

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

1

Efficient Rule Engine for Smart Building System
Yan Sun, Tin-Yu Wu, Guotao Zhao, and Mohsen Guizani

Abstract—In smart building systems, the automatic control of devices relies on matching the sensed environment information to
customized rules. With development of Wireless Sensor and Actuator Networks (WSANs), low-cost and self-organized wireless sensors
and actuators can enhance the smart building systems, but produce abundant sensing data. Therefore, a rule engine with ability of
efficient rule matching is the foundation of WSANs based smart build systems. However, traditional rule engines mainly focus on the
complex processing mechanism and omit the amount of sensing data, which are not suitable for large scale WSANs based smart
building systems.
To address the issues mentioned above, we build up an efficient rule engine. Specifically, we design an atomic event extraction module
for extracting atomic event from data messages, and then build a β-network to acquire the atomic conditions for parsing the atomic
trigger events. Taking the atomic trigger events as the key set of MPHF, we construct the minimal perfect hash table which can filter the
majority of the unused atomic event with O(1) time overhead. Moreover, a rule engine adaption scheme is proposed to minimize the
rule matching overhead. We implement the proposed rule engine in a practical smart building system. The experimental results show
that the rule engine can perform efficiently and flexibly with high data throughput and large rule set.

Index Terms—smart building system; rule engine; rule matching; minimal perfect hash function;

F

1 INTRODUCTION

W ITH the development of the Wireless Sensor and
Actuator Networks (WSANs), smart building sys-

tems have been extensively studied in recent years [1],
[2]. The primary objective of such system is to control
electric appliances intelligently according to the envi-
ronmental information collected by sensors for energy
conservation in buildings. The smart control process is
usually performed according to certain rules. The rules
triggered by events can be expressed as the form of
condition-action. For example, a rule can be described
as “when someone works in the office with dim light,
the corresponding lamp is turned on automatically”. In
a smart building system, rule engine is an important
component that can provide flexible control. The essence
of a rule engine subsystem is to separate logics and data,
so as to make logics as independent and maintainable
parts.

In a smart building system, detected environment
data may be sound, image, temperature, smoke/gas
concentration, humidity, etc. Sensors around a certain
monitoring region collect environmental data and report
them to the server within a regular sampling period. The

This work is partly supported by the National Natural Science Foundation of
China under Grant 61272520, 61370196; the Research Fund for the Doctoral
Program of Higher Education under Grant No.20110005110007.
Yan Sun is with the Beijing Key Lab of Intelligent Telecomm. Software and
Multimedia, Beijing University of Posts and Telecomm., Beijing, 100876,
China (e-mail: sunyan@bupt.edu.cn).
Tin-Yu Wu is with Department of Computer Science and Information Engi-
neering, National Ilan University, Taiwan, R.O.C. (e-mail: tyw@niu.edu.tw).
Guotao Zhao is with Networked Computing and Intelligent Sys-
tems, IBM China Research Laboratory, Beijing, 100876, China (e-
mail:guotaozh@cn.ibm.com).
Mohsen Guizani is with Department of Information Science, Department of
Information Science, College for Women, P.O. Box 5969 Safat 13060, Kuwait
(e-mail: mguizani@ieee.org).

Server

Abundant Data

Fig. 1. The smart building system based on wireless
sensors and actuator networks.

server analyzes and processes the data for identifying
events, matching the rules, and executing the corre-
sponding actions. The events are often sudden environ-
mental changes such as sound, light, fire (temperature,
smoke concentration) and surface vibration. Generally,
the frequency of reporting data is far greater than that
of generating events. In order to filter a great deal of
redundant data and improve the efficiency and accu-
racy of event generation, we design an effective event
preprocessing mechanism according to static properties
of the data itself (e.g., a geographical position, type of
node, etc.). Take the rule - if Temperature > 60◦C, then
an alarm sound - for example, we can filter the data
from two aspects: 1) we filter the data reported by all
the sensors except temperature sensors according to the
type of node; 2) we filter the data that is collected
beyond related monitoring region by the geographical

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

2

position. In this way, the real-time performance of event
generation is improved. With the development of smart
building systems, the rapid expansion of events and
rules cause the rule engine encounter two main problem-
s: how to filter plenty of meaningless events and how
to improve rule matching efficiency. In this paper, we
consider dynamic factors (e.g., time and combinational
conditions) to further promote the operation efficiency
of rules. Considering that many rules are triggered by
conditions which are composed of several events instead
of a single one, it is crucial to design an efficient rule
matching mechanism to promote the real-time perfor-
mance of rule engine [3].

Many current business rule engines (CLIPS [4], JESS
[5], DROOLS [6], BizTalk [7], etc.) are employed to
provide better flexibility and reduce the cost of design-
ing, developing and delivering software. The traditional
algorithms, including the RETE for rule engine [8], [9],
[10], mainly focus on the complex processing mechanism
of rule engine with a large rule set and limited event
throughput. However, in WSANs based smart building
systems, thousands of deployed sensors and actuators
produce abundant data. As shown in Fig. 1, in a WASNs
based smart building system, many kinds of sensors
are deployed for collecting environment information,
each electric device is equipped with an actuator for
receiving control commands, and each user subscribes
multiple rules to customize required services. As a result,
there are lots of events contributing to a large scale of
rule set. In addition, many urgent events generated in
smart building systems often have real-time response
requirements. Existing rule engines mainly focus on
traditional business scope and omit the problem of data
load. Moreover, these engines are generally too heavy
and complex to handle plenty of events, thus cannot be
applied to a smart building system directly. On the other
hand, traditional algorithms including the RETE cannot
guarantee the quick matching between plenty of events
and rules, and thus are not suitable for the system with
lots of subscribed rules and produced events.

In this paper, aiming at large-scale smart building
systems, we propose an efficient rule engine with high
data load and large rule set, which can match events
and execute rules in real time. First, by analyzing the
features of data in a smart building system, we find that
although the reported data is abundant, the execution
frequency of triggered rules is relative low. By filtering
the unnecessarily processed data in time, we realize
an efficient rule engine. In addition, with the increase
of the scale of rule set, the rule conditions become
more complex and rule executions are more frequently
triggered. Hence, the performance of the rule engine can
be further promoted by adjusting rule execution schemes
dynamically according to the current system states.

