryptolepis buchanani Roem. & Schult.</td>
<td>Wax Leaved Climber</td>
<td>Asclepiadaceae</td>
<td>Stem</td>
<td>A decoction of the stem is used as a supporting drug in paralysis.</td>
<td>39</td>
</tr>
<tr>
<td>18</td>
<td>Cymbidium aloifolium Linn.</td>
<td>Aloe-leafed Cymbidium</td>
<td>Orchidaceae</td>
<td>Root</td>
<td>2 g of root powder mixed with 2 g dried ginger and 1 g of black pepper, half spoon of which is taken with a cup of milk twice a day for two months to reduce paralysis.</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>Entada purpurea DC.</td>
<td>Giant's Rattle</td>
<td>Mimosaceae</td>
<td>Seed</td>
<td>Gond, Halba and Maria tribes of Abujmarh area in Madhya Pradesh use the paste of the seeds for curing paralysis.</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>Gendarussa vulgaris Nees.</td>
<td>Willow-leaved Justicia</td>
<td>Acanthaceae</td>
<td>Leaf</td>
<td>Infusions of leaves are taken orally in cephalalgia, hemiplegia and facial paralysis.</td>
<td>42</td>
</tr>
<tr>
<td>21</td>
<td>Pecus religiosa Linn.</td>
<td>Sacred Fig</td>
<td>Moraceae</td>
<td>Bark</td>
<td>Bark powder is used in paralysis in Bageshwar valley (Kumaun Himalaya) of Uttarakhand, India. Root/stem bark extract mixed with buttermilk is taken 2 tea spoonfuls twice a day for 30 days for paralysis.</td>
<td>43</td>
</tr>
<tr>
<td>22</td>
<td>Jasminum grandiflorum Linn.</td>
<td>Royal Jasmine</td>
<td>Oleaceae</td>
<td>Whole plant</td>
<td>Whole plant extract is used externally to treat facial paralysis in Thanjavur District, Tamil Nadu, India.</td>
<td>44</td>
</tr>
<tr>
<td>23</td>
<td>Jatropha curcas Linn.</td>
<td>Barbados Nut</td>
<td>Euphorbiaceae</td>
<td>Leaf</td>
<td>It is used for curing paralysis in Bodamalai hills eastern Ghats, Namakkal district, Tamil Nadu. Latex is applied externally in paralysis in Suramalai hills of eastern Ghats, Dindigul District, Tamil Nadu, India.</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>Jatropha gossypifolia Linn.</td>
<td>Bellyache Bush</td>
<td>Euphorbiaceae</td>
<td>Fruit</td>
<td>It is used to cure paralysis in Bodamalai hills eastern Ghats, Namakkal district, Tamil Nadu and in Pudhukottai district, Tamil Nadu, India.</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>Marsilea minuta Linn.</td>
<td>Dwarf water clover</td>
<td>Marsileaceae</td>
<td>Whole plant</td>
<td>Whole plant is used in paralysis by the tribes in the hills of Manipur, India.</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>Melia azedarach Linn.</td>
<td>White Cedar</td>
<td>Meliaceae</td>
<td>Leaf</td>
<td>Rawat and Sahariya tribes of Jhansi district, Uttar Pradesh boil about 500 g of the leaves in 5–6 L of water till the color change. Then the patient is bath in this water for 8–10 days to cure paralysis.</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>Mentha arvensis Linn.</td>
<td>Peppermint</td>
<td>Lamiaceae</td>
<td>Leaf</td>
<td>Leaves of M. arvensis and seeds of Trachyspermum ammi are taken in equal proportions along with rock salt, and this are taken with coffee, three to four times a day in paralysis by local communities in some villages of Shimoga District, Karnataka, India.</td>
<td>49</td>
</tr>
</tbody>
</table>

as Bax, Bak, and BH3 domain only molecules. The ratio of anti- to pro-apoptotic molecules such as Bcl-2/Bax determines the response to a death signal. In addition, over-expression of Bcl-2 may play a protective role in neuropathological sequelae after central nervous system (CNS) insults. It was shown that treatment with TMP upregulated the level of the anti-apoptotic protein Bcl-2 and downregulated pro-apoptotic protein Bax, suggesting that TMP exhibit an inhibitory effect on apoptotic cell death due to spinal cord I/R through modulation of Bcl-2 family. Thus, TMP treatment could increase the proportion of animals with normal motor function, and in these animals, necrosis was decreased and more normal motor neurons were preserved.

