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Recent advances in the defense, aerospace, and energy industries have triggered tremendous demand for
multifunctional materials featuring lightweight, load-carrying capacity, and thermal resistance.
Metamaterials with artificially engineered architectures can be exploited to provide a compelling combi-
nation of these properties. Here we report a group of hierarchically architected metamaterials con-
structed by replacing cell walls of regular honeycombs with hexagonal, kagome, and triangular
lattices, respectively. Our numerical and analytical studies indicate that the introduction of structural
hierarchy in regular honeycombs results in improved heat resistance and thermal anisotropy. These ther-
mal properties can be controlled by tailoring two geometric parameters of the hierarchical honeycombs.
We also predict that the hierarchical honeycombs with kagome and triangular lattices exhibit enhanced
mechanical properties. Our analysis reveals that the integrated thermal mitigation and load-carrying
capacity of the hierarchical honeycombs are attributed to the introduction of structural hierarchy. The
hierarchical metamaterials reported here provides new opportunities to design multifunctional materials
that are promising for various engineering applications.

Published by Elsevier Ltd.
1. Introduction

Metamaterials are artificially engineered materials whose phys-
ical properties are dictated by the inherent architectures rather
than their compositions. These novel materials have attracted
intensive research interests because they enable a combination
of unusual properties that cannot be achieved in natural materials.
Typical unusual properties range from negative refractive indexes
in electromagnetic metamaterials to negative mass density [1,2]
and ultrahigh stiffness in mechanical metamaterials [3–6]. For
example, recent advances in fabrication techniques have allowed
for the fabrication of mechanical metamaterials with rationally
controlled topology and cell size [3–11]. These micro-/
nanostructured metamaterials demonstrate lightweight and ultra-
high stiffness over a wide range of density. Additionally, other
novel physical properties including tunable photonic properties
[6] and heat mitigation capability have also been reported in the
architected metamaterials [12,13]. These advances indicate that
metamaterials with artificially engineered architectures can be
considered as prime candidates for next generation multifunc-
tional materials.
Despite considerable advances and efforts, designing materials
that possess integrated properties in various physical domains is
still challenging. For example, the structural systems in aerospace
engineering require that the structural components should have a
combination of lower weight/compactness, enhanced load-
carrying capacity, and improved thermal resistance. This require-
ment poses a great challenge for both engineers and researchers
due to the strong coupling among these physical properties in
conventional bulk materials. Specifically, high stiffness conflicts
with the requirements of lightweight and improved thermal
resistance. To this end, lattice materials with different coordinate
numbers, such as hexagonal lattice, kagome lattice, and triangu-
lar lattice, have been widely deployed due to their lightweight,
novel thermomechanical properties, and energy absorption capa-
bility [14–19]. Recently, inspired by the observation that many
biological materials have developed multilevel of structural hier-
archy enabling the combination of unusual mechanical properties
to protect against environmental threats, researchers have intro-
duced structural hierarchy into the conventional lattice materials
[20–25]. For example, by replacing the cell walls of regular hon-
eycombs with kagome and triangular lattices, it is theoretically
demonstrated that the stiffness of the hierarchical honeycombs
is increased by about two orders of magnitude as compared to
that of regular honeycombs [23]. However, the underlying
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mechanisms responsible for this unusual mechanical property are
still unrevealed. Although it has been shown that structural hier-
archy has significant influences on the transportation process of
fractal networks [26–28], the effect of structural hierarchy on
heat conduction of hierarchical honeycombs is not fully
understood.

Here, we propose a hierarchical metamaterial concept aiming at
addressing the conflicts between the material properties in
mechanical domain and thermal domain. The proposed hierarchi-
cal architectures are constructed by replacing the cell walls of
the regular honeycombs with hexagonal, kagome, and triangular
lattices, respectively (referred to as hexagonal, kagome, and trian-
gular hierarchical honeycombs for simplicity in the following). We
investigate the heat conduction and mechanical response of the
hierarchical honeycombs using the finite element method. We will
show that the introduction of structural hierarchy in regular hon-
eycombs gives rise to improved thermal resistance and thermal
anisotropy. More important, the proposed hierarchical honey-
combs also exhibit enhanced mechanical properties, thereby pro-
viding opportunities to design architected materials with
simultaneous improvement in heat mitigation and load-carrying
capacity.