Our main contributions can be summarized as follows.
• For the large scale smart building system contain-

ing abundant events and rules, we design a high-
efficient rule engine for quick matching between

events and rules and rule execution.
• We construct a minimal perfect hash table based

on MPHF, in which the key set is composed of all
the atomic trigger events. As an effective filtering
table, the minimal perfect hash table discards the
majority of unnecessarily processed data with only
O(1) time overhead. Our proposed engine adap-
tion scheme, based on the rule matching feedback,
can significantly reduce the rule matching overhead
adaptively.

• We implement the proposed rule engine, and fur-
ther verify it by a real smart building system. The
experiment results show that our solution improve
the performance of rule execution even with over-
whelming data and large rule set.

The remainder of this paper is organized as follows.
We discuss the related work in Section 2. Section 3
describes the preliminaries. The proposed efficient rule
engine is detailed in Section 4. Section 5 analyzes the
operational complexity of our solution. In Section 6,
we give our experimental study and simulations. We
conclude the paper in Section 7.

2 RELATED WORK

In the field of rule-based system, extensive research has
been carried out on the rule processing scheme [11],
[12], In the terms of rule engine, they mainly consist of
two aspects: the RETE algorithms and complex event
processing mechanism.

RETE is a classic algorithm for the rule engine, which
has been proposed by C. Forgy in [8] and [13]. The RETE
algorithms were first employed in production systems
[9], [14], [15]. Recently, many researchers have paid more
attention to the algorithm implementation and improve-
ment for some specific applications [16], [17], [18], [19],
[20]. In [16], the authors improved the RETE algorithm
with a matching scheme, which could rapidly reflect
changes in the E-business and make the system dynamic
and efficient. The authors in [17] proposed an extension
of RETE networks, which was capable of handling a
general inferential process. It includes several types of
schemes for reasoning with imperfect information. In
[18], to solve the security policy implementation efficien-
cy problem of a network information system, the authors
proposed an improved object-oriented RETE algorithm
and a novel network structure model. In [19], to solve
the problem of the RETE algorithm in the aspects of
performance and flexibility, the authors applied three
methods to improve the RETE algorithm in the rule
engine: rule decomposition, Alpha-Node-Hashing, and
Beta-Node-Indexing. In [20], by employing the mecha-
nisms of nodes’ sharing, types’ preprocessing, and index-
based searching optimization, the authors proposed an
improved version of the RETE algorithm, IRETE, which
was tested under multi-entity and multi-rule circum-
stances to be a much more efficient matching algorithm.
However, the RETE algorithm was mainly designed for

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

3

the task of pattern matching. RETE networks are limited
to operations such as unification and the extraction of
predicates from a knowledge base. For a smart building
system with data stream processing, the traditional RETE
algorithm cannot be used directly.

With the development of the service-oriented and
event-driven architecture in WSANs, the rule engine
is usually required to handle complex correlation rules
with logical, temporal, content-based, and other oper-
ators. Complex event processing technology has been
introduced. In [10], the authors proposed an extension of
the RETE algorithm to support temporal operators using
interval time semantics and presented the issues created
by this extension as well as the pursued methodology.
In [21], the authors also extended the RETE algorithm
to detect relative temporal constraints. They proposed
an efficient method to perform the garbage collection in
the RETE algorithm in order to discard events after they
cannot fulfill their temporal constraints any more. In [22],
to support the expression of time-sensitive patterns, the
authors proposed an extension of the RETE through the
concepts of time-stamped data and temporal constraints
between reported data, which allows applications to
write rules that process both facts and events. In [23],
the authors presented the design, implementation, and
evaluation of a system that can execute complex event
queries over real-time streams of RFID readings encoded
as events. The complex event queries filter and correlate
events to match specific patterns, and transform the
relevant events into new composite events for the use
of external monitoring applications.

In all the research works mentioned above, the com-
plex event processing schemes are usually introduced
by integrating the event processing with the RETE.
Nevertheless, they are too heavy and complex to satis-
fy the requirement of quick response. In our previous
work, the Call Home Analysis and Response System
(CHARS) [24] utilized neighborhood, composition, and
association relationships between various network ele-
ments and software-based services to perform root cause
analysis on collected failure messages. Thus, the system
can correlate network and service logs and events to
identify the root causes behind failures. However, the
CHARS system focuses on the process of the rule match
without a quick rule matching scheme. In this paper,
by analyzing the features of smart building systems,
we propose several optimization approaches to build an
efficient rule engine subsystem.

3 PRELIMINARIES
In this section, we first introduce the rule system in
our smart building platform, and then summarize the
minimal perfect hash function (MPHF) which is used to
develop our rule engine.

3.1 Rule system
Users access the smart building system through cus-
tomizing their services. The rule system can convert

Wireless Sensors and

Actuator Network

Server

Environment Triggers Actuators

Rule

Rule Conflict Detection

Rule Engine

RulesDB

Fig. 2. Rule system.

these services into corresponding rules and detect con-
flicts among these rules, as illustrated in Fig. 2. If a
rule conflicts with another existing rule in the database,
this rule will not be executed and this conflict will be
reported to the user. Otherwise, this rule will be stored
into the database. When events reported from sensors
match a rule, the rule will be sent to the rule running
set and executed by the rule engine.

To provide smart services, the rule execution engine is
an indispensable component in a smart building system.
Rule conflict detection is essential to ensure the cor-
rectness of rule execution. For rule conflict verification,
most existing studies have focused on storage structure
of service and their conflict detection algorithms [25],
[26]. In our previous work [27], we have proposed a
probability analysis method to assess the possibility of
the conflicts and anomalies of rules to solve the problem.

On the other hand, in a smart building system, plenty
of sensors and actuators are deployed to sample environ-
mental information and control electric devices, which
produce abundant events. Handling all these events
needs expensive computation. Besides, urgent events
usually require real-time response. Motivated by this, we
design an efficient rule engine. In this rule engine, we
construct a filtering table with the minimal perfect hash
function to filter the majority of meaningless events and
propose a rule engine adaption scheme to reduce the
rule matching overhead greatly.

3.2 MPHF
A perfect hash function maps a static set of n keys into
a set of m integer numbers without collisions, where m
is no less than n. If m = n, the function is called the
minimal one. A perfect hash function and a minimal
perfect hash function (MPHF) are given in Fig. 3 (a) and
(b), respectively. Minimal perfect hash functions have
been widely used for memory storage and fast retrieval
of items from static sets. In this paper, we get MPHF
using the method proposed in [28].

