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Climate change creates new patterns of seasonal climate

variation with higher temperatures, longer growth seasons and

more variable winter climates. This is challenging the winter

survival of perennial herbaceous plants. In this review, we focus

on the effects of variable temperatures during autumn/winter/

spring, and its interactions with light, on the development and

maintenance of freezing tolerance. Cold temperatures induce

changes at several organizational levels in the plant (cold

acclimation), leading to the development of freezing tolerance,

which can be reduced/lost during warm spells (deacclimation)

in winters, and attained again during cold spells (reacclimation).

We summarize how temperature interacts with components of

the light regime (photoperiod, PSII excitation pressure,

irradiance, and light quality) in determining changes in the

transcriptome, proteome and metabolome.
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Introduction
The level of freezing tolerance in temperate perennial

plants follows an annual cycle, determined largely by cold

acclimation in autumn and deacclimation in spring. Cold

acclimation is the exposure to low, nonfreezing tempera-

tures, usually in autumn, which induces transcriptional,

morphological and physiological changes resulting in the

acquisition of freezing tolerance [1,2]. Freezing tolerance

is generally at its peak in mid-winter and drops gradually

towards spring. Upon exposure to warmer temperatures in

spring, plants deacclimate and lose freezing tolerance.

However, this can occur too early in spring or in response

to warm spells in mid-winter, when there is still a risk of

freezing temperatures [3,4]. Under some conditions,
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plants have the ability to reacclimate if temperatures

drop again. Cold acclimation, deacclimation and reaccli-

mation are highly complex processes, and although tem-

perature is the main driving force in many species, such as

Arabidopsis thaliana and temperate grasses, other environ-

mental and physiological factors like light, carbohydrate

reserves and metabolism, drought, flooding, nutrient sta-

tus and atmospheric CO2 concentration, are interacting

with temperature and are influencing these processes [4].

In particular, light conditions have important functions in

coordinating freezing tolerance with growth and the sea-

sonal variation in temperature.

The climate change projections predict that the growing

seasons will be warmer and longer, especially at higher

latitudes. This will affect cold acclimation, which will

take place later in the autumn under shorter photoperiods

and at lower light intensities [4]. The temperature is also

predicted to become more variable. This will increase the

frequency of warm spells during winter leading to more

frequent acclimation and deacclimation cycles [3,4]. As an

example, it has been demonstrated that deacclimation,

measured as loss of freezing tolerance (LT50), was less in

timothy (Phleum pratense L.) than in perennial ryegrass

(Lolium perenne L.), and that the loss of freezing tolerance

increased with increasing deacclimation temperatures (3,

9 or 12 8C during 9 days) [5]. Deacclimation was most

rapid in the most winter-hardy cultivar, which obtained

the highest initial freezing tolerance.

In this review, we mainly focus on recent studies of low

temperature responses in temperate grass species, with

additional examples from dicots (perennial legumes and A.
thaliana) when relevant. We will discuss: (1) interactions

between temperature and light on the development of

freezing tolerance; (2) interactions between vernalization

and photoperiod on deacclimation and the ability to reac-

climate; and (3) summarize studies of transcriptomic,

proteomic and metabolomic responses to low temperature

and release of low temperature. For the gene nomenclature

of the main genes discussed in this review, see Table 1.

Effects of interactions between temperature
and light on freezing tolerance
Although temperature is a main driver of cold acclimation

and deacclimation processes in perennial grasses, light

also plays a key role in determining freezing tolerance.

Light is the energy source for the accumulation of a range
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Table 1

Gene nomenclature of the main genes discussed in this study

Gene Description

VRN1 Vernalization 1

CBF C-repeat binding factor

FT Flowering locus T

FT1/VRN3 Flowering locus T1/vernalization 3

COR Cold regulated

CR7 Cold regulated 7

1-SST Sucrose:sucrose 1-fructosyltransferase

6-SFT Sucrose:fructan 6-fructosyltransferase

GolS3 Galactinol synthase 3
of carbohydrates and other substances that directly affect

freezing tolerance as osmolytes and cryoprotectants [1]. In

addition, irradiance, photoperiod and light quality elicit

signalling processes, sometimes through interactions with

temperature on photosynthesis and growth, leading to

changes in gene expression and freezing tolerance.