2. Models and methods

2.1. Characterization of the hierarchical honeycombs

Hexagonal hierarchical honeycombs are constructed by replac-
ing the cell walls of regular honeycombs with hexagonal lattice
(Fig. 1). For the purpose of fair comparisons, kagome and triangular
hierarchical honeycombs are subsequently obtained by connecting
the midpoints and vertices of the hexagonal lattice, respectively.
The proposed hexagonal hierarchical honeycombs are character-
ized by two geometric parameters, hierarchical length ratio,
Fig. 1. Schematic illustrations of regular honeycomb and hierarchical honeycombs. (a) R
volume elements. The dash lines indicate the representative volume element of eac
corresponding cell walls. Here c = 1/8, N = 1, and relative density of each structure is 0.1
c = lh/l0, and the number of hexagonal lattice away from the central
axis, N, where l0 and lh are the length of cell walls of regular hon-
eycomb and hexagonal lattice, respectively. The length and thick-
ness of the hexagonal, kagome, and triangular lattices are
determined by mass equivalence between regular honeycombs
and hierarchical honeycombs (Fig. 1c). For the case of hexagonal
hierarchical honeycombs, the mass equivalence gives
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where t0 and th are the cell wall thickness of regular honeycomb and
hexagonal lattice, respectively; P is the number of hexagonal lattice
with one half thickness and is determined by c and N.

As a result, the thickness and length of the hexagonal lattice can
be calculated as
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Similarly, the thickness and length of kagome lattice and trian-
gular lattice are given by
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where tk and lk are the thickness and length of cell walls of kagome
lattice; tt and lt are the thickness and length of cell walls of triangu-
lar lattice, respectively; Q and R are the number of kagome and tri-
angular lattices, respectively.
egular honeycomb and hierarchical honeycombs consisting of 2 � 3 representative
h structure. (b) Representative volume elements of each structure and (c) the
6.



Fig. 2. Schematic illustration of the numerical modeling of effective thermal
conductivity along x direction. Here the geometry is a triangular hierarchical
honeycomb, where Aff and Leff are the effective cross-sectional area and effective
length of the bounding box, respectively; Th � Tc is the applied temperature
difference along x direction.
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Here, the cell wall length of regular honeycombs l0 is set to
1 cm. Then for a given relative density, c, and N, the cell wall length
and thickness of each lattice can be determined from Eqs. (2)–(4),
respectively. The proposed regular and hierarchical honeycombs
consist of a type of Aluminum, whose thermal properties are char-
acterized by heat capacity 900 [J/(kg�K)] and thermal conductivity
238 [W/(m�K)], and mechanical properties are characterized by
Young’s modulus 70 GPa, Poisson’s ratio 0.33 and yield strength
148 MPa [29]. In addition, the density of solid Aluminum is
2700 kg/m3.

2.2. Calculation of effective thermal conductivity

2.2.1. Numerical modeling
In view of the fact that the thermal conductivity of aluminum is

about four orders of magnitude larger than that of air, we assume
that heat conduction only occurs in the solid cell walls of the hier-
archical honeycombs. Here we only focus on the in-plane heat con-
duction in the proposed hierarchical honeycombs, although the
out-of-plane property can be investigated by following the same
procedure. To calculate the in-plane effective thermal conductivity
(ETC) of the hierarchical honeycombs, we impose a temperature
gradient across the representative volume element (RVE) along x
and y directions and then compute the heat flux distribution (see
Fig. 2). Specifically, heat periodic boundary conditions are applied
along both x and y directions such that