The algorithm based on random graphs can construct
minimal perfect hash function h. For a set of n keys,
the algorithm outputs h in expected time O(n). The
evaluation of h(x) requires two memory accesses for any
key x and the description of h takes up 1.15n words. The
core problem in the construction of a minimal perfect

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

4

0 1 2 n-1...

0 1 2 m-1...

Key Set

Hash Table

0 1 2 n-1...
Key Set

0 1 2 n-1...
Hash Table

(a)

(b)

Fig. 3. Comparison between the perfect hash function
and MPHF [28]: (a) Perfect hash function; (b) MPHF.

Atomic

condition

Action1 Action2 Action3 Action4

Composition

 condition

Rule set
Atomic

Trigger event

e1 e2 e3 e4

i=MPHF(event.id)

c

on

mic

r event

Data Messages

network

Rule matching

 feedback

Minimum perfect

 hash table

Atomic event extraction

Atomic event

Fig. 4. The architecture of the proposed efficient rule
engine.

hash table is the selection of key set in MPHF. In order
to construct an efficient filtering table, we transform the
rule set to a β-network for extracting the atomic condi-
tions. Then, the atomic trigger events can be acquired
according to a geographical position, the type of event,
and the device ID. By taking the atomic trigger events
as key set, we obtain the filtering table.

4 EFFICIENT RULE ENGINE

As shown in Fig. 4, the proposed efficient rule engine
mainly consists of three components: atomic event ex-
traction module for preprocessing abundant data, filter-
ing table with a minimal perfect hash function (MPHF),
and dynamic adaption scheme with rule matching feed-
back.

In a WSANs based smart building system, massive
of sensors and actuators are deployed for collecting
the environmental data and controlling the electronic
devices. To avoid data overload which causes network
congestion and transmission delay, different types of
data are reported in different ways. Hence, we design

an atomic event extraction module. According to the
rule set, we build a β-network to acquire the atomic
conditions, from which the atomic trigger events can be
parsed. Taking the atomic trigger events as the key set
of MPHF, we construct the minimal perfect hash table
which filters the majority of unused atomic events with
O(1) time overhead. On the other hand, the rule exe-
cution is usually triggered by several conditions jointly.
We can dynamically adjust the time-window parameter
of the minimum perfect hash table according to the rule
matching results in the β-network. This adaption scheme
can significantly reduce the rule matching overhead.

4.1 Atomic Event Extraction

In our smart building system, many sensors have been
deployed to capture discrete environmental data, such
as temperature, humidity, illumination, and CO2. Due
to the small amount of data, the cycle report mode
is commonly adopted in environment monitoring ap-
plication and the cycle can be configured. For sensors
which produce amount of discrete data, like low-power
Bluetooth beacon, the differential report mode is used to
reduce the data volume in the process of transmission. In
some monitoring applications, sensors report their data
using the threshold report mode, i.e., sensors will report
the data once the sensed data exceeds a certain threshold.
For audio and image sensors, the amount of data is even
larger, so the event wake mode is utilized. For instance,
when someone in a classroom is detected by an infrared
sensor after lights out, audio and image sensors are
turned on to collect data and compress these multimedia
data for transmission. Hence, the data received by the
rule engine may contain discrete data, differential data,
and compressed media data. Comprehensive using of
different system operation modes and data processing
methods effectively avoids network congestion. To adapt
to different data sources, we design an event extraction
module for data separation, data recovery, and atomic
event generation in the rule engine.

Definition 1: Atomic Event. An event that is triggered
by only one type of data in one data message can be
defined as an atomic event.

Some sensor nodes can capture various kinds of data,
so a data message may contain different types of data.
The data preprocessing module first needs to separate
data for atomic event abstraction. For example, in our
smart building system, temperature, humidity, and light
sensors are integrated on a wireless node. In this way,
a data message includes three kinds of data and the
respective data type identifiers. Different types of data
need to be separated, and then these separated data will
be recovered according to different report modes. For
data by differential report, the current recovery data is
calculated by the sum of difference received and the
previous recovery data. Compressed media data (e.g.,
voice and image) is recovered through the correspond-
ing compression/ decompression algorithms. The simple

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

5

type of data from a simple sensor with the geographical
property can be defined as atomic event. The event.id
of an atomic event includes the information fields of
geographical position, event type, and device ID. For
example, in our smart building system, the device ID
is the MAC address of a Zigbee node, the event type
can be audio, temperature, humility, and light etc., the
geographical position can include a building, a floor, and
a room number.

4.2 Filtering Table with MPHF
4.2.1 β-network
During the construction of a filtering table, we first
preprocess each rule and transform the rule set into a
β-network. The rule can be usually expressed with the
formula like x1 ∧ x2 ∧ (x3 ∨ (y1 ∧ y2)) → A1. where xi, yi
denote the conditions and Ai represents the action. We
know that each propositional formula can be converted
into an equivalent formula in disjunctive normal form
(DNF), for example,(x1 ∨ y1)∧ (x2 ∨ y2)∧ ...∧ (xn ∨ yn) is
equal to (x1 ∧ ...∧xn−1 ∧xn)∨ (x1 ∧ ...∧xn−1 ∧ yn)∨ ...∨
(y1 ∧ ...∧ yn−1 ∧ yn). Through the preprocessing, the rule
x1 ∧ x2 ∧ (x3 ∨ (y1 ∧ y2)) → A1 is transferred as follows.

x1 ∧ x2 ∧ (x3 ∨ (y1 ∧ y2)) → A1

⇓

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ y1 ∧ y2) → A1

⇓

(x1 ∧ x2 ∧ x3) → A1

(x1 ∧ x2 ∧ y1 ∧ y2) → A1

The rule x1 ∧ x2 ∧ (x3 ∨ (y1 ∧ y2)) → A1 is decomposed
into two atomic rules.

Definition 2: Atomic Rule. The action is triggered by
several conditions jointly. The atomic rule can be execut-
ed only when the conditions are satisfied simultaneously.
In other words, if only the and operation ∧ exists among
the conditions, the rule is an atomic rule.

Based on the DNF transformation, we decompose a
complex rule into multiple atomic ones, which provides
a foundation for the rule engine optimization. According
to the features of DNF, we get the following property.

Property 1: In the process of rule execution, the atomic
rules are mutually independent. The atomic rules can be
parsed in parallel.

Then, based on atomic rules in a rule set, we construct
a β-network. Each rule is first converted into a tree.
The action is the root and the atomic conditions are
the leaf nodes. We optimize the rule tree, transform
the atomic conditions to the composition conditions,
and thus construct the β-network by the multiplexing
principle.