In A. thaliana, cold-induced freezing tolerance is en-

hanced by short photoperiods and low red to far-red ratios

(R:FR), effects that are mediated by the circadian clock

through its control of expression of CBF transcription

factors [6]. Cold temperatures can also act directly on the

circadian clock by cold-induced alternative splicing of

clock components [7]. Circadian clock genes are largely

conserved across dicots and monocots, but some evolution

of paralogous genes within monocots has occurred, and

some differences in circadian control of physiological and

developmental processes have been found [8]. Interest-

ingly, the circadian network was found to be perturbed

during cold acclimation in a southern-adapted genotype

of perennial ryegrass, but not in a more freezing tolerant

northern-adapted genotype [9].

Low temperature limits the rates of enzymatic reactions

of photosynthesis more than the rates of electron transfer
Figure 1
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reactions. As a result, a certain level of irradiance combined

with low temperature creates an energy imbalance in the

photosystems, leading to a change in the redox state of

photosynthetic electron-transport components [10]. The

altered photosystem redox state is thought to act as a cold

sensor. As a result of the photosystem II (PSII) over-

excitation, reactive oxygen species (ROS) are generated,

and act in signalling pathways leading to expression of

genes involved in freezing tolerance in winter cereals [11].

Different plant species have different strategies to coun-

teract the energy imbalance in PSII arising under low

temperatures with light. Contrary to many woody species,

A. thaliana, Brassica napus and winter cereals have been

shown to upregulate their photosynthetic carbon metab-

olism and maintain quantum yield of CO2 assimilation

[12]. This appears also to be a strategy employed by

perennial grasses [13,14], which, combined with cessation

of leaf elongation in favour of accumulation of photosyn-

thate storages near meristematic tissues in or close to the

ground, ensures energy for stress responses and early

spring growth. In fact, in overwintering plants, leaf growth

inhibition in response to low temperature is not simply a

result of lower metabolic rates, but an actively regulated

process, which is coordinated with changes in carbon

metabolism [14]. In A. thaliana, CBFs can down-regulate

growth by down-regulating the content of gibberellic

acid, thereby allowing accumulation of DELLA proteins

which inhibits growth, and in addition increases freezing

tolerance by an unknown mechanism [15]. CBFs can also

enhance photosynthetic capacity in A. thaliana and B.
napus, and have been proposed as master-regulators of

leaf growth, photosynthetic capacity and freezing toler-

ance in response to temperature conditions [16]. PSII

excitation pressure and circadian control of CBFs appears

to account for several layers of interactions between light

and temperature affecting these physiological and devel-

opmental processes (Figure 1a).
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As mentioned earlier, the expected longer growth seasons

with increasing autumn temperatures following climate

change, may delay growth cessation, affect acclimation of

the photosynthetic apparatus and reduce freezing toler-

ance of perennial herbaceous plants. This has been

investigated in populations of timothy, perennial ryegrass

and red clover with different degrees of ‘northern’ adap-

tations [17]. The results showed that a rise in autumn

temperature decreased both cold acclimation capacity

and photoacclimation in these species. As a result, the

freezing tolerance was reduced, and reduced significantly

more in northern-adapted than in southern-adapted

populations of the grass species. Interestingly, the red

clover (Trifolium pratensis) populations were less affected

by temperature changes in the autumn than the grasses.

Effects of interactions between vernalization
and photoperiod on deacclimation and the
ability to reacclimate
Interactions between temperature and light are likely to be

as important during deacclimation as they are during cold

acclimation. Deacclimation has been much less studied

than cold acclimation, but the relationship between ver-

nalization (the process of becoming competent to flower

after a prolonged period of cold) and freezing tolerance in

cereals has received some attention. In these species, it has

been shown that freezing tolerance and expression of genes

involved in freezing tolerance are down-regulated in leaf

and stem base tissue when the vernalization requirement is

saturated, but before any development of the apex is

visible in the microscope [18,19]. There is an interaction

between vernalization and photoperiod on this deacclima-

tion and on the ability to reacclimate. In cultivars with a

long day requirement for flowering, the negative effect of

vernalization on freezing tolerance is stronger when plants

are vernalized under long days than under short days,

whereas vernalization-insensitive and photoperiod-insen-

sitive cultivars are not able to develop much freezing

tolerance at all [20,21]. Also, plants vernalized and deac-

climated under long days are less able to reacclimate [22].