Acute spinal cord injury (SCI) caused by motor vehicle accidents, sports injuries, diving accidents and violence, is one of the most common and devastating injuries encountered at the spine surgery department. SCI injury has a high rate of prevalence in the younger population, and causes permanent disability or lost of movement and sensation. Many studies have shown that injury induced inflammation can result in neuropathology and secondary necrosis after traumatic SCI. Inflammation plays an important role in the progressive secondary injury that causes neurological deficits. Some studies have shown that the treatment between the primary and the secondary injury of SCI has the potential to either prevent or reduce the final neurological deficits. TMP have been shown to have the ability to reduce cerebral ischemia/reperfusion injury through suppression of inflammatory cell activation and pro-inflammatory cytokine production, and accelerate spinal cord repair through up-regulating neurofilament protein expression and down-regulating caspase–3 expression following contusion SCI. Traumatic SCI has been reported to activate nuclear factor-kappa B (NF-kB), a transcriptional factor. Hence, knockdown of NF-kB in vivo could have the ability to improve function recovery after SCI. In normal conditions, the NF-kB is combined with inhibitor of kappa-B (I-kBα) in the cytoplasm, and does not have...
transcriptional activity. Another study on TMP reported activation of NF-κB after SCI, which could be inhibited by TMP treatment. However, it was observed that the expression of I-κBα after SCI was increased by TMP treatment, suggesting that TMP might have inhibited NF-κB activation through increasing the expression of I-κBα.

Alpinia katsumadai is a plant used in traditional Chinese medicine. The extract of Alpinia katsumadai seed (EAKS) suppressed topical pruritis, showed anti-inflammatory effects, and enhanced antioxidant activity in several studies. It has been reported that repeated oral administration of EAKS protects neurons from ischemic damage in the hippocampus, associated with an upregulation of brain-derived neurotrophic factor (BDNF), a neurtrophic factor in ischemic areas. A study on Nebivolol (selective β-adrenergic blocking agent) showed that it prevented the increase in enzymatic activities of superoxide dismutase (SOD), xanthine oxidase (XO), adenosine deaminase (ADA) and myeloperoxidase (MPO) produced by I/R, and also prevented the decrease in spinal cord glutathione peroxidase (GSH-Px) level in I/R, thereby implicating its useful application in preventing secondary injury of nerves. Many people with a spinal cord injury, and some with other types of paralysis, have long-term pain that persists for weeks, months, or sometimes years after the injury or incident that caused the paralysis. Unlike most other types of pain, neuropathic pain does not usually respond well to ordinary painkillers, such as paracetamol or ibuprofen. Alternative medications are usually required, such as amitriptyline or pregabalin. These types of medication can cause a wide range of side effects. Possible side effects include a dry mouth, sweating, drowsiness and vision problems. Reports are also available about people having suicidal thoughts while taking amitriptyline. Thus, there still is urgent need for the development of highly effective and safe neuroprotective therapies for human.