Definition 3: Atomic Condition. Atomic condition is a
basic component of an atomic rule which is not able to
be divided any more.

(a)

(b)

Fig. 5. Transformation from a rule set to a β-network: (a)
The tree format of the atomic rule; (b) The β-network.

Definition 4: Composition Condition. The composition
condition contains one or more atomic conditions and
zero or multiple composition conditions. The composi-
tion condition can lead to the final action. Let Ci, ai
denote the composition condition and atomic condition,
respectively. The composition condition can be repre-
sented with a regular expression (ai)(∧ai) ∗ (∧Ci)∗.

We take an example to describe the transformation
from rule set to β-network. As illustrated in Fig. 5, atom-
ic rules of (x1∧x2∧x3) → A1 and (x1∧x2∧y1∧y2) → A1

are converted into two rule trees, respectively. Then,
x1 ∧ x2 is extracted as the common composition condi-
tion. The β-network is composed of three parts: atomic
condition, composition condition and action. In the β-
network, the atomic condition acts as a device node, the
composition condition acts as a router and the action
represents the destination of the rule. We can deduce
that the device nodes of the β-network contain all the
atomic conditions in the rule set.

4.2.2 Minimal Perfect Hash Table
Next, by employing the atomic conditions of a β-
network, we design an efficient filtering table which can
filter useless data with the time complexity of O(1). In a
specific system, the atomic condition usually consists of
one or more events. For example, the atomic condition
average temperature is greater than 25 ◦C means that we
should integrate the events from multiple temperature
sensors in a same period. By analyzing the atomic con-
ditions and the event source property in the system, we
can build an adaptor that defines the correspondence
between atomic conditions and atomic trigger events. As
we mentioned above, in a β-network, there only exists
the logic operation and among the atomic conditions. An
atomic condition can be triggered by multiple atomic
trigger events, and an atomic trigger event can trigger
multiple atomic conditions.

Definition 5: Atomic Trigger Event. An event parsed
from atomic conditions according to the geographical
position, event type, and device ID. This event can be

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

6

Atomic trigger event

the minimal perfect

hash table

0 1 2 n-1

0 1 2 n-1

tWindow

id

p

tWindow

id

p

0 1 n-1

Fig. 6. The architecture of the minimal perfect hash table.

defined as an atomic trigger event. One or more atomic
trigger events can be integrated to build up one atomic
condition.

The atomic trigger event is extracted from the atomic
conditions by different types of events, geographical
position, and device ID. That is an event can be gen-
erated from a simple type of data reported from a
sensor or actuator node. With the atomic trigger events
parsed from atomic conditions, we construct the minimal
perfect hash table using MPHF proposed in [28]. If the
rule set changes and the atomic trigger events change
correspondingly, the minimal perfect hash table should
be reconstructed due to the key set which is composed
of all atomic trigger events.

The architecture of the minimal perfect hash table (H)
is shown in Fig. 6. Each table item consists of three fields:
id, tWindow and p. The field of id is used to identify
an atomic trigger event, which can be the integration of
geographical position, event type, and device ID. The
field of tWindow denotes a time period, in which the
specific event is valid. The field of p is a pointer, which
points to the atomic trigger event in a designed adaptor.

As shown in Fig. 4, when an atomic event e arrives, we
compute the index, i, of this atomic event by MPHF(e.id),
and then get the corresponding item, H(i), from hash
table. If H(i).id is not equal to e.id, the event is then
regarded as an useless one and discarded from the rule
engine. Otherwise, we need to analyze whether the event
occurrence time is valid by the field of H(i).tWindow. The
tWindow field can be updated dynamically. The updating
method will be described in the next section. We present
the description of event filtering algorithm in Algorithm
1.

The proposed filtering algorithm with the minimal
perfect hash table can detect meaningless data messages
with O(1) time cost and small amount of storage. From
the experiments, we find that more than 88% of useless
messages can be filtered out. As mentioned above, the
minimal perfect hash table needs to be reconstructed
as the rule set is updated. Fortunately, on one hand,
the rule set needs not to be updated frequently. On
the other hand, the experiment results show that when
there are one million atomic trigger events in a rule
set, the average time of the MPHF construction is about
6.1 ± 0.3s, which can usually be ignored in the context

Algorithm 1 Filtering algorithm.
1: Construct MPHF with atomic trigger events.
2: Construct the minimum perfect hash table.
3: while 1 do
4: if rule set is updated then
5: Update the MPHF and filtering table.
6: end if
7: Receive an atomic event e.
8: i=MPHF(e.id).
9: if e.id==H(i).id && e.time is not in H(i).tWindow

then
10: Trigger the rule engine with e.p.
11: end if
12: Check to update the tWindow field in the filtering

table.
13: end while

of a smart building system.

4.3 Dynamic Adaption Scheme with Rule Matching
Feedback

Most of the meaningless data messages are discarded
by the proposed filtering table. The detected events are
important components of the atomic condition. Because
rule executions are usually triggered by multiple condi-
tions jointly, once one condition fails the transformation
of other atomic conditions in the β-network will be
meaningless. This implies that the detected events sel-
dom arrive at the destination in a β-network. Therefore,
detecting and stopping useless transformation instantly
can improve the performance of the rule engine. Towards
this end, we propose a dynamic adaption scheme with
rule matching feedback.

In a smart building system, sensors report data peri-
odically. We treat an event, happening in one reporting
period, as an invalid one for the other reporting periods.
The adaption scheme is performed mainly based on the
time period. As shown in Fig. 4, when one condition
fails, we can get the effective time period of the failed
condition. Then, we search the atomic trigger events
affected by the failed condition and send a rule matching
feedback for updating the tWindow field of those events
in the filtering table. In this way, the useless transfor-
mation of corresponding atomic conditions is stopped
at the filtering table and the rule matching overhead can
be minimized adaptively. The detailed adaption scheme
is given in Algorithm 2.