The model developed for the interactions between the

circadian clock and CBF activity on freezing tolerance and

growth described above presents possible explanations for

the role of photoperiod in deacclimation and reacclimation

in winter cereals (Figure 1b).

VRN1, an inducer of the transition to generative devel-

opment in cereals and other temperate grass species is

gradually upregulated during vernalization [23]. In long

days, VRN1 interacts with FT1/VRN3 in the induction of

flowering. Several studies indicate associations between

the expression of VRN1 and FT1, and expression of cold-

regulated genes and freezing tolerance. Using near-iso-

genic lines of Triticum aestivum and Hordeum vulgare and a

T. monococcum deletion mutant, it has been shown that,

under 16 h photoperiod, the VRN1 (all species) and FT1
(H. vulgare) loci control expression of VRN1, COR14B
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(a target of CBF transcription factors) and other cold

regulated-genes [19,21,24]. In these studies high levels

of VRN1 expression, whether vernalization-induced for

winter alleles or long day-induced for spring alleles, was

associated with down-regulation of the cold-regulated

genes and freezing tolerance. Spring alleles of FT were

also associated with higher expression of VRN1, lower

expression of COR14B and lower freezing tolerance in H.
vulgare [24]. From these studies it is not entirely clear

whether it is VRN1 and FT1 themselves, or very closely

linked genes, that are responsible. However, using a

transgenic approach combined with chromatin immuno-

precipitation sequencing and RNA sequencing, Deng

et al. [25] showed that in barley grown at 16 h photoperiod,

VRN1 binds to the promoter of several CBF genes and

down-regulates CBF1 (while VRN1 was shown to be a

direct inducer of FT). After short-term cold exposure,

when the expression level of VRN1 is still very low, Oliver

et al. [26] found similar kinetics in the initial transcription

of VRN1 and COR14B upon cold exposure (24 h) in

H. vulgare. Under short photoperiods, the positive corre-

lation between expression of VRN1 and COR14B
remained after long-term cold treatment in T. monococcum
[21] and Festuca pratensis [27�]. Oliver et al. [26] suggested

that VRN1 and COR14B might be regulated by similar

mechanisms in early cold acclimation, possibly through

the action of CBF transcription factors. In a study of

genetic material of F. pratensis [27�] grown at 8 h photo-

period, we found positive correlation between expression

of VRN1, CBF6 and COR14B, both after 2 weeks of cold

acclimation and after 2 weeks of reacclimation of verna-

lized and deacclimated plants, but not in the vernalized

plants before deacclimation and reacclimation. Moreover,

several studies show that CBF6 and COR14B are down-

regulated by prolonged cold, but only under long photo-

periods (see discussion in Ref. [27�]). Taken together,

these results suggest that VRN1 and CBFs are co-regulat-

ed during early cold acclimation of temperate grasses, but

that VRN1 down-regulates CBFs as vernalization pro-

ceeds and photoperiods increase. This interaction be-

tween vernalization and photoperiod may be mediated

by the circadian clock.

Transcriptome responses during cold
acclimation, deacclimation and reacclimation
Several studies on transcriptome responses during cold

acclimation have been conducted in temperate grasses

[28��,29–31], while few studies have attempted to under-

stand the molecular changes during deacclimation and

reacclimation [27�,32��,33��].

Induction of genes involved in cell wall and carbohydrate

metabolism, redox homeostasis during cold acclimation is

important for the acquisition of freezing tolerance in

temperate grasses [28��,34]. Families of transcription

factors that are induced during cold acclimation (MYB,

bZIP, AP2/EREBP, WRKY, and NAC) are likely to play
www.sciencedirect.com
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important roles in coordinating genes involved in protec-

tive mechanisms [35–37]. Transcriptome analysis of cold

acclimated wheat plants revealed 68 genes, including

CBF, WRKY and zinc-finger transcription factors, being

more than fivefold upregulated by freezing stress [38].

