
Review Article
Mechanism of Salinity Tolerance in Plants: Physiological,
Biochemical, and Molecular Characterization

Bhaskar Gupta1 and Bingru Huang2

1 Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
2Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA

Correspondence should be addressed to Bingru Huang; huang@aesop.rutgers.edu

Received 22 November 2013; Revised 16 February 2014; Accepted 20 February 2014; Published 3 April 2014

Academic Editor: Lugi Catuvelli

Copyright © 2014 B. Gupta and B. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor
quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological
traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity
stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques
are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various
adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying
salinity tolerance are far frombeing completely understood.This paper provides a comprehensive review ofmajor research advances
on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.

1. Introduction

A major challenge towards world agriculture involves pro-
duction of 70% more food crop for an additional 2.3 billion
people by 2050 worldwide [1]. Salinity is a major stress
limiting the increase in the demand for food crops. More
than 20% of cultivated land worldwide (∼ about 45 hectares)
is affected by salt stress and the amount is increasing day
by day. Plants on the basis of adaptive evolution can be
classified roughly into two major types: the halophytes (that
can withstand salinity) and the glycophytes (that cannot
withstand salinity and eventually die). Majority of major crop
species belong to this second category. Thus salinity is one
of the most brutal environmental stresses that hamper crop
productivity worldwide [2, 3].

Salinity stress involves changes in various physiological
andmetabolic processes, depending on severity and duration
of the stress, and ultimately inhibits crop production [4–7].
Initially soil salinity is known to represses plant growth in
the form of osmotic stress which is then followed by ion
toxicity [4, 5].During the initial phases of salinity stress, water
absorption capacity of root systems decreases and water loss
from leaves is accelerated due to osmotic stress of high salt

accumulation in soil and plants, and therefore salinity stress is
also considered as hyperosmotic stress [6]. Osmotic stress in
the initial stage of salinity stress causes various physiological
changes, such as interruption of membranes, nutrient imbal-
ance, impairs the ability to detoxify reactive oxygen species
(ROS), differences in the antioxidant enzymes and decreased
photosynthetic activity, and decrease in stomatal aperture
[3, 5]. Salinity stress is also considered as a hyperionic stress.
One of the most detrimental effects of salinity stress is the
accumulation of Na+ andCl− ions in tissues of plants exposed
to soils with high NaCl concentrations. Entry of both Na+
and Cl− into the cells causes severe ion imbalance and excess
uptake might cause significant physiological disorder(s).
High Na+ concentration inhibits uptake of K+ ions which
is an essential element for growth and development that
results into lower productivity and may even lead to death
[4]. In response to salinity stress, the production of ROS,
such as singlet oxygen, superoxide, hydroxyl radical, and
hydrogen peroxide, is enhanced [8–12]. Salinity-inducedROS
formation can lead to oxidative damages in various cellular
components such as proteins, lipids, and DNA, interrupting
vital cellular functions of plants.
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Genetic variations in salt tolerance exist, and the degree of
salt tolerance varies with plant species and varieties within a
species. Amongmajor crops, barley (Hordeumvulgare) shows
a greater degree of salt tolerance than rice (Oryza sativa) and
wheat (Triticum aestivum). The degree of variation is even
more pronounced in the case of dicotyledons ranging from
Arabidopsis thaliana, which is very sensitive towards salin-
ity, to halophytes such as Mesembryanthemum crystallinum,
Atriplex sp., Thellungiella salsuginea (previously known as
T. halophila) [3, 13, 14]. In the last two decades sumptuous
amount of research has been done in order to understand the
mechanism of salt tolerance in model plant Arabidopsis [15].
Genetic variations and differential responses to salinity stress
in plants differing in stress tolerance enable plant biologists
to identify physiological mechanisms, sets of genes, and gene
products that are involved in increasing stress tolerance and
to incorporate them in suitable species to yield salt tolerant
varieties.

The main aim of this review is to discuss research
advances on the complex physiological and molecular mech-
anisms that are involved in plant salinity tolerance.

2. Physiological and Biochemical Mechanisms
of Salt Tolerance

Plants develop various physiological and biochemical mech-
anisms in order to survive in soils with high salt concen-
tration. Principle mechanisms include, but are not limited
to, (1) ion homeostasis and compartmentalization, (2) ion
transport and uptake, (3) biosynthesis of osmoprotectants
and compatible solutes, (4) activation of antioxidant enzyme
and synthesis of antioxidant compounds, (5) synthesis of
polyamines, (6) generation of nitric oxide (NO), and (7)
hormone modulation. Research advances elucidating these
mechanisms are discussed below.

2.1. Ion Homeostasis and Salt Tolerance. Maintaining ion
homeostasis by ion uptake and compartmentalization is not
only crucial for normal plant growth but is also an essential
process for growth during salt stress [16–18]. Irrespective of
their nature, both glycophytes and halophytes cannot tolerate
high salt concentration in their cytoplasm. Hence, the excess
salt is either transported to the vacuole or sequestered in older
tissues which eventually are sacrificed, thereby protecting the
plant from salinity stress [19, 20].

Major form of salt present in the soil is NaCl, so the main
focus of research is the study about the transport mechanism
of Na+ ion and its compartmentalization. The Na+ ion that
enters the cytoplasm is then transported to the vacuole via
Na+/H+ antiporter. Two types of H+ pumps are present in the
vacuolar membrane: vacuolar type H+-ATPase (V-ATPase)
and the vacuolar pyrophosphatase (V-PPase) [21–23]. Of
these, V-ATPase is the most dominant H+ pump present
within the plant cell. During nonstress conditions it plays an
important role in maintaining solute homeostasis, energizing
secondary transport and facilitating vesicle fusion. Under
stressed condition the survivability of the plant depends upon
the activity of V-ATPase [21]. In a study performed by De
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Figure 1: Model of SOS pathway for salinity stress responses.

Lourdes Oliveira Otoch et al. [22] in hypocotyls of Vigna
unguiculata seedlings, it was observed that the activity of V-
ATPase pump increased when exposed to salinity stress but
under similar conditions, activity of V-PPase was inhibited,
whereas in the case of halophyte Suaeda salsa, V-ATPase
activity was upregulated and V-PPase played a minor role
[23].