�ni � qi ¼ nj � qj ð5Þ
where n is the normal vector of the boundary, q is the heat flux vec-
tor, i and j indicate the source boundary and destination boundary,
respectively. The heat flux distribution of the hierarchical honey-
combs is computed by solving the governing equation of heat trans-
fer in solids,

qCp
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@t
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where q is the solid density, Cp is the solid heat capacity at constant
pressure, k is the solid thermal conductivity, and Q is the heat
source. The first term on the left-hand-side is zero for a static heat
conduction problem. Then the ETC of the hierarchical honeycombs
along each direction is evaluated using Fourier’s lawR R

sq
Aeff

¼ keff
Th � Tc

Leff
ð7Þ
where Aeff, Leff, and keff are the effective area, length, and thermal
conductivity of the hierarchical honeycombs, respectively; S is the
solid area in the middle plane; Th � Tc is the applied temperature
difference along each direction.

2.2.2. Approximated analytical solutions
To validate the proposed numerical modeling framework, we

also develop an approximate analytical solution to predict the in-
plane ETC of hierarchical honeycombs. It has been shown that
the ETC of regular hexagonal honeycombs approaches the
Hashin–Shtrikman (H–S) upper bound [30–32], as
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where kr and ks are the thermal conductivity of regular honeycombs

and solid constituent material, respectively; �qr ¼ 1
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the relative density of regular honeycombs. The ETC of hierarchical
honeycombs can be determined by first calculating the ETC of the
lattice and then substituting it into the H–S upper bound of the
equivalent hierarchical honeycombs. The ETC for hexagonal hierar-
chical honeycombs is calculated as
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hexagonal lattice; kHh and kh are ETC of the equivalent hexagonal
hierarchical honeycombs and hexagonal lattice, respectively. Here
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where �qHk and �qHt the relative densities of equivalent kagome and
triangular hierarchical honeycombs, respectively; kHk and kHt are
ETC of the equivalent kagome and triangular hierarchical honey-
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For the purpose of comparison, here we also present the analyt-
ical solutions of ETC of regular honeycombs along both x and y
directions [33], which are given by

krx
ks

¼ kry
ks

¼ �qr

2
; ð12Þ

where krx and kry are the ETC of regular honeycombs along x and y
directions, respectively.

2.3. Modeling the mechanical response of hierarchical honeycombs

To study the mechanical response of periodic structures, as long
as no microscopic bifurcation happens [34], modeling on a smallest
repeating RVE [35], together with periodic boundary conditions is
computationally efficient. For Aluminum honeycomb, it has been
shown that its post-yield behavior is localized in an asymmetric
shear band [36]. However, here we focus on strain range
e = 0 � 0.1, and suppose the load is quasi-static and material is
nearly-perfect, in which case choosing the ‘‘primitive cell” as the
RVE (Fig. 3) is reasonable.



Fig. 3. Schematic illustration of periodic boundary conditions on the representative volume element of the triangular hierarchical honeycomb. (a) Undeformed and (b)
deformed states. Here A and B are two points periodically located on the two sides of the RVE.
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When the RVE is subjected to a macroscopic deformation gradi-
ent, F, periodic boundary conditions are applied on the sides of RVE
such that [37–39]

uðBÞ � uðAÞ ¼ ðF� IÞfXðBÞ � XðAÞg ¼ HfXðBÞ � XðAÞg ð13Þ
where A and B are two reference points periodically located on the
two sides of the RVE; u denotes displacement, X denotes the posi-
tion in reference configuration, F is the deformation gradient tensor,
and H = F – I is the macroscopic displacement gradient tensor. Note
that for the plane strain problem in this work, the displacement gra-
dient is reduced to a 2 � 2 matrix

H ¼ H11 H12

H21 H22

� �
¼ F11 � 1 F12

F21 F22 � 1

� �
ð14Þ

In finite element implementation, the components of H are
assigned as the displacement components of the two reference
nodes in the RVE. Then, the principle of virtual work [37–39] is
applied to capture the macroscopic mechanical response of the
RVE under various loading conditions.