Freezing tolerance is induced by cold acclimation (expo-

sure to low, non-freezing temperatures) and sub-zero

acclimation (exposure to temperatures slightly below

zero) in most temperate plant species [39]. Sub-zero

acclimation is quite distinct from cold acclimation in

terms of gene expression. Le et al. [39] showed that genes

encoding proteins with a putative role in cell wall biosyn-

thesis, for example cellulose-synthase like D2, xyloglucan

endotransglucosylase/hydrolase 19, and a glycosyl hydro-

lase superfamily protein, and genes encoding transcrip-

tion factors like Myb domain protein 108, Dof-type zinc

finger DNA-binding family protein and integrase-type

DNA-binding superfamily protein, were upregulated in

A. thaliana when exposed to sub-zero temperatures. The

early responsive to dehydration (ERD) protein-related

gene, belonging to the CBF regulon, seems to play a role

by increasing freezing tolerance only during cold accli-

mation [39]. A large number of genes encoding phospha-

tases and kinases were also differentially expressed

during cold acclimation in perennial ryegrass [28��]. Pre-

vious studies have shown the up-regulation of 1-SST and

6-SFT promoter-driven reporter genes by a R2R3 MYB

transcription factor from wheat [40], suggesting that MYB

transcription factors might play an important role in

coordinating synthesis and accumulation of fructans.

Fructans, which are water-soluble fructosyl polysacchar-

ides, accumulate in the vacuoles and in storage tissues of

temperate grasses during cold acclimation. Fructans are

long-term reserve carbohydrates, which also functions as

osmolytes and cryoprotectants, enabling plants to survive

the winter period [41,42].

As deacclimation progresses, the changes in the transcrip-

tome that occur in A. thaliana during acclimation disap-

pear [33��]. Cell wall related genes such as the

arabinogalactan protein gene and the photosynthesis re-

lated gene encoding D2 subunits of the photosystem II

complex, which are suppressed during cold acclimation,

were revived once deacclimation proceeded. Zuther

et al. [43��] characterized the responses of natural acces-

sions of A. thaliana that vary widely in their freezing

tolerance, to deacclimation conditions. This study

showed that the transcript levels of selected cold-induced

genes declined sharply over three days in all accessions

after transfer of cold acclimated plants to ambient tem-

peratures, while freezing tolerance only declined in freez-

ing tolerant accessions. Some correlations between

freezing tolerance and the expression levels of COR
genes, as well as many correlations among transcript

and soluble sugar levels, that were highly significant in

cold acclimated plants, were lost during deacclimation

[43��], while other correlations persisted. For example,
www.sciencedirect.com 
transcript levels of COR6.6 and COR15A were no longer

correlated with LT50 after 3 d of deacclimation, while

transcript levels of COR47 and COR78 remained correlat-

ed. A strongly reduced expression of the cold induced

genes COR15A, COR15B, COR47 and GolS3 during deac-

climation was also reported for Col-0 from microarray

hybridization experiments [44]. All three dehydrins in-

vestigated in blueberry [45], and two investigated each in

canola and wheat [32��] showed a strong reduction in their

abundance during deacclimation. However, in two grass

species only one of the two detected dehydrins showed

this behavior, while the other clearly induced during

deacclimation [46]. In addition, the content of cold in-

duced ice recrystallization inhibition proteins (IRIPs)

decreased strongly in perennial grasses during deacclima-

tion [27�,47]. In a study of a set of seven cold-induced

genes during a prolonged cold acclimation–deacclima-

tion–reacclimation cycle in F. pratensis, CR7 was the only

gene whose expression was significantly upregulated and

correlated with freezing tolerance after reacclimation,

suggesting a particular role of this gene in reacclimation

[27�]. Byun et al. [33��] showed that the genes that were

differentially expressed between A. thaliana accessions

exclusively during reacclimation were Dof-type zinc fin-

ger domain-containing protein, lipid transfer protein 3

(LTP3), protein phosphatase 2C, photosystem I reaction

center subunit II, and DREB2B.