Increasing evidence demonstrates the roles of a Salt
Overly Sensitive (SOS) stress signalling pathway in ion home-
ostasis and salt tolerance [24, 25].The SOS signalling pathway
(Figure 1) consists of three major proteins, SOS1, SOS2, and
SOS3. SOS1, which encodes a plasma membrane Na+/H+
antiporter, is essential in regulatingNa+ efflux at cellular level.
It also facilitates long distance transport of Na+ from root to
shoot. Overexpression of this protein confers salt tolerance in
plants [26, 27]. SOS2 gene, which encodes a serine/threonine
kinase, is activated by salt stress elicited Ca+ signals. This
protein consists of a well-developed N-terminal catalytic
domain and a C-terminal regulatory domain [28]. The third
type of protein involved in the SOS stress signalling pathway
is the SOS3 protein which is a myristoylated Ca+ binding
protein and contains a myristoylation site at its N-terminus.
This site plays an essential role in conferring salt tolerance
[29]. C-terminal regulatory domain of SOS2 protein contains
a FISL motif (also known as NAF domain), which is about 21
amino acid long sequence, and serves as a site of interaction
for Ca2+ binding SOS3 protein (Figure 1). This interaction
between SOS2 and SOS3 protein results in the activation of
the kinase [30]. The activated kinase then phosphorylates
SOS1 protein thereby increasing its transport activity which
was initially identified in yeast [31]. SOS1 protein is charac-
terised by a long cytosolic C-terminal tail, about 700 amino
acids long, comprising a putative nucleotide binding motif
and an autoinhibitory domain.This autoinhibitory domain is
the target site for SOS2 phosphorylation (Figure 1). Besides
conferring salt tolerance it also regulates pH homeostasis,
membrane vesicle trafficking, and vacuole functions [32, 33].
Thus with the increase in the concentration of Na+ there
is a sharp increase in the intracellular Ca2+ level which in
turn facilitates its binding with SOS3 protein. Ca2+modulates
intracellular Na+ homeostasis along with SOS proteins. The
SOS3 protein then interacts and activates SOS2 protein by
releasing its self-inhibition. The SOS3-SOS2 complex is then
loaded onto plasmamembrane where it phosphorylates SOS1
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(Figure 1). The phosphorylated SOS1 results in the increased
Na+ efflux, reducing Na+ toxicity [34].

Many plants have developed an efficient method to
keep the ion concentration in the cytoplasm in a low level.
Membranes along with their associated components play an
integral role in maintaining ion concentration within the
cytosol during the period of stress by regulating ion uptake
and transport [35]. The transport phenomenon is carried out
by different carrier proteins, channel proteins, antiporters
and symporters. Maintaining cellular Na+/K+ homeostasis
is pivotal for plant survival in saline environments. Ma et
al. [36] have reported that Arabidopsis NADPH oxidases
AtrbohD andAtrbohF function in ROS-dependent regulation
of Na+/K+ homeostasis in Arabidopsis under salt stress.
Plants maintain a high level of K+ within the cytosol of about
100mM ideal for cytoplasmic enzyme activities. Within
the vacuole K+ concentration ranges between 10mM and
200mM. The vacuole serves as the largest pool of K+ within
the plant cell. K+ plays a major role in maintaining the
turgor within the cell. It is transported into the plant cell
against the concentration gradient via K+ transporter and
membrane channels. High affinity K+ uptake mechanisms
are mediated by K+ transporters when the extracellular K+
concentration is low, whereas low affinity uptake is carried
out by K+ channels when the extracellular K+ concentration
is high. Thus uptake mechanism is primarily determined by
the concentration of K+ available in the soil. On the other
hand a very low concentration ofNa+ ion (about 1mMor less)
is maintained in the cytosol. During salinity stress, due to
increased concentration of Na+ in the soil, Na+ ion competes
with K+ for the transporter as they both share the same
transport mechanism, thereby decreasing the uptake of K+
[3, 35].

A large number of genes and proteins, such as HKT
and NHX, encoding K+ transporters and channels have
been identified and cloned in various plant species. During
salt stress expression of some low abundance transcripts is
enhanced which are found to be involved in K+ uptake.
Thiswas observed in the halophyteMesembryanthemumcrys-
tallinum [37]. Transporters located on the plasmamembrane,
belonging to the HKT (histidine kinase transporter) family,
also play an essential role in salt tolerance by regulating
transportation of Na+ and K+. Class 1 HKT transporters, that
have been identified inArabidopsis, protect the plant from the
adverse effects of salinity by preventing excess accumulation
Na+ in leaves. Similar results were observed in the exper-
iment which was carried out with rice where class 1 HKT
transporter removes excess Na+ from xylem, thus protecting
the photosynthetic leaf tissues from the toxic effect of Na+
[38]. Intracellular NHX proteins are Na+, K+/H+ antiporters
involved in K+ homeostasis, endosomal pH regulation, and
salt tolerance. Barragán et al. [39] showed that tonoplast-
localized NHX proteins (NHX1 and NHX2: the two major
tonoplast-localized NHX isoforms) are essential for active
K+ uptake at the tonoplast, for turgor regulation, and for
stomatal function. In factmore suchNHX isoformshave been
identified and their roles in ion (Na+, K+, H+) homeostasis
established from different plant species (e.g., LeNHX3 and
LeNHX4 from tomato) [40].

2.2. Compatible Solute Accumulation and Osmotic Protection.
Compatible solutes, also known as compatible osmolytes, are
a group of chemically diverse organic compounds that are
uncharged, polar, and soluble in nature and do not interfere
with the cellular metabolism even at high concentration.
Theymainly include proline [41–45], glycine betaine [46, 47],
sugar [48, 49], and polyols [50–53]. Organic osmolytes are
synthesised and accumulated in varying amounts amongst
different plant species. For example, quaternary ammonium
compound beta alanine betaine’s accumulation is restricted
among few members of Plumbaginaceae [54], whereas accu-
mulation of amino acid proline occurs in taxonomically
diverse sets of plants [53]. The concentration of compatible
solutes within the cell is maintained either by irreversible
synthesis of the compounds or by a combination of synthe-
sis and degradation. The biochemical pathways and genes
involved in these processes have been thoroughly studied. As
their accumulation is proportional to the external osmolarity,
the major functions of these osmolytes are to protect the
structure and to maintain osmotic balance within the cell via
continuous water influx [24].

Amino acids such as cysteine, arginine, and methion-
ine, which constitute about 55% of total free amino acids,
decrease when exposed to salinity stress, whereas proline
concentration rises in response to salinity stress [55]. Proline
accumulation is a well-known measure adopted for alle-
viation of salinity stress [53, 56, 57]. Intracellular proline
which is accumulated during salinity stress not only provides
tolerance towards stress but also serves as an organic nitrogen
reserve during stress recovery. Proline is synthesised either
from glutamate or ornithine. In osmotically stressed cell glu-
tamate functions as the primary precursor. The biosynthetic
pathway comprises two major enzymes, pyrroline carboxylic
acid synthetase and pyrroline carboxylic acid reductase. Both
these regulatory steps are used to overproduce proline in
plants [35]. It functions as an O

2
quencher thereby revealing

its antioxidant capability.This was observed in a study carried
out byMatysik et al. [56]. BenAhmed et al. [57] observed that
proline supplements enhanced salt tolerance in olive (Olea
europaea) by amelioration of some antioxidative enzyme
activities, photosynthetic activity, and plant growth and the
preservation of a suitable plant water status under salinity
conditions. It has been reported that proline improves salt
tolerance in Nicotiana tabacum by increasing the activity
of enzymes involved in antioxidant defence system [58].
Deivanai et al. [59] also demonstrated that rice seedlings from
seeds pretreatedwith 1mMproline exhibited improvement in
growth during salt stress.