3. Results and discussion

To validate the proposed numerical modeling approach of heat
conduction, we compare the simulated ETC of regular honeycombs
and hierarchical honeycombs with those obtained from analytical
solutions. Here we set c = 1/8, N = 1, and the relative density under
investigation is varied from 0.023 to 0.316. For the regular honey-
Fig. 4. In-plane effective thermal conductivity of hierarchical honeycombs as a function
N = 1.
combs (Fig. 4), the simulated ETC along both x and y directions
agree perfectly with those predicted by H–S upper bound, except
that there is discrepancy between the simulated ETC and the
approximate analytical solutions, Eq. (12), for relative density lar-
ger than 0.1. This indicates that it is reasonable to use H–S upper
bound to evaluate the ETC of each level of the hierarchical honey-
combs. Excellent agreements between the simulated ETC and the
analytical solutions are also observed for hierarchical honeycombs,
except that there is some discrepancy between the simulated ETC
along x and y directions. For example, the ETC along y direction for
the kagome hierarchical honeycombs with a relative density of
0.022 is about 12% lower than that along x direction. This discrep-
ancy implies that thermal anisotropy exists in hierarchical honey-
combs, which cannot be predicted by the approximate analytical
solutions. We therefore believe that the proposed numerical mod-
eling framework is an effective approach that can be exploited to
investigate heat conduction and explore unusual thermal proper-
ties in hierarchical honeycombs.

3.1. Effects of Geometric Features on ETC

In addition to the thermal anisotropy characteristic, we note
that hierarchical honeycombs exhibit lower ETC compared with
those of regular honeycombs (Fig. 4). These unusual thermal prop-
erties are attributed to the introduction of structural hierarchy in
the regular honeycombs, thereby changing the thermal resistance.
To further understand this, we examine the effects of two geomet-
of relative density. (a) Along x direction and (b) along y direction. Here c = 1/8 and
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ric features of the hierarchical honeycombs, c and N, on the evolu-
tion of ETC and the associated thermal anisotropy. Here the rela-
tive density of hierarchical honeycombs is set to 0.16. We note
that when the hierarchical length ratio gradually decreases from
1/2 to 1/11, hierarchical honeycombs exhibit much lower ETC
along both x and y directions as compared to that of regular hon-
eycombs (Fig. 5). Notably, for a given hierarchical length ratio,
the minimum N gives rise to lowest ETC. For example, the ETC, nor-
malized by ks, along x direction for hexagonal, kagome, and trian-
gular hierarchical honeycombs (c = 1/11) are 0.058, 0.058, and
0.059, respectively, which are about 65% of the ETC of regular hon-
eycombs. We also note that triangular hierarchical honeycombs
show the lowest ETC for a given c and N, by comparing the ETC
along both x and y directions. These results not only suggest that
structural hierarchy can improve the thermal resistance, but also
indicate that desired ETC can be achieved by tailoring the two crit-
ical geometric parameters of the hierarchical honeycombs.

It is noticeable from Fig. 5 that the discrepancy of ETC along x
and y directions persists for the hierarchical honeycombs with dif-
ferent c and N. To quantitatively illustrate this, we plot in Fig. 6 the
thermal anisotropy of the three types of hierarchical honeycombs.
Fig. 5. Effects of hierarchical length ratio and number of lattices on the in-plane normali
and (d)–(f) along y direction for hexagonal, kagome, and triangular hierarchical honeyco
0.16.

Fig. 6. In-plane thermal anisotropy of hierarchical honeycombs. (a)–(c) Hexagonal, kag
hierarchical honeycombs are 0.16.
Here thermal anisotropy is defined as the ratio of ETC along x direc-
tion to that along y direction. For hexagonal hierarchical honey-
combs, ETC along y direction is slightly higher than that along x
direction. By contrast, triangular hierarchical honeycombs exhibit
an opposite trend. Kagome hierarchical honeycombs exhibit fluc-
tuated thermal anisotropy, strongly depending on c and N. These
findings suggest that regular honeycombs can be considered as iso-
tropic in terms of ETC, whereas heat conduction in hierarchical
honeycombs is strongly direction-dependent. Again, this unusual
thermal anisotropy is also attributed to the introduction of struc-
tural hierarchy to the regular honeycombs. While the different
thermal response among these hierarchical honeycombs are intrin-
sically dictated by the lattice with different geometric features and
coordinate numbers.