6. Conclusion

The search for paralysis is one of the greatest challenges in medical research. The greatest challenge is to develop means for restoring movement and sensation, and elimination of pain for people with paralysis. Currently, apart from hunting for drugs that can help in restoring paralyzed nerves, various other interventions have been on the limelight with the same goal. Various researchers are also working extensively on the application of electrical stimulation as well as optical and magnetic techniques for activating the neural tissue below the level of injury. Other areas of approach includes surgical interventions, but none of these practices are able to provide total or complete recovery of the injured nerves, and in many cases not very cost effective for common applications. In addition, these approaches and the lacunae associated with them are further complicated by the unavailability of simple protocols, test and assays to experiment them, which also could have accounted for the slow pace in advancement in this field of research. For instance till date there is no simple in vitro assay to test the potential applicability of any compounds or drugs against any type of paralysis, since in reports available so far, complicated processes are followed that use rats or mouse for researches related to paralysis. One way of approach could be by devising techniques that can use cultured neuronal cell lines, in which direct assay and experiments could be conducted without the need to use model animal. Such techniques, if developed, would help in simplifying

Table 2

<table>
<thead>
<tr>
<th>Sl. no.</th>
<th>Botanical name</th>
<th>Type of paralysis cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Asparagus racemosus Wild.</td>
<td>Not specified</td>
</tr>
<tr>
<td>11</td>
<td>Cannabis sativa Linn.</td>
<td>Not specified</td>
</tr>
<tr>
<td>19</td>
<td>Entada purpura DC.</td>
<td>Not specified</td>
</tr>
<tr>
<td>23</td>
<td>Jatropha curcas Linn.</td>
<td>Not specified</td>
</tr>
<tr>
<td>24</td>
<td>Jatropha gossypifolia Linn.</td>
<td>Not specified</td>
</tr>
<tr>
<td>26</td>
<td>Melia azedarach Linn.</td>
<td>Not specified</td>
</tr>
<tr>
<td>32</td>
<td>Pongamia pinnata (Linn.) Merr.</td>
<td>Paralysis of organ (leg/hand)</td>
</tr>
<tr>
<td>34</td>
<td>Sida cordata (Burm.f.) Borss.Waalk.</td>
<td>Not specified</td>
</tr>
<tr>
<td>35</td>
<td>Spilanthes acmella Linn.</td>
<td>Not specified</td>
</tr>
<tr>
<td>37</td>
<td>Urtica dioica Linn.</td>
<td>Paralysis of limbs</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Sl. no.</th>
<th>Botanical name</th>
<th>Type of paralysis treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Cassia fistula Linn.</td>
<td>Leaves are used in facial paralysis</td>
</tr>
<tr>
<td>20</td>
<td>Gendarussa vulgaris Nees.</td>
<td>Leaves are used in cephalalgia, hemiplegia and facial paralysis</td>
</tr>
<tr>
<td>22</td>
<td>Jasminum grandiflorum Linn.</td>
<td>Whole plant extract is used to treat facial paralysis.</td>
</tr>
<tr>
<td>32</td>
<td>Pongamia pinnata (Linn.) Merr.</td>
<td>Bark is used in paralysis of leg/hand.</td>
</tr>
<tr>
<td>36</td>
<td>Spilanthes paniculata Wall. ex DC.</td>
<td>Root and flower head is used in paralysis of tongue.</td>
</tr>
<tr>
<td>37</td>
<td>Urtica dioica Linn.</td>
<td>Whole plant is used in paralysis of limbs.</td>
</tr>
</tbody>
</table>

Fig. 2. The use of different plant plants for paralysis. Leaves showed highest application, followed by roots and seeds. Flower head and bulb showed the least application in terms of number.
and speeding up the research for understanding of the effects of various compounds, for their potentials to ameliorate or cure paralysis in the future.

Conflict of interest
Nil.

Acknowledgement
Authors are grateful to Dr. Rajendra Prasad, Principal Ramjas College, University of Delhi, for his encouragement and motivation while writing this review.

References
49. Kalaymorthy J. Ethno medicinal value of plants in Thanjavur District, Tamil Nadu, India. IJNS. 2014;29:33—42.
50. Padal SB, Chandrasekar P, Vijayakumar Y. Traditional uses of plants by the tribal communities of Salgu。</p>
77. Priti M, Ghirish C, Lalit MT. Indigenous uses of threatened ethno-medicinal plants used to cure different diseases by ethnic people of Almora district of western Himalaya. JAHM. 2012;2:661–678.