Glycine betaine is an amphoteric quaternary ammonium
compound ubiquitously found in microorganisms, higher
plants and animals, and is electrically neutral over a wide
range of pH. It is highly soluble in water but also contains
nonpolar moiety constituting 3-methyl groups. Because of its
unique structural features it interacts both with hydrophobic
and hydrophilic domains of the macromolecules, such as
enzymes and protein complexes. Glycine betaine is a non-
toxic cellular osmolyte that raises the osmolarity of the cell
during stress period; thus it plays an important function
in stress mitigation. Glycine betaine also protects the cell
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by osmotic adjustment [60], stabilizes proteins [61], and
protects the photosynthetic apparatus from stress damages
[62] and reduction of ROS [52, 53]. Accumulation of glycine
betaine is found in a wide variety of plants belonging
to different taxonomical background. Glycine betaine is
synthesised within the cell from either choline or glycine.
Synthesis of glycine betaine from choline is a 2-step reaction
involving two or more enzymes. In the first step choline
is oxidised to betaine aldehyde which is then again oxi-
dised in the next step to form glycine betaine. In higher
plants the first conversion is carried out by the enzyme
choline monooxygenase (CMO), whereas the next step is
catalysed by betaine aldehyde dehydrogenase (BADH) [63].
Another pathway which is observed in some plants, mainly
halophytic, demonstrated the synthesis of glycine betaine
from glycine. Here glycine betaine is synthesized by three
successive N-methylation and the reactions are catalysed by
two S-adenosyl methionine dependent methyl transferases,
glycine sarcosine N-methyl transferase (GSMT), and sarco-
sine dimethylglycine N-methyl transferase (SDMT). These
two enzymes have overlapping functions as GSMT catalyses
the first and the second step while SDMT catalyses the
second and third step [63]. Rahman et al. [64] reported the
positive effect of glycine betaine on the ultrastructure of
Oryza sativa seedlings when exposed to salt stress. Under
stressed condition (150mM NaCl) the ultrastructure of the
seedling shows several damages such as swelling of thy-
lakoids, disintegration of grana and intergranal lamellae, and
disruption of mitochondria. However, these damages were
largely preventedwhen seedlingswere pretreatedwith glycine
betaine. When glycine betaine is applied as a foliar spray in a
plant subjected to stress, it led to pigment stabilization and
increase in photosynthetic rate and growth [62, 63].

Polyols are compoundswithmultiple hydroxyl functional
groups available for organic reactions. Sugar alcohols are
a class of polyols functioning as compatible solutes, as
low molecular weight chaperones, and as ROS scavenging
compounds [52]. They can be classified into two major types,
cyclic (e.g., pinitol) and acyclic (e.g., mannitol). Mannitol
synthesis is induced in plants during stressed period via
action of NADPH dependent mannose-6-phosphate reduc-
tase. These compatible solutes function as a protector or sta-
bilizer of enzymes or membrane structures that are sensitive
to dehydration or ionically induced damage. It was found
that the transformation with bacterialmltd gene that encodes
for mannitol-1-phosphate dehydrogenase in bothArabidopsis
and tobacco (Nicotiana tabacum) plants confer salt tolerance,
thereby maintaining normal growth and development when
subjected to high level of salt stress [65, 66]. Pinitol is accu-
mulated within the plant cell when the plant is subjected to
salinity stress.Thebiosynthetic pathway consists of twomajor
steps, methylation of myo-inositol which results in formation
of an intermediate compound, ononitol, which undergoes
epimerization to form pinitol. Inositol methyl transferase
enzyme encoded by imt gene playsmajor role in the synthesis
of pinitol. Transformation of imt gene in plants shows a result
similar to that observed in the case of mltd gene. Thus it
can be said that pinitol also plays a significant role in stress
alleviation. Accumulation of polyols, either straight-chain

metabolites such as mannitol and sorbitol or cyclic poly-
ols such as myo-inositol and its methylated derivatives, is
correlated with tolerance to drought and/or salinity, based
on polyol distribution in many species, including microbes,
plants, and animals [49].

Accumulations of carbohydrates such as sugars (e.g.,
glucose, fructose, fructans, and trehalose) and starch occur
under salt stress [67]. The major role played by these
carbohydrates in stress mitigation involves osmoprotection,
carbon storage, and scavenging of reactive oxygen species. It
was observed that salt stress increases the level of reducing
sugars (sucrose and fructans) within the cell in a number
of plants belonging to different species [48]. Besides being
a carbohydrate reserve, trehalose accumulation protects
organisms against several physical and chemical stresses
including salinity stress. They play an osmoprotective role
in physiological responses [63]. Sucrose content was found
to increase in tomato (Solanum lycopersicum) under salinity
due to increased activity of sucrose phosphate synthase [68].
Sugar content, during salinity stress, has been reported to
both increase and decrease in various rice genotype [69]. In
rice roots it has been observed that starch content decreased
in response to salinity while it remained fairly unchanged
in the shoot. Decrease in starch content and increase in
reducing and nonreducing sugar content were noted in leaves
of Bruguiera parviflora [67].

2.3. Antioxidant Regulation of Salinity Tolerance. Abiotic and
biotic stress in living organisms, including plants, can cause
overflow, deregulation, or even disruption of electron trans-
port chains (ETC) in chloroplasts and mitochondria. Under
these conditions molecular oxygen (O

2
) acts as an electron

acceptor, giving rise to the accumulation of ROS. Singlet
oxygen (1O

2
), the hydroxyl radical (OH−), the superoxide

radical (O−
2
), and hydrogen peroxide (H

2
O
2
) are all strongly

oxidizing compounds and therefore potentially harmful
for cell integrity [70]. Antioxidant metabolism, including
antioxidant enzymes and nonenzymatic compounds, play
critical parts in detoxifying ROS induced by salinity stress.
Salinity tolerance is positively correlated with the activity of
antioxidant enzymes, such as superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidise (GPX), ascorbate per-
oxidase (APX), and glutathione reductase (GR) and with the
accumulation of nonenzymatic antioxidant compounds [71,
72]. Gill et al. [73] and Tuteja et al. [74] have recently reported
a couple of helicase proteins (e.g., DESD-box helicase and
OsSUV3 dual helicase) functioning in plant salinity tolerance
by improving/maintaining photosynthesis and antioxidant
machinery. Kim et al. [75] showed that silicon (Si) application
to rice root zone influenced the hormonal and antioxidant
responses under salinity stress. The results showed that Si
treatments significantly increased rice plant growth com-
pared to controls under salinity stress. Si treatments reduced
the sodium accumulation resulting in low electrolytic leakage
and lipid peroxidation compared to control plants under
salinity stress. Enzymatic antioxidant (catalase, peroxidase,
and polyphenol oxidase) responses weremore pronounced in
control plants than in Si-treated plants under salinity stress.
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Anthocyanin is a flavonoid whose accumulation in
plant exposed to salt stress has been largely documented.
Van Oosten et al. [76] isolated the anthocyanin-impaired-
response-1 (air1) mutant that is unable to accumulate antho-
cyanins under salt stress. The air1 mutant showed a defect
in anthocyanin production in response to salt stress but not
to other stresses such as high light, low phosphorous, high
temperature, or drought stress. This specificity indicated that
air1 mutation did not affect anthocyanin biosynthesis but
rather its regulation in response to salt stress. The discovery
and characterization of AIR1 opens avenues to dissect the
connections between abiotic stress and accumulation of
antioxidants in the form of flavonoids and anthocyanins.