3.2. Mechanical response of hierarchical honeycombs

Heat conduction analysis indicates that the proposed hierarchi-
cal honeycombs can exhibit thermal anisotropy and improved
thermal resistance, which is attributed to the structural hierarchy
and intrinsically dictated by the architectures.
zed thermal conductivity. (a)–(c) Normalized thermal conductivity along x direction
mbs, respectively. The relative densities of regular and hierarchical honeycombs are

ome, and triangular hierarchical honeycombs. The relative densities of regular and



Fig. 7. In-plane mechanical response of the hierarchical honeycombs. (a)–(b) Strain–stress curves of the hierarchical honeycombs compressed along x and y directions,
respectively; (c) Deformation and distribution of von Mises stress at nominal strain at different strain levels. Here c = 1/8, N = 1, and q/qs = 0.16.
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To demonstrate our metamaterial design concept, we now
examine the mechanical response of the hierarchical honeycombs
under uniaxial compression along x and y directions. Here the geo-
metric parameters of the hierarchical honeycombs are given by
c = 1/8 andN = 1. Fig. 7(a) and (b) present the stress–strain relations
for regular and hierarchical honeycombs at q/qs = 0.16. Along each
direction, kagome and triangular hierarchical honeycombs exhibit
higher stiffness and strength compared with regular honeycombs.
The stiffness along x and y directions are almost the same for all
honeycombs, whereas the strength along x direction are higher
than that along y direction, suggesting that the hierarchical honey-
combs can provide better load resistance along x direction with the
same relative density. Apparently, the stress–strain curves exhibit
an initially linearly-elastic and later a nonlinear behavior for both
the regular honeycombs and hierarchical honeycombs (Fig. 7a).
Note that the critical aspect ratio for elastic buckling to happen
before plastic collapse is given by ðt=lÞcrit ¼ 2

ffiffiffi
3

p
rys=Es, where rys

and Es are the yield strength and Young’s modulus of Aluminum
[40]. The critical aspect ratio is 6.34 � 10�3 for Aluminum and is
significantly lower than those in our structures. Therefor, we
believe that plastic deformation occurs before the elastic buckling
in our simulation, which is generalized into three stages:

(I) The deformation is purely elastic when the nominal strain is
less than 0.005. Compared with regular honeycombs,
kagome and triangular hierarchical honeycombs exhibit
�1.8 and �2.0 times higher stiffness, respectively, whereas
the stiffness of hexagonal hierarchical honeycombs is �40%
lower than that of regular honeycombs.

(II) Plastic deformation arises, leading to a decreasing slope in
the stress–strain curve. For regular honeycombs and hexag-
onal hierarchical honeycombs, plastic deformation is local-
ized in the ligament joints (Fig. 7(c) A). This behavior holds
till e = 0.10 and the stress slowly increases toward a plateau.
By contrast, triangular hierarchical honeycombs are quite
different, since the initial plastic deformation is stretch dom-
inated (Fig. 7 (c) B) and distributes more globally. Such
behavior benefits greater slope in the curve and the yield



Fig. 8. In-plane stiffness of the hierarchical honeycombs as a function of relative density. (a) Along x direction and (b) along y direction. Here c = 1/8 and N = 1. The dash line is
the analytical solution of regular honeycombs.

Fig. 9. Ashby-type plots for in-plane specific modulus and effective thermal conductivity of regular and hierarchical honeycombs. (a) Along x direction and (b) along y
direction. Here c = 1/8 and N = 1.
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stress is �3 times higher than regular honeycombs. Kagome
hierarchical honeycombs deform between stretching and
bending, which is characterized by medium stiffness and
stress status.

(III) Plastic crushing/local damage happens for kagome and tri-
angular hierarchical honeycombs. For kagome hierarchical
honeycombs, the sudden drop is caused by local plastic
necking (Fig. 7(c) C), whereas plastic bending is first induced
locally in the triangular lattice, and gradually evolves into
rotate center (Fig. 7(c) D).