In the proposed adaption scheme, the algorithm of
searching atomic trigger events is one of the most impor-
tant components. The atomic trigger events are affected
by the failed atomic condition. Starting from the failed
atomic condition, we traverse the whole β-network and
find the corresponding affected atomic trigger events. If
an event has the same ancestor nodes with the failed
atomic condition, this event is regarded as the corre-
sponding affected atomic trigger event. Next, we take

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

7

Algorithm 2 Dynamic adaption scheme.
1: Receive an atomic event.
2: Transform to corresponding atomic conditions.
3: for each corresponding atomic conditions do
4: if the condition fails then
5: Extract the effective time range.
6: Search atomic events affected by failed condi-

tion.
7: Send the rule matching feedback.
8: Continue;
9: end if

10: Transform to the composition condition.
11: end for

e1 e2 e3 e4 e5

Fig. 7. The algorithm of searching the atomic events
affected by the failed atomic condition.

an example to illustrate the searching algorithm.
As shown in Fig. 7, when the atomic condition x2

cannot be satisfied by the event e2, we traverse its
ancestor nodes in the β-network. The composition node
x1 ∧ x2 is the only parent node of x1, and x1 is the
only parent node of e3. Therefore, e3 will be regarded
as one of the target atomic trigger events. The event e4
is excluded because it has two parents (x1 and y1) and y1
is not affected by the failed conditions. Similarly, for the
composition nodes x1∧x2∧x3 and x1∧x2∧y1∧y2, e1 and
e5 are also considered as the target atomic trigger events.
We give the detailed searching scheme in Algorithm 3.

With the expansion of the smart building system, large
amount of data will be reported and the rule set will be
increased. From the experiment described in Section VI,
we find that when the amount of events and scale of
rule set are small, the processing performance of our
proposed rule engine is better than that of the RETE
algorithm and the traditional scheme. With the increase
of the amount of events, the superiority of our solution
is more significant. In addition, the time cost of our
solution is much lower than that of two others with the
increase in the size of rule set.

5 OPERATIONAL COMPLEXITY

In this section, we analyze the computational complexity
of the proposed rule engine and compare it with the tra-

Algorithm 3 Searching algorithm.
1: Get the failed atomic condition c.
2: p=c.parent
3: while p is not action node do
4: for each children, xi, of the node p do
5: if p is the only parent of xi then
6: Push xi into the set S.
7: end if
8: end for
9: for each atomic trigger event ei do

10: if all the parent nodes of of ei are in the set S
then

11: ei is affected.
12: end if
13: end for
14: p=p.parent
15: end while

ditional scheme of sequential rule executing through rule
base and the RETE algorithm. Let N denote the number
of rules in a rule set and n represent the number of
atomic conditions. We first evaluate the time and space
complexity of the proposed scheme. The time complexity
evaluation includes two aspects: event filtering and rule
matching. Let Ct denote the time complexity, we can get
the equation:

Ct = O(1) +O(µlog2n) (1)

where 0 < µ < 1 is a dynamic factor.
The event filtering is performed with the hash table.

We know that the searching performance of the hash
table is the best. So, the filtering can be done with O(1)
time cost. For the rule matching, we need to traverse
a tree with all the atomic conditions. Leaf nodes in
the tree consist of all the atomic conditions. The time
cost of traversing a tree is O(log2n)[29]. However, as
we described in Section 3.B, once a dynamic adaption
scheme is performed, many data messages can also
be filtered by the time window. The time cost of the
rule matching can be represented with O(µlog2n). The
dynamic factor µ represents the influence of the rule
matching feedback.

Also, we evaluate the space cost of the proposed
scheme, which includes the filtering table and β-
network. For the filtering table, it only needs n elements
to store the atomic conditions [28]. For the β-network
which is the tree-similar structure, the space cost is
2n−1+N . Hence, the space complexity can be evaluated
with

Cs ≈ [n+ (2n− 1 +N)]×A (2)

where A represents a constant memory cost for each
element (atomic event, atomic condition and action).

Next, we analyze the performance of the RETE algo-
rithm. As presented in [16], the time and space complex-
ities are:

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

8

Ct = O(m) +O(log2n) (3)

Cs ≈ [m+ (2n− 1 +N)]×A (4)

where m denotes the number of static conditions in the
rule set.

In the RETE algorithm, the number of static conditions
decides the time cost of the α-network traversing. At the
same time, there is no event filtering in the α-network.
Compared to the proposed scheme, the RETE algorithm
spends more time on the event filtering and rule match-
ing. The difference of the space cost, by contrast, is tiny.

Finally, we analyze the traditional parsing scheme of
sequential rule executing through rule base, and get the
time and space complexities as follows:

Ct = O(m+ n) (5)

Cs ≈ N ×B (6)

where B denotes an approximate memory cost of one
rule.

For each reported data message, the traditional scheme
will traverse all the rules, which means much more time
cost. All the rules in the rule set are maintained in the
memory.

From above performance analysis, it is obvious that
our scheme performs better than the traditional scheme
and the RETE algorithm.

6 EXPERIMENTS

To evaluate the performance of the proposed scheme, we
implemented it on a practical smart building platform
[2].

6.1 Platform Introduction
Aiming at providing convenient and comfortable living
environment with less energy consumption, we deploy
a WSAN based smart building system in one of our
school buildings, as shown in Fig. 8. Sensor nodes have
the ability of sensing multiple kinds of environmental
information, e.g., temperature, humidity, light intensity,
audio, and image information, each of which can be
transferred to the router via multi-hop Zigbee network.
A router automatically detects a Zigbee network, and
joins/establishes it, so as to expand the scale of network.
The router plays the role of gateway which transfers
messages from a Zigbee network to a WiFi network, and
reports the sensing information to the server. After re-
ceiving data from routers, the server analyzes these data
by user-defined rules. Once these rules are matched, the
server will send control commands to the corresponding
actuator(s). With the expansion of the quantity of events
and rules, the rule system will encounter problems,
including rule conflicts and low operation efficiency. For
this reason, the rule engine is deployed in the server to
ensure the effective operation of the system.

Wireless Multimedia Sensor Network

Bluetooth

Server
WiFi

WiFi

ZigBee ZigBee

Router
Router

Short message

Web-server

PLMN

WCDMA

Sensor Actuator Information push node

Internet

Fig. 8. The architecture of a smart building system [2].

Specifically, this platform consists of 200 temperature
sensors, 160 light sensors, 100 humidity sensors, 40 audio
sensors, 20 image sensors and 200 actuators. As shown in
Table 1, the sensors and actuators are designed based on
STM32F103 processing chip and CC2530 RF; the router
is designed with the AT91SAM7X256 processing chip,
CC2530 RF and WiFi module; the server consists of Intel
Core2 Duo P8400, 2GB memory, WiFi module and 100M
Ethernet card.