Ascorbate is one of the major antioxidants present within
the cell. Pea plants grown under saline (150mM NaCl)
stress showed an enhancement of both APX activity and S-
nitrosylated APX, as well as an increase of H

2
O
2
, NO, and

S-nitrosothiol (SNO) content that can justify the induction
of the APX activity. Proteomic data have shown that APX is
one of the potential targets of PTMsmediated byNO-derived
molecules [77]. Using recombinant pea cytosolic APX, the
impact of peroxynitrite (ONOO−) and S-nitrosoglutathione
(GSNO), which are known to mediate protein nitration
and S-nitrosylation processes, respectively, was analysed.
While peroxynitrite inhibits APX activity, GSNO enhances
its enzymatic activity. The results provide new insight into
the molecular mechanism of the regulation of APX, which
can be both inactivated by irreversible nitration and activated
by reversible S-nitrosylation [77]. Exogenous application of
ascorbate mitigates the adverse effects of salinity stress in
various plant species and promotes plant recovery from the
stress [78, 79]. Another antioxidant in stressmitigation is glu-
tathione, which can react with superoxide radical, hydroxyl
radical, and hydrogen peroxide, thereby functioning as a free
radical scavenger. It can also participate in the regeneration
of ascorbate via ascorbate-glutathione cycle [80]. When
applied exogenously glutathione helped to maintain plasma
membrane permeability and cell viability during salinity
stress in Allium cepa [81]. Application of glutathione and
ascorbate was found to be effective in increasing the height
of the plant, branch number, fresh and dry weight of herbs
and flowers, and the content of carbohydrates, phenols, xan-
thophylls pigment, and mineral ion content when subjected
to saline condition [82]. Many studies have found differences
in levels of expression or activity of antioxidant enzymes;
these differences are sometimes associated with the more
tolerant genotype and sometimes with the more sensitive
genotype. Munns and Tester [3] suggested that differences in
antioxidant activity between genotypes may be due to geno-
typic differences in degrees of stomatal closure or in other
responses that alter the rate of CO

2
fixation and differences

that bring into play the processes that avoid photoinhibition
and for which the plant has abundant capacity [3]. Roy et al.
[83] in their recent review have argued that there are three
main traits in plants, which help them in their adaptation
to salinity stress: ion exclusion, tissue tolerance, and salinity
tolerance. It seems that antioxidants have some role in tissue
and salinity tolerance mechanism.

2.4. Roles of Polyamines in Salinity Tolerance. Polyamines
(PA) are small, low molecular weight, ubiquitous, polyca-
tionic aliphatic molecules widely distributed throughout the
plant kingdom. Polyamines play a variety of roles in normal
growth and development such as regulation of cell prolifer-
ation, somatic embryogenesis, differentiation and morpho-
genesis, dormancy breaking of tubers and seed germination,
development of flowers and fruit, and senescence [84–87]. It
also plays a crucial role in abiotic stress tolerance including
salinity and increases in the level of polyamines are correlated
with stress tolerance in plants [88–91].

The most common polyamines that are found within
the plant system are diamine putrescine (PUT), triamine
spermidine (SPD), and tetra-amine spermine (SPM) [92–
96]. The PA biosynthetic pathway has been thoroughly
investigated in many organisms including plants and has
been reviewed in details [97–104]. PUT is the smallest
polyamine and is synthesised from either ornithine or
arginine by the action of enzyme ornithine decarboxylase
(ODC) and arginine decarboxylase (ADC), respectively [85,
105]. N-carbamoyl-putrescine is converted to PUT by the
enzyme N-carbamoyl-putrescine aminohydrolase [106, 107].
The PUT thus formed functions as a primary substrate
for higher polyamines such as SPD and SPM biosynthesis.
The triamine SPD and tetramine SPM are synthesized by
successive addition of aminopropyl group to PUT and SPD,
respectively, by the enzymes spermidine synthase (SPDS) and
spermine synthase (SPMS) [108, 109]. ODC pathway is the
most common pathway for synthesis of polyamine found in
plants. Most of the genes involved in the ODC pathway have
been identified and cloned. However there are some plants
where ODC pathway is absent; for instance in Arabidopsis
polyamines are synthesized via ADC pathway [110–112].
All the genes involved in polyamine biosynthesis pathways
have been identified from different plant species including
Arabidopsis [113–115]. Polyamine biosynthesis pathway in
Arabidopsis involves sixmajor enzymes:ADCencoding genes
(ADC1 and ADC2); SPDS (SPDS1 and SPDS2) and SAMDC
(SAMDC1, SAMDC2, SAMDC3, SAMDC4) [115–118]. On the
contrary, SPM synthase, thermospermine synthase, agmatine
iminohydrolase andN-carbamoylputrescine amidohydrolase
are represented by single genes only [119, 120].

Increase in endogenous polyamine level has been report-
ed when the plant is exposed to salinity stress. Intracel-
lular polyamine level is regulated by polyamine catabolism.
Polyamines are oxidatively catabolised by amine oxidases
which include copper binding diamine oxidases and FAD
binding polyamine oxidases.These enzymes play a significant
role in stress tolerance [121, 122]. The changes in cellular
polyamine level due to stress provide possible implications
in stress but do not provide evidence of their role in coun-
teracting stress. Hence, to understand whether polyamines
actually protect cells from stress-induced damages, exoge-
nous application of polyamines, which is expected to increase
endogenous polyamine, has been investigated before or dur-
ing stress [123, 124]. Application of exogenous polyamine has
been found to increases the level of endogenous polyamine
during stress; the positive effects of polyamines have been
associated with the maintenance of membrane integrity,
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regulation of gene expression for the synthesis of osmotically-
active solutes, reduction in ROS production, and controlling
accumulation of Na+ and Cl− ion in different organs [123–
130]. It was observed that plant deficient in ADC1 and ADC2
is hypersensitive to stress [131]. In Arabidopsis, expression of
ADC and SPMS increases when exposed to salinity stress.
whereas mutants of polyamine biosynthetic genes show
sensitivity to salinity [132]. Overproduction of PUT, SPD,
and SPM in rice, tobacco, and Arabidopsis enhances salt
tolerance [133]. Salt stress regulates polyamine biosynthesis
and catabolism by acting as a cellular signal in hormonal
pathways thereby regulating abscisic acid (ABA) in response
to stress [134]. Additionally, SPM and SPD are regarded as
potent inducers of NO which is another important signalling
molecule [135] and its involvement in salinity tolerance
is discussed below. It has been reported that exogenous
application of polyamines could alleviate salt-induced reduc-
tion in photosynthetic efficiency, but this effect depends on
polyamine concentration and types and level of stress [136].
When the seedling of Sorghum bicolor treated with 0.25mM
SPM is subjected to salt stress it shows improvement in
growth and partial increase in the activity of peroxidase and
glutathione reductase enzyme with a concomitant decrease
in the level of membrane lipid peroxidation [137]. Li et
al. [138] performed 2-DE gel electrophoresis and MALDI-
TOF/TOFMSwith cytosolic proteins to understand the effect
of exogenous SPD on proteomic changes under normal and
NaCl stress of 3 days old cucumber seedling leaves. Many
changes were observed in the levels of proteins involved in
energy and metabolic pathways, protein metabolic, stress
defense, and other functional proteins. They observed that
increased salt tolerance by exogenous SPD would contribute
to higher expressions of proteins involved in the SAMs
metabolism, protein biosynthesis, and defense mechanisms
on antioxidant and detoxification. Li et al. [138] also argued
that the regulation of Calvin cycle, protein folding assembly,
and the inhibition of protein proteolysis by SPD might play
important roles in salt tolerance.