Proteomic and metabolic responses to low
temperature
Strong gene expression, resulting in abundant mRNA,

does not mean that the corresponding protein is also

abundant in the plant cells during freezing. Hence, pro-

teomics (study of the proteome), is important because

proteins represent the actual functional molecules in the

plant cells. Recent studies [48�] on proteome analysis of

freezing tolerance in red clover (T. pratense) found strong

increases of stress response proteins and carbohydrate and

energy metabolism proteins in response to cold acclima-

tion. Several key proteins like KS-dehydrins, cold respon-

sive vegetative storage proteins (VSP), and a cold

acclimation specific (CAS) protein were upregulated

(up to 30-fold abundance) in response to cold acclimation

and seems to be of major importance for the acquisition of

freezing tolerance in red clover. Proteins like alpha-tubu-

lin, sucrose synthase, methionine synthase down regulat-

ed in response to cold acclimation [48�].

A close relationship between the accumulation of dehy-

drins and the acquisition of freezing tolerance has been

demonstrated in white clover (Trifolium repens), annual

bluegrass (Poa annua), and creeping bentgrass (Agrostis
stolonifera) [46,49]. In alfalfa, the presence of specific

dehydrin variants has been linked to superior freezing

tolerance levels [50]. Multiple roles has been attributed

to dehydrins, including membrane and protein stabiliza-

tion in freeze desiccated cells, cryoprotection and ROS
Current Opinion in Plant Biology 2016, 33:140–146



144 Cell signalling and gene regulation
scavenging [51]. The accumulation of cold acclimation

specific (CAS) transcripts and proteins has been previously

related to freezing tolerance in alfalfa (Medicago sativa) [52].

Several metabolites are known to contribute to freezing

tolerance, including amino acids, soluble sugars, polya-

mines and polyols [53]. Among them, particular focus

has recently been directed towards understanding the

multifunctional role of soluble sugars in enhancing cold

tolerance [54]. Fructans, soluble fructosyl polysaccharides,

are storage carbohydrates in a large number of higher

plants. Fructans accumulate in perennial grasses as a

long-term reserve carbohydrate to survive the winter peri-

od [41,42]. Hisano et al. [41] overexpressed two wheat

fructosyltransferase genes encoding sucrose–fructan 6-

fructosyltransferase (6-SFT) and sucrose–sucrose 1-fruc-

tosyltransferase (1-SST) in perennial ryegrass (L. perenne)
and showed that this lead to increased accumulation of

fructans and improved freezing tolerance at the cellular

level. Recent studies on fructan metabolism during cold

acclimation in perennial ryegrass [28��] indicate that accu-

mulation of high-DP fructan in roots is an adaptive trait for

plant recovery during cold. Also, fructan accumulation

levels were found to be higher in synthetic wheat lines

with high freezing tolerance, compared to the low freezing

tolerance lines [30]. Correlations between freezing toler-

ance and the content of fructose, glucose and sucrose that

were highly significant in cold acclimated plants were lost

during deacclimation process [43��].

Conclusions
Freezing tolerance is and extremely important and com-

plex trait with huge economic impact in overwintering

crop plants. Molecular and physiological responses during

cold acclimation, and their correlation with freezing tol-

erance, have been studied quite extensively in many crop

plant species and in the model A. thaliana. In general, low

temperature alter gene expression of a very large number

of genes. Some transcriptional responses are common in

most species, for example induced expression of COR-

genes, CBF-genes and dehydrins. On the contrary, rather

little research has been performed to understand these

responses during deacclimation and reacclimation. It

seems clear that the ability to reacclimate varies between

species and genotypes, and are influenced by environ-

mental and developmental factors. Temperate grasses

and legumes are economically very important crop spe-

cies, and in view of the need to adapt varieties to a more

unstable winter climate, more research need to be per-

formed in these species to understand deacclimation

resistance and reacclimation capacity. It is challenging

to elucidate generic responses due to environmental and

genotypic effects, and their interactions. Plant develop-

mental stages, tissue type, and various aspects of the light

conditions need to be considered in much more detail

when designing experiments, and for critical evaluation of

cold acclimation, deacclimation and reacclimation

responses affecting freezing tolerance.
Current Opinion in Plant Biology 2016, 33:140–146 
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