In real application scenarios, there often exist some
sensor nodes sense the same targets/events simultane-
ously, i.e., many messages may include the same event
signal. On the other hand, the information sensed by
sensor nodes is inaccuracy sometimes because of sensing
components failure or external interference. Therefore,
in this platform, we also exploit a fault-tolerant data
aggregation framework proposed in our previous work
[30]. As an aggregator, the router fuses the data reported
from sensor nodes according to the spatial and tem-
poral correlation, and calculates the trustworthiness of
the aggregated result. Then, the transmission messages
from routers to the server are the aggregated results.
This framework is leveraged to not only reduce the
throughput of data transmission, thus saving energy ef-
fectively, but also to reduce the impact of erroneous data
and provide measurable trustworthiness for aggregated
results. More details can be found in [30].

6.2 Rule Set
In the system, rules are created by users on web pages
or terminal devices. The rule format and the webpage
should be concise as much as possible, so as to help
non-professional users easily customize the rules. Fig. 9
shows the webpage of creating rules. The left part
demonstrates the deployment of all the sensors and ac-
tuators in a room. The right part illustrates the interface
that users add, modify, and delete rules. We can browse
the circumstances of all the rooms and configure the
rules to control the building appliances. As an example,

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

9

TABLE 1
Experimental environment specification

Device Number CPU Transfer mode Transmission Rate
node 720 STM32F103 ZigBee 250Kbps
router 30 AT91SAM7X256 ZigBee/WiFi 250K/11Mbps
server 1 Intel Core2 Duo P8400 WiFi / Ethernet 11M/100Mbps

Fig. 9. Rule creating diagram.

Fig. 10. Rule List.

Fig. 10 shows the rule list in the room No.902 on the
ninth floor of No.3 teaching building. Users can easily
view all the rules and the details of each rule.

We use XML format as the rule-represent data struc-
ture for facilitating the rule matching. With the self-
explaining tags, we formalize all information about
one rule, including: the static attributions (control area
and runtime), dynamic services (service content, trig-
ger event, and action information), optional functions
(whether to notify user, notification method), and other
user related information. In order to execute rules easily,
we extract the relevant fields from the XML format
and transform into usable format in rule database. An
example is shown in Fig. 11.

The smart building system has run nearly two years
in our campus environment, and has stored more than
30,000 rules in the rule database. The following case
study is based on the platform.

6.3 Case Study for dynamic adaption scheme
We put forward two rules as an example to demonstrate
the dynamic adaption scheme in execution. Suppose:

<?xml version="1.0" encoding="UTF-8"?>

<RuleID>1</RuleID>

<UserID>7</UserID>

<Room>27</Room>

<SubDescription>

 This a description for rule detection

</SubDescription>

<Is_elec_control> true </Is_elec_control>

<SMS_content> telephone number </SMS_content>

<IS_generate_event> true </IS_generate_event>

<IsOver> false </IsOver>

<OperatingRule>

 <deadLine>2013.07.22.-2013.08.22</deadLine>

 <constraints>

 <cstraitGroup>

 <constraint>

 <sensorType>Lighting value</sensorType>

 <sensorID>Light sensor</sensorID>

 <clusterWay>SINGLE</clusterWay>

 <operator>less than</operator>

 <threshold>80Lux</threshold>

 </constraint>

 <groupEffectTime>

 <timeSpan>1:00-3:00</timeSpan>

 </groupEffectTime>

 </cstraitGroup>

 </constraints>

 <ctrlElectrical>

 <Electrical>

 <ElectricalID>LampA</ElectricalID>

 <ctrlOrder>open</ctrlOrder>

 </Electrical>

 </ctrlElectrical>

</OperatingRule>

Fig. 11. Example of a rule data structure.

R1 Humidity > 60%RH ∧ Temperature > 30◦C ∧
Infrared=1 → Turn on air condition to 25◦C

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

10

Humidity Temperature Infrared Infrared Time

Humidity>60%

RH

Temperature

>30
Infrared=1 Infrared=1 Time ϵ [8, 23]

C1 C2 C3 C4 C5

C2 C3

C1 C2 C3 C2 C3 C5

Turn Air Condition to 25

A1

...

e1 e2 e3 e4 e5

Fig. 12. The case of searching the atomic events affected
by the failed atomic condition.

R2 Temperature > 30◦C ∧ Infrared=1 ∧ Time ∈ [8,
23] → Turn on air condition to 25◦C.

As shown in Fig. 12, we transform the rules to a β-
network. Both R1 and R2 are composed of three atomic
conditions and an action, in which Temperature > 30◦C
∧ Infrared=1 is extracted as a common composition
condition. We use C1, C2, C3, C4, C5 to indicate the
involved atomic conditions in the β-network, and e1,
e2, e3, e4, e5 to express the events corresponding to the
conditions. If e2 receives a temperature event of 28◦C,
which cannot match the C2, it means condition matching
of C2 fails. According to the proposed dynamic adaption
algorithm, starting from C2, we traverse the whole β-
network to look for ancestor nodes of C2. Firstly, C2∧C3

is found as the ancestor node of C2, and is also the
only ancestor node of infrared condition C3, which is the
only ancestor node of infrared event e3. Therefore, e3 is
judged as the filtering object of the algorithm. However,
e4 is excluded since it has two ancestor nodes C3 and C4,
and C4 will not be affected by C2. In the same way, we
can find the upper level ancestor node of C2 – C1∧C2∧C3

and C2∧C3∧C4, and get the target filtering events e1 and
e5. This case demonstrates that when the matching of C2

fails, the system will filter the corresponding events of
relevant conditions C1, C3, and C5 to prevent matching
them. In this way, the execution time can be cut down
and the system effectiveness can be enhanced.

6.4 Performance Evaluation
In our smart building system, during the normal oper-
ation process, we set the report cycle be 1 second for
cycle report mode, i.e., the send rate of each sensor node
is 1 message per second. In the threshold report mode,
because the reported event is emergent, we set the send
rate of each sensor node be 10 warning messages per
second.

Base on a set of 10000 rules, we perform the exper-
iment with different data arrival rates, the number of

(a) Number of processed events

(b) Memory overhead

Fig. 13. The performance of the proposed scheme with
different event arrival rate.

messages which arrive at the server per second, to eval-
uate the performance of the proposed scheme. To set the
data arrival rate flexibly, amount of historical reported
data is utilized to simulate the arrival rate for the server.
We further compare our proposed scheme with the RETE
algorithm proposed in [18] and the traditional scheme of
sequential rule executing through rule base.