2.5. Roles of Nitric Oxide in Salinity Tolerance. Nitric oxide
(NO) is a small volatile gaseous molecule, which is involved
in the regulation of various plant growth and developmental
processes, such as root growth, respiration, stomata closure,
flowering, cell death, seed germination and stress responses,
as well as a stress signalling molecule [139–143]. NO directly
or indirectly triggers expression of many redox-regulated
genes. NO reacts with lipid radicals thus preventing lipid oxi-
dation, exerting a protective effect by scavenging superoxide
radical and formation of peroxynitrite that can be neutralised
by other cellular processes. It also helps in the activation of
antioxidant enzymes (SOD, CAT, GPX, APX, and GR) [144].

Exogenous NO application has been found to play roles
in stress mitigation [145–147], but the effects depend on
NO concentration. Exogenous application of sodium nitro-
prusside (SNP), a NO donor, on Lupinus luteus seedlings
subjected to salt stress enhanced seed germination and root
growth [148]. Seed germination was promoted at concen-
trations between 0.1 and 800𝜇M SNP in a dose-dependent

manner. The stimulation was most pronounced after 18 and
24 h and ceased after 48 h of imbibition. The promoting
effect of NO on seed germination persisted even in the
presence of heavy metals (Pb and Cd) and NaCl. Kopyra
and Gwóźdź [148] further showed that the pretreatment of L.
luteus seedlings for 24 h with 10 𝜇M SNP resulted in efficient
reduction of the detrimental effect of the abiotic stressors
on root growth and morphology. Pretreatment of maize
seedlings with 100 𝜇M SNP increases dry matter of roots and
shoots under salinity stress; however, when the concentration
of SNP was increased to 1000 𝜇M shoot and root dry weight
decreased [149]. Thus, this experiment highlighted both the
protective effects of lowNOconcentration and the toxic effect
of high NO concentration on plants.

The positive effects of NO on salinity tolerance or stress
mitigation have been attributed to antioxidant activities and
modulation of ROS detoxification system [150]. Improved
plant growth under salinity stress by exogenous application
of NO was associated with increases in antioxidant enzymes
such as SOD, CAT, GPX, APX, and GR [151], and suppression
of malondialdehyde (MDA) production or lipid peroxidation
[152]. Effects of NO on salinity tolerance are also related to
its regulation of plasma membrane H+-ATPase and Na+/K+
ratio [143]. NO stimulates H+-ATPase (H+-PPase), thereby
producing a H+ gradient and offering the force for Na+/H+
exchange. Such an increase of Na+/H+ exchange may con-
tribute toK+ andNa+ homeostasis [149]. AlthoughNOacts as
a signal molecule under salt stress and induces salt resistance
by increasing PM H+-ATPase activity, research results from
Zhang et al. [153] with calluses from Populus euphratica
also indicated NO cannot activate purified PM H+-ATPase
activity, at least in vitro. They initially hypothesized ABA or
H
2
O
2
might be downstream signal molecules to regulate the

activity of PM H+-ATPase. Further results indicated H
2
O
2

content increased greatly under salt stress. Since H
2
O
2
might

be the candidate downstream signal molecule, Zhang et al.
[153] tested PM H+-ATPase activity and K to Na ratio in
calluses by adding H

2
O
2
. The results suggested that H

2
O
2

inducing an increased PM H+-ATPase activity resulted in an
increased K to Na ratio leading to NaCl stress adaptation.

2.6. Hormone Regulation of Salinity Tolerance. ABA is an
important phytohormone whose application to plant ame-
liorates the effect of stress condition(s). It has long been
recognized as a hormone which is upregulated due to soil
water deficit around the root. Salinity stress causes osmotic
stress and water deficit, increasing the production of ABA
in shoots and roots [154–158]. The accumulation of ABA
can mitigate the inhibitory effect of salinity on photosyn-
thesis, growth, and translocation of assimilates [158, 159].
The positive relationship between ABA accumulation and
salinity tolerance has been at least partially attributed to the
accumulation of K+, Ca2+ and compatible solutes, such as
proline and sugars, in vacuoles of roots, which counteract
with the uptake of Na+ and Cl− [160, 161]. ABA is a vital
cellular signal that modulates the expression of a number of
salt and water deficit-responsive genes. Fukuda and Tanaka
[162] demonstrated the effects of ABA on the expression
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of two genes, HVP1 and HVP10, for vacuolar H+-inorganic
pyrophosphatase, and of HvVHA-A, for the catalytic subunit
(subunit A) of vacuolar H+-ATPase in Hordeum vulgare
under salinity stress. ABA treatment in wheat induced the
expression of MAPK4-like, TIP 1, and GLP 1 genes under
salinity stress [163].