To further understand our hierarchical metamaterial concept,
we investigate the effect of relative density on the mechanical
response of hierarchical honeycombs. Here the relative density
is varied from 0.023 to 0.316, while the two geometric parame-
ters is set to c = 1/8 and N = 1. For the purpose of comparison,
we also plot the stiffness as a function of relative density for reg-
ular honeycombs (Fig. 8). For regular honeycombs, we notice that
the simulated stiffness approach the linear-elastic theory [40],
indicating that our numerical modeling approach can accurately
predict the mechanical response of the regular honeycombs.
When compressed along a specific direction, hexagonal hierarchi-
cal honeycombs have comparable yet slightly lower stiffness than
that of regular honeycomb. Remarkably, kagome and triangular
hierarchical honeycombs show improved stiffness. For example,
at low relative density 0.023, triangular hierarchical honeycombs
exhibit �160 times higher stiffness and �8 times higher strength
than regular honeycombs. To evaluate the mechanical response
of hierarchical honeycombs from a macroscopic perspective, we
fit the stiffness as a function of relative density using a scaling
law, Ei/Es = C(q/qs)n, where Ei and Es are the stiffness of hierarchi-
cal honeycombs along x or y direction and solid Aluminum,
respectively; C is geometry-dependent proportionality constant,
n is the scaling exponent, and q/qs is the relative density of each
hierarchical honeycomb. For example, the scaling exponents for
regular honeycomb, hexagonal, kagome, and triangular hierarchi-
cal honeycombs along x directions are 3.01, 2.56, 2.08, and 1.33,
respectively, indicating that regular honeycomb, and hexagonal
and kagome hierarchical honeycombs exhibit a bending-
dominated deformation behavior, whereas triangular hierarchical
honeycombs have a stretching-dominated deformation behavior.
Similar trend but slightly different fitting exponents are observed
in hierarchical honeycombs compressed along y direction, indi-
cating that the directionally dependent mechanical response of
the hierarchical honeycombs. These results further confirm that
introduction of structural hierarchy can significantly improve
the stiffness of hierarchical honeycombs.
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3.3. Design of hierarchical honeycombs with multifunctionality

Having shown that the proposed hierarchical honeycombs exhi-
bit improved thermal resistance and stiffness, we now proceed to
demonstrate that structural hierarchy can be exploited to design
multifunctional materials. By combining the simulated ETC and
stiffness of the hierarchical honeycombs along x and y directions,
we obtain the Ashby-type plots of specific modulus versus ETC
(Fig. 9). Compared with the regular honeycombs, hexagonal hierar-
chical honeycombs retain comparable specific modulus but lower
ETC along each direction. Remarkably, kagome and triangular hier-
archical honeycombs can achieve specific stiffness that is two
orders of magnitude higher than that of regular honeycombs while
having similar ETC. It is also interesting to note that triangular
hierarchical honeycombs exhibit a nearly constant specific modu-
lus when the ETC is decreased. These findings imply that hierarchi-
cally architected honeycombs hold great potential for engineering
applications where thermal mitigation and load-carrying capacity
are simultaneously pursued.

4. Conclusion

In summary, we have numerically demonstrated that struc-
tural hierarchy in regular honeycombs can be intentionally
exploited to design metamaterials with integrated heat mitiga-
tion and load-carrying capacity. Our results reveal that the
improved thermal resistance and thermal anisotropy can be con-
trolled by tailoring two geometric features of the hierarchical
honeycombs. Moreover, kagome and triangular hierarchical hon-
eycombs also exhibit improved specific stiffness as compared to
that of regular honeycombs. We emphasized that these simulta-
neously achieved thermal and mechanical properties are dictated
by the structural hierarchy. From a practical perspective, hierar-
chical honeycombs have great potential to be employed in the
defense, aerospace, energy, and semiconductor industries where
lightweight, thermal mitigation, and load-carrying capacity are
simultaneously desired. Importantly, the hierarchical metamate-
rial concept presented here will open new avenues to design
architected materials with various combinations of compositions
and geometric features, thereby expanding the existing metama-
terial design space.
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