As shown in Fig. 13(a), when the arrival rate is 2000
messages per second, it can be handled by all the
three schemes. For our proposed scheme, we receive
and process all the reported data until the arrival rate
increases to 21000. The RETE algorithm can cope with
about 15000 of arrival rate because the RETE algorithm
spends more time on the event filtering. The traditional
scheme which traverses all the rules for each event
performs even worse and can only undertake about 3700
of arrival rate. Compared to the RETE algorithm and the
traditional scheme, the rule engine performance with our
proposed scheme is improved by about 40% and 467%,
respectively. In Fig. 13(b), we test the memory occupancy,

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

11

TABLE 2
Cost evaluation

n(millions) 0.01 0.1 1 2 4 8 16 32
Tβ (s) 0.025 0.13 3.01 7.32 15.5 35.7 56.9 109.8

TMPHF (s) 0.03±0.006 0.5±0.07 6.1±0.3 12.2±0.6 25.4±1.1 51.4±2.0 117.3±4.4 262.2±8.7

0.5 1 1.5 2 2.5 3

x 10
4

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Rules

N
um

be
r

of
 P

ro
ce

ss
ed

 E
ve

nt
s

the proposed scheme
the traditional scheme
the RETE algorithm

(a) Number of processed events

0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Number of Rules

M
em

or
y

O
cc

up
an

cy
 (

K
B

)

the proposed scheme
the traditional scheme
the RETE algorithm

(b) Memory overhead

Fig. 14. The performance of the proposed scheme with
different size of the rule set.

which includes the space cost for the storage of the rule
set and the buffer used. To describe the experiment result
clearly, we set the maximum buffer size to 1MB. For
the proposed scheme, initially, the memory occupancy
is mainly composed of a filtering table, a β-network and
a little buffer cost. As the send rate increases to 21000,
the reported data cannot be processed in time. Therefore,
the buffer is full and the memory occupancy increases
drastically. The space cost of the RETE algorithm is
similar to the proposed scheme. The traditional scheme
spends more memory because it keeps the original rule
set in the memory during the experiment.

Next, we perform the experiment with different sizes
of the rule set. The data arrival rate is set to 10000

messages per second. As shown in Fig. 14(a), the size of
the rule set has little influence on the performance of the
proposed scheme. However, for the RETE algorithm and
the traditional scheme, as the rule set size increases, the
number of processed messages decreases greatly because
we filter meaningless data with a minimum perfect hash
table. Furthermore, in the rule matching component,
atomic conditions are organized as the β-network and
only a part of conditions are triggered by the corre-
sponding atomic events. For the RETE algorithm, the
increment of rule set will reduce the performance of
the event filtering. For the traditional scheme, obviously,
more rules shall be traversed for each message as the rule
set increases. In Fig. 14(b), we present the memory occu-
pancy during the experiment. As the rule set increases,
more space will be spent on the static storage.

6.5 Cost Evaluation
In this section, we explore the cost evaluation of the
proposed scheme. We know that once the rule set
changes, the β-network and the MPHF will be updated
accordingly. We test the time cost of the β-network and
MPHF reconstruction (Tβ and TMPHF) with different
sizes of the rule set (n). As given in Table 2, when n is
set to 1000, the time spent on the β-network and MPHF
reconstruction are about 25ms and 30ms. As the rule set
size are set to 32 millions, Tβ and TMPHF approach
109.8s and 262.2s, respectively. Although the time cost
is a little high, it can be ignored in many practical
applications because the size of the rule set is usually
less than one million in a specific application. Moreover,
the rule set does not update frequently.

We further evaluate the time cost of our proposed
scheme with different sizes of rule set. In the experiment,
the data arrival rate is set to 10000 messages per second,
as shown in Fig. 15. The time cost for the traditional
scheme is about 0.75s with 2000 rules. When the size
of rule set approaches 4000, the time cost will be 1s.
This means that the traditional scheme cannot handle
the current data reporting frequency (10000 messages per
second). For the RETE algorithm, the time cost increases
with the increase of the size of rule set. This is because
the α-network and β-network in the RETE algorithm will
become more complex and time-consuming. However,
the time cost of our proposed scheme is relatively low
because the rules can be analyzed and transformed into
atomic conditions and the minimum perfect hash table
can be constructed to filer most of useless events.

From the above experiments and simulations, we con-
clude that our proposed scheme can perform well in a
practical smart building platform. Compared with the

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

12

Fig. 15. The time cost comparison.

traditional scheme and the RETE algorithm, the pro-
posed scheme significantly improves the performance of
the rule engine.

7 CONCLUSION

In this paper, we propose an efficient rule engine for
smart building systems, which can guarantee real-time
response to events and quick match between events
and rules. First, we preprocess the data reported from
sensors and actuators to extract the atomic events. Then,
we transform the rule set to a β-network for acquiring
the atomic trigger events which compose the key set of
MPHF, and construct the minimum perfect hash table to
filter most of the meaningless atomic events. Based on
the rule matching feedback, we further propose a rule
engine adaption scheme, which can decrease the rule
matching overhead dynamically. Finally, we implement
the proposed rule engine and verify its effectiveness
in our practical smart building system. A series of ex-
perimental results show that the proposed scheme can
improve the rule execution performance greatly even
with abundant data and large rule set.

In our future work, we will study a distributed rule
engine system, in which services are stored and executed
by routers to avoid system failure caused by server
failures or network interruptions.

REFERENCES

[1] Y. Agarwal, B. Balaji, and R. Gupta, “Occupancy-driven energy
management for smart building automation,” in Proc. of the 2nd
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Building , 2010, pp. 1C6.

[2] Y. Sun, G. Zhao and H. Luo, “Smart building control based on
wireless sensor-actuator networks,” Chinese Journal of Electronics,
vol. 20, no 3, 2010, pp. 147C154.

[3] C.K. Liaskos and G.I. Papadimitriou, “Generalizing the Square
Root Rule for Optimal Periodic Scheduling in Push-Based Wire-
less Environments,” IEEE Transactions on Computers, vol. 62, no 5,
2013, pp. 1044C1050.

[4] R. Zhou, J. Pan, X. Tan and H. Xi, “Application of CLIPS expert
system to malware detection system,” in Proc. of International
Conference on Computational Intelligence and Security , 2008, pp.
309C316.

[5] W. Chen, D. Ouyang and Y. Ye, “RIF2Jess: inferencing RIF rules
via translation to jess rules,” in Proc. of International Conference on
Computational Intelligence and Software Engineering , 2009, pp. 1C6.