Some other compounds having hormonal properties,
such as salicylic acid (SA) and brassinosteroids (BR), also
participate in plant abiotic stress responses [164, 165]. Under
salinity stress endogenous level of SA increased along with
the increase in the activity of salicylic acid biosynthetic
enzyme in rice seedling [166]. Jayakannan et al. [167] have
recently shown that SA improves salinity tolerance in Ara-
bidopsis by restoring membrane potential and preventing
salt-induced K+ loss via a guard cell outward rectifying
K(+) (GORK) channel. Arabidopsis seedling pretreated with
SA showed upregulation of H+-ATPase activity, thereby
improving K+ retention during salt stress; SA pretreatment
did not prevent accumulation of Na+ in roots but somehow
helped to reduce the concentration of accumulated Na+ in
the shoot [167]. The application of SA also promoted salinity
tolerance in barley, as manifested by increases in the content
of chlorophyll and carotenoid and maintaining membrane
integrity, which was associated with more K+ and soluble
sugar accumulation in the root under saline condition [168].
Nazar et al. [169] have argued that SA alleviates decreases in
photosynthesis under salt stress by enhancing nitrogen and
sulfur assimilation and antioxidant metabolism differentially
in mung bean cultivars. The negative effects of salinity
may also be mitigated by BR [170–173]. Application of BR
enhanced the activity of antioxidant enzymes (SOD, POX,
APX, and GPX) and the accumulation of nonenzymatic
antioxidant compounds (tocopherol, ascorbate, and reduced
glutathione) [170]. Both BRs and SA are ubiquitous in the
plant kingdom, affecting plant growth and development in
many different ways, and are known to improve plant stress
tolerance. Ashraf et al. [173] have reviewed and discussed
the current knowledge and possible applications of BRs and
SA that could be used to mitigate the harmful effects of
salt stress in plants. They have also discussed the roles of
exogenous applications of BRs and SA in the regulation of
various biochemical and physiological processes leading to
improved salt tolerance in plants.

3. Transcriptional Regulation and Gene
Expression of Salinity Tolerance

Regulation of gene expression in salinity stress includes
a wide array of mechanisms that are used by plants to
upregulate or downregulate (increase or decrease) the pro-
duction of specific gene products (protein or RNA). Various
mechanisms of gene regulation have been identified during
the central dogma, from transcriptional initiation, to RNA
processing, and to the posttranslational modification of a
protein.

Transcriptomic analysis provides detailed knowledge
about the gene expression at mRNA level, which is widely
used to screen candidate genes involved in stress responses.
Genomic approaches play a significant role in encoding,

cloning, and characterization of important genes. A huge
number of salt-responsive transcription factors and genes
which are either upregulated or downregulated in response
to salinity stress have been identified and characterized using
transcriptomic and genomic approaches.

Transcription factors are considered as most important
regulators that control gene expressions. Among them, bZIP,
WRKY, AP2, NAC, C2H2 zinc finger gene, and DREB fam-
ilies comprise a large number of stress-responsive members.
These transcription factor genes are capable of controlling the
expression of a broad range of target genes by binding to the
specific cis-acting element in the promoters of these genes.
Johnson et al. [174] observed that the expression of bZIP
genes were upregulated in salt-sensitive wheat cultivar, when
exposed to long-term salinity, but decreased in salt-tolerant
variety. Overexpression of a NAC transcription factor in
both rice and wheat confers salt tolerance, thereby predicting
their role in stress mitigation [175]. In rice transcriptional
regulators that have been demonstrated to play a significant
role in abiotic stress responses involve DREB1/CBF, DREB2,
and AREB/ABF [176–180]. Transcriptions factors such as
OsNAC5 and ZFP179 show an upregulation under salinity
stress, which may regulate the synthesis and accumulation of
proline, sugar, and LEA proteins that in turn play an integral
role in stress tolerance [181]. In Arabidopsis, salt stress results
in the upregulation of AtWRKY8 which directly binds with
the promoter ofRD29A, suggesting it to be as one of the target
genes of AtWRKY8 [182].

A large number of genes and transcription factors are
upregulated in response to salinity in different plant species,
which serve diverse functions [183–192]. Examples of salt-
responsive genes are listed in the Table 1, and these genes
are mainly classified into the following functional categories:
ion transport or homeostasis (e.g., SOS genes, AtNHX1,
and H+-ATPase), senescence-associated genes (e.g., SAG),
molecular chaperones (e.g., HSP genes), and dehydration-
related transcription factors (e.g., DREB). Among stress-
responsive genes, the SOS gene family, which we have already
discussed in Section 2.1, is believed to play a very intriguing
role in ion homeostasis, thereby conferring salt tolerance [24–
37, 190, 191]. Some ROS-scavenging and osmotic-regulating
genes are also upregulated by salinity in some plant species.
For example, a continuous exposure of rice plants to salinity
for about 24 hours resulted in upregulation of glutathione-
S-transferase and ascorbate peroxidase, both of which were
known to play an active role in ROS scavenging, and with the
increase in duration of exposure to salinity stress, upregula-
tion of metallothionein and water channel proteins was also
observed [192]. Halophyte plant species Spartina alterniflora
when subjected to salt stress exhibits upregulation of 10 genes
associated with osmotic regulation [193].

Recently, Schmidt et al. [194] identified SALT-RESPON-
SIVE ERF1 (SERF1), a rice (Oryza sativa) transcription factor
gene that showed a root-specific induction upon salt and
H
2
O
2
treatment. Loss of SERF1 impaired the salt-inducible

expression of genes encoding members of a mitogen-acti-
vated protein kinase (MAPK) cascade and salt tolerance-medi-
ating TFs. Furthermore, they showed that SERF1-dependent
genes are H

2
O
2
responsive and demonstrated that SERF1
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Table 1: Examples of upregulated genes in response to salinity stress.

Species
NaCl

concentration
(mM)

Gene name Gene functions References

Brassica juncea
and Brassica
campestris

25 and 50

SOS1
SOS2
SOS3
AtNHX1

(i) Plasma membrane
Na+/K+ antiporter.

(ii) Protein kinase.
(iii) Calcium-binding protein.
(iv) Vacuolar Na+/K+ antiporter.

[183]

Oryza sativa 50
PRP
SAG
HSPC025

(i) Proline-rich proteins and
cell-wall

protection.
(ii) Senescence associated genes,

regulatory processes,
and cellular signal transduction.

(iii) Heat-shock proteins, protein
stabilizing.

[184]

Oryza sativa 100
OsHSP23.7
OsHSP71.1,
OsHSP80.2

Heat-shock proteins, molecular
chaperones, folding, assembling,
and transporting proteins.

[185]

Arabidopsis
thaliana 150 AtSKIP

Transcription factor, transcriptional
pre-initiation, splicing, and
polyadenylation.

[186]

Oryza sativa 200 OsHsp17.0,
OsHsp23.7

Heat-shock proteins, molecular
chaperones, and folding,
assembling, and transporting
proteins.

[187]

Carrot 300 DcHsp17.7 Cell viability and membrane
stability under heat stress. [188]

Arabidopsis
thaliana 300 JcDREB Transcription factor [189]

binds to the promoters of MAPK KINASE KINASE6
(MAP3K6), MAPK5, DEHYDRATION-RESPONSIVE ELE-
MENT BINDING2A (DREB2A), and ZINC FINGER PRO-
TEIN179 (ZFP179) in vitro and in vivo. SERF1 also directly
induces its own gene expression. In addition, it was observed
that SERF1 is a phosphorylation target of MAPK5, resulting
in enhanced transcriptional activity of SERF1 toward its
direct target genes. Finally, they demonstrated that the plants
deficient for SERF1 are more sensitive to salt stress compared
with thewild type, while constitutive overexpression of SERF1
improves salinity tolerance.

There are some transcription factors which are regulated
by different kinases and have been found to be significant
players of plant adaptation to salinity stress. Serra et al. [195]
showed thatOsRMC encodes a receptor-like kinase described
as a negative regulator of salt stress responses in rice. Two
transcription factors, OsEREBP1 and OsEREBP2, belonging
to the AP2/ERF family were shown to bind to the same
GCC-like DNA motif in OsRMC promoter and to negatively
regulate its gene expression. Serra et al. [195] further revealed
that OsEREBP1 transcript level is not significantly affected
by salt, ABA, or severe cold (5∘C) and is only slightly
regulated by drought and moderate cold. On the other
hand, the OsEREBP2 transcript level increased after cold,
ABA, drought, and high salinity treatments, indicating that
OsEREBP2 may play a central role mediating the response

to different abiotic stresses. Gene expression analysis in rice
varieties with contrasting salt tolerance further suggests that
OsEREBP2 is involved in salt stress response in rice. A bZIP
class of ABRE binding transcription factor, known as OSBZ8,
has also been identified from rice and has been shown to be
highly expressed in salt tolerant cultivars than in salt sensitive
one [196]. Moreover, OSBZ8 has been shown to be acti-
vated/phosphorylated by a SNF-1 group of serine/threonine
kinase in the presence of Spd during salinity stress [197].

High-throughput sequencing for transcript profiling in
plants has revealed that alternative splicing affects a much
higher proportion of the transcriptome than was previously
assumed. Alternative splicing is involved in most plant pro-
cesses and is particularly prevalent in plants exposed to envi-
ronmental stress.The identification ofmutations in predicted
splicing factors and spliceosomal proteins that affect cell fate,
the circadian clock, plant defense, and tolerance/sensitivity
to abiotic stress all points to a fundamental role of splic-
ing/alternative splicing in plant growth, development, and
responses to external cues [198]. A suite of Ser/Arg-rich pro-
teins that are key regulators of alternative splicing undergoes
alternative themselves in response to various abiotic stresses,
such as salt stress [198–200]. PRMT5, a type II protein
Arg methyltransferase that symmetrically dimethylates Arg
side chains, also impacts splicing/alternative in Arabidopsis.
The prmt5 mutant, also known as shk1 kinase binding
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protein1 (skb1), is sensitive to salt [201]. It was proposed
that PRMT5/SKB1 affects plant development and the salt
response by altering the methylation status of H4R3sme2
(for symmetric dimethylation of histone H4 arginine 3) and
LSm4 and thus linking transcription to pre-mRNA splicing
[201]. A nuclear coactivator, At-SKIP (Ski-interacting pro-
tein), expression was found to increase in response to salt,
mannitol, and ABA treatment, and At-SKIP overexpression
or antisense lines show altered tolerance to a plethora of
abiotic stress factors [186], and it is likely that a role in
alternative splicing contributes to these phenotypes [198].

The small ubiquitin-like modifier (SUMO) is a crucial
regulator of signaling proteins in eukaryotes. Attachment of
SUMO onto substrates is reversible, and SUMO proteases,
which specifically cleave the SUMO-substrate linkages, play
a vital regulatory role during SUMOylation. Conti et al. [202]
have identified two SUMOproteases, Overly Tolerant To Salt1
(OTS1) and OTS2, which are localized in the nucleus and act
redundantly to regulate salt stress responses in Arabidopsis
thaliana. Cui et al. [203] have identified an Arabidopsis
endoplasmic reticulum (ER-) associated protein degradation
(ERAD) component called Ubiquitin conjugase UBC32 that
functions in BR-mediated salt stress tolerance. More and
more such reports of sumoylation and other ubiquitin like
posttranslational modifications during plant salinity stress
are coming up.

Downregulated genes are emerging now as essential com-
ponents of the response to salinity. For example downreg-
ulation of 𝛽-carotene hydroxylase increases 𝛽-carotene and
total carotenoids enhancing salt stress tolerance in transgenic
cultured cells of sweet potato [204]. It seems that mutual
regulation mechanism exists between different genes and
proteins and signals underlying different processes of plant
adaptation to abiotic stress.

In addition to protein coding genes, recently discovered
microRNAs (miRNAs) and endogenous small interfering
RNAs (siRNAs) have emerged as important players in plant
stress responses. Initial clues suggesting that small RNAs are
involved in plant stress responses stem from studies showing
stress regulation of miRNAs and endogenous siRNAs, as well
as from target predictions for some miRNAs [205, 206].

4. Proteomic and Metabolic Responses to
Salinity Stress

Genomics technologies have helped to address the multi-
genicity of the plant abiotic stress responses. Analysis of
genome sequences, and specific transcript collections and
their dynamic changes, has provided a more global pic-
ture of stress-dependent responses at the cell, tissue, and
whole plant level and moved the field from a single-gene
approach toward an understanding of interactions between
multiple components in cells, facilitating the dissection of
abiotic stress circuits and coexpression hubs [5–8, 207–209].
However, directly focusing on genes may not accurately
portray conditions in the cell at a particular state and
time during stress due to regulation at the RNA and pro-
tein level, including posttranslational regulation. Proteomics,

and in particular quantitative proteomics, is emerging as
a powerful technique to be applied to the field of crop
abiotic stress tolerance research; it has the potential to
allow rapid identification and quantification of novel stress-
and tolerance-related proteins. Understanding the dynamics
of expression and posttranslational modifications of these
proteins, and gaining direct insight into their function and
interactions, can provide essential information that can be
applied to engineer stress-tolerant crops with novel traits
through biomarker selection and transgenic strategies [209,
210]. Available data suggest that several common stress
responsive proteins are expressed in response to various
abiotic stresses in different plant species. About 2171 proteins
from 34 plant species have been identified and characterized
as salt-responsive proteins, which are either upregulated
or downregulated by salinity stress [211]. Based on gene
ontology, BLAST alignment and literature information, salt-
responsive proteins can be grouped into 14 functional cate-
gories. Specifically, there appears to be a general regulation
of proteins involved in carbohydrate, nitrogen, and energy
metabolisms, with particular emphasis on glycolytic and
Krebs cycle enzymes. Moreover, as discussed earlier, salinity
and other abiotic stresses lead to metabolic imbalances that
lead to ROS generation. Therefore, it is not surprising that
plant root or shoot proteomics show the expression of ROS
scavenging proteins like SOD, CAT, GPX, APX, and GR
[209, 212]. Other proteins that are identified in multiple
studies are those involved in protein synthesis, processing,
turnover, and degradation, as well as cytoskeleton stability.
For photosynthetic processes, there appears to be a general
decrease in levels of chlorophyll biosynthesis related proteins
but an increase in proteins involved in the light-dependent
reactions. Some of the proteins identified are indicative of a
general stress-responsive pathway in plants. Less common are
proteins identified in the categories of signaling, trafficking,
transport, and cell structure [209]. Plant lamina or root
membrane proteomics, including that of plasma membrane,
mitochondrial, and thylakoid membrane, have revealed the
up-/downregulation of a plethora of proteins. These include
receptor proteins that perceive the stress, membrane bound
signaling, and regulatory proteins that function to relay the
stress, vesicle trafficking proteins, and transport proteins that
function to maintain ion and water homeostasis, and drive
sequestration and/or removal of toxic compounds from the
cell, membrane bound kinases, and intrinsic proteins [213–
219].