[6] M. Proctor, “Relational declarative programming with jboss drool-
s,” in Proc. of International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing , 2007, pp. 21C27.

[7] C. Herring, and Z. Milosevic, “Implementing B2B contracts using
biztalk,” in Proc. of the 34th Annual Hawaii International Conference
on System Sciences , 2001, pp. 211C218.

[8] C.L. Forgy, “Rete: a fast algorithm for the many pattern/many
object pattern match problem,” in Artificial Intelligence, 1982, pp.
1021-1028.

[9] D. Batory, “The leaps algorithms,” in Technical report in University
of Texsa at Austin, 1994, pp. 102-108.

[10] K. Walzer, A. Schill and A. Loser, “Temporal constraints for rule-
based event processing,” in ACM PIKM, 2007, pp. 176-188.

[11] M. Yoon, S. Chen and Z. Zhang, “Minimizing the Maximum
Firewall Rule Set in a Network with Multiple Firewalls,” IEEE
Transactions on Computers, vol. 59, no 2, 2010, pp. 218C230.

[12] O. Rottenstreich, R. Cohen, D. Raz and L. Keslassy, “Exact Worst
Case TCAM Rule Expansion,” IEEE Transactions on Computers,
vol. 62, no 6, 2013, pp. 1127C1140.

[13] C.L. Forgy, “On the efficient implementation of production sys-
tems,” in PHD thesis of Carnegie Mellon University, 1979, pp.
102C108.

[14] D.P. Miranker, “Treat: A better match algorithm for AI production
system matching,” in Proc. of the AAAI, 1987, pp. 10C18.

[15] E.N. Hanson and M.S. Hasan, “Gator: An optimized discrimi-
nation network for active database rule condition testing,” in
Technical report, CIS Department in University of Florida, 1993, pp.
16C22.

[16] Z. Ren and D. Wang, “The improvement research on rule match-
ing algorithm rete in electronic commerce application systems,”
in Proc. of International Conference on Wireless Communications,
Networking and Mobile Computing, 2008, pp. 1C4.

[17] D. Sottara, P. Mello, and M. Proctor, “A configurable Rete-OO en-
gine for reasoning with different types of imperfect information,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no 11,
2010, pp. 1535-1548.

[18] C. Tang and Y. Xie, “An improved object-oriented rete algorithm
and network structure model,” in Proc. of International Symposium
on Information Engineering and Electronic Commerce, 2010, pp. 1C4.

[19] D. Liu, T. Gu and J. Xue, “Rule engine based on improvement rete
algorithm,” in Proc. of the International Conference on Apperceiving
Computing and Intelligence Analysis, 2010, pp. 346-349.

[20] P. Yang, Y. Yang and N. Wang, “IRETE: An improved RETE multi-
entity match algorithm,” in Proc. of International Conference on
Electronics, Communications and Control, 2011, pp. 4363-4366.

[21] K. Walzer, T. Breddin and M. Groch, “Relative temporal con-
straints in the rete algorithm for complex event detection,” in
Proc. of the ACM DEBS, 2008, pp. 170-178.

[22] B. Berstel, “Extending the rete algorithm for event management,”
in Proc. of International Symposium on Temporal Representation and
Reasoning, 2002, pp. 10-16.

[23] E, Wu, Y. Diao and S. Rizvi, “High-performance complex event
processing over streams,” in Proc. of ACM SIGMOD, 2006, pp.
407-418.

[24] A. Al-Fuqaha, A. Rayes, M. Guizani, M. Khanvilkar and M.
Ahmed, “Intelligent Service Monitoring and Support,” in Proc.
of International Conference on Communications, 2009, pp. 1-6.

[25] M. Nakamura, K. Ikegami and S. Matsumoto, “Considering Im-
pacts and Requirements for Better Understanding of Environment
Interactions in Home Network Services,” Computer Networks,
vol. 57, no 12, 2013, pp. 2442-2453.

[26] C. Maternaghan and K.J. Turner, “Policy conflicts in home au-
tomation,” Computer Networks, vol. 57, no 12, 2013, pp. 2429-2441.

[27] H. Luo, R. Wang, X. Li, “A Rule Verification and Resolution
Framework in Smart Building System,” in Proc. of International
Conference on Parallel and Distributed Systems, 2013, pp. 438-439.

[28] F. Botelho, Y. Kohayakawa and N. Ziviani, “A practical minimal
perfect hashing method,” Lecture Notes in Computer Science, vol. 35,
no 3, 2005, pp. 241-254.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2345385, IEEE Transactions on Computers

13

[29] H. Lim, H.N. Chu, “Hierarchical binary search tree for packet
classification,” IEEE Communication letters, vol. 11, no 8, 2007, pp.
689-691.

[30] Y. Sun, H. Luo, S.K. Das, “A Trust-Based Framework for Fault-
Tolerant Data Aggregation in Wireless Multimedia Sensor Net-
works,” IEEE Transactions on Dependable and Secure Computing,
vol. 9, no 6, 2012, pp. 785C797.

Yan Sun is an associate Professor of the School
of Computer Science, Beijing University of Post-
s and Telecommunications, China. She is al-
so a research member of the Beijing Key Lab
of Intelligent Telecommunication Software and
Multimedia. She obtained the B.S. degree from
Beijing Jiaotong University in 1992, the M.S. and
Ph.D degrees from Beijing University of Posts
and Telecommunications in 1996, and 2007, re-
spectively. Her research interests include Inter-
net of Things, sensor networks, smart environ-

ments and embedded systems.

Tin-Yu Wu currently works as an Assistant Pro-
fessor in the Department of Computer Science
& Information Engineering, National Ilan Univer-
sity, Taiwan. He received his M.S. and Ph.D.
degrees in the Department of Electrical Engi-
neering, National Dong Hwa University, Hualien,
Taiwan in 2000 and 2007 respectively. His re-
search interests focus on the next-generation
Internet protocol, mobile computing and wireless
network.

Guotao Zhao is the staff member of Network
Computing Middleware, IBM Research-China.
He is working on the IoT Messaging advanced
technologies for IBM MessageSight. Zhao joined
IBM Research in 2012, and received a PH.D
in Computer Science from Beijing University of
Post and Telecommunication in 2012. His re-
search interests focus on Internet of Things.

Mohsen Guizani (S’85-M’89-SM’99-F’09) is
currently a Professor and Associate Vice Pres-
ident of Graduate Studies at Qatar University,
Qatar. Previously, he