Another significant research approach in plant system
biology is the metabolomics which involves the study of
metabolome. Higher plants have a remarkable ability to
synthesize a vast array of metabolites that differ in chemical
complexity and biological functions playing an indispensi-
ble role in stress alleviation [229, 230]. Examples of plant
metabolites that are involved in salinity tolerance include
polyols such as mannitol and sorbitol, dimethylsulfonium
compounds, glycine betaine, sugars such as sucrose, trehalose
and fructans, or amino acids such as proline that serve as an
osmolyte or osmoprotectant [231]. Plants when subjected to
salinity stress show an increase in the concentration of these
osmolytes thus playing significant role in stress mitigation.



10 International Journal of Genomics

Table 2: Improving plant salt tolerance through engineering genes for various membrane antiporters.

Transgenic
host Gene engineered Source Improved functions

under salinity stress References

Arabidopsis

Vacuolar
Na+/H+

antiporter Ms
NHX1

Alfalfa
(Medicago
sativa)

Increased osmotic
balance.
MDA content rises.

[220]

Rice

Vacuolar
Na+/H+

Antiporter Pg
NHX1

Pennisetum
glaucum Elaborate root system. [221]

Wheat

Vacuolar
Na+/H+

Antiporter At
NHX1

Arabidopsis
thaliana L.

Increase in grain yield
and biomass production.
Accumulation of K+ in
leaf.
Reduced aggregation of
Na+.

[222]

Tobacco

Vacuolar
Na+/H+

antiporter
GhNHX1

Gossypium
hirsutum

Na+
compartmentalization. [223]

Tomato

Vacuolar
Na+/H+

antiporter
AtNHX1

Arabidopsis
thaliana L.

Over production of
vacuolar Na+/H+

antiporter.
[224]

Tobacco

Vacuolar
Na+/H+

antiporter
AlNHXI

Aeluropus
littoralis

Compartmentalization
of Na in roots.
Maintenance of K+/Na+
ratio in the leaf.

[225]

Brassica

Vacuolar
Na+/H+

antiporter
AtNHX1

Arabidopsis
thaliana L.

Increased proline
content.
Improved growth rate.
Mitigate the toxic effect
of Na+.

[226]

Arabidopsis
Plasma membrane
Na+/H+

antiporter SOS1

Arabidopsis
thaliana L.
(wild type)

Improved germination
rate, root growth, and
chlorophyll content.
Reduced accumulation
of Na+.

[227]

Maize

Vacuolar
Na+/H+

antiporter
AtNHX1

Arabidopsis
thaliana L.

Increased rate of
germination. [228]

We have already discussed their role in Section 2.2. Advances
in analytical chemistry, such asMS basedmethods andNMR,
and sophisticated “data processing and mining” techniques,
have allowed the plant biologists to venture into hitherto
unexplored domains and generate extensive metabolic pro-
files due to various environmental stimuli including salinity.
Results indicate that the metabolic processes are highly
specific for given tissues, species, and plant-environment
interactions. The clusters of identified compounds not only
serve as base in the quest of novel defense compounds but also
as markers for the characterization of the plants’ defensive
state. The latter is especially useful in agronomic applications
where meaningful markers are essential for crop protection
[232].

5. Bioengineering for Improving
Salinity Tolerance

Genetic transformation technology enables scientists to
achieve gene transfer in precise and predictable manner.
Hence genetic engineering approaches would be useful to
manipulate the osmoprotectants biosynthetic pathways for
accumulating such molecules that act by scavenging ROS,
reducing lipid peroxidation, maintaining protein structure
and functions [233–235]. Many works on the transformation
of plants for improving salinity tolerance focus on genes
controlling ion transport, as regulation of Na+ uptake and
compartmentalization is a critically important mechanism
for plant survival under salinity stress, and many candidate
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genes controlling this mechanism have been identified.
Engineering plants for overexpression of genes encoding for
antiporters is identified as an effective method for generating
salt-tolerant plants (Table 2 and relative references in
Table 2). Gene expression studies using constitutive
promoters provide limited biological information compared
with the use of inducible promoters or cell type-specific
promoters. The choice of promoters can significantly affect
the results from a transgenic manipulation.Thus salt tolerant
crops could be engineered by (1) successful fine-tuning of
the stress response by engineering novel regulatory targets;
(2) proper understanding of posttranslational modifications
which regulate plant growth performance under stress; (3)
overexpression of miRNAs or their targets; (4) maintaining
hormone homeostasis to avoid pleiotropic effects under
stress; and (5) applying plant synthetic biology approaches
to improve genetic engineering strategies [236].

6. Conclusions and Future
Research Perspectives

Salinity tolerance involves a complex of responses at molec-
ular, cellular, metabolic, physiological, and whole-plant lev-
els. Extensive research through cellular, metabolic, and
physiological analysis has elucidated that among various
salinity responses, mechanisms or strategies controlling ion
uptake, transport and balance, osmotic regulation, hormone
metabolism, antioxidant metabolism, and stress signalling
play critical roles in plant adaptation to salinity stress.
Taking advantage of the latest advancements in the field
of genomic, transcriptomic, proteomic, and metabolomic
techniques, plant biologists are focusing on the development
of a complete profile of genes, proteins, and metabolites
responsible for different mechanisms of salinity tolerance
in different plant species. However, there is lack of the
integration of information from genomic, transcriptomic,
proteomic, and metabolomics studies, and the combined
approach is essential for the determination of the key path-
ways or processes controlling salinity tolerance. In addition,
in spite of the significant progress in the understanding
of plant stress responses, there is still a large gap in our
knowledge of transmembrane ion transport, sensor and
receptor in the signalling transduction, molecules in long
distance signalling, and metabolites in energy supply. The
future focus should be on the study of intercellular and
intracellular molecular interaction involved in salinity stress
response. Genetic engineering has been proved to be an
efficient approach to the development of salinity-tolerant
plants, and this approach will become more powerful as
more candidate genes associated with salinity tolerance are
identified and widely utilized.
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arginine decarboxylase in tobacco plants,” Physiologia Plan-
tarum, vol. 120, no. 1, pp. 84–92, 2004.

[100] C. Illingworth, M. J. Mayer, K. Elliott, C. Hanfrey, N. J.
Walton, and A. J. Michael, “The diverse bacterial origins of the
Arabidopsis polyamine biosynthetic pathway,” FEBS Letters, vol.
549, no. 1–3, pp. 26–30, 2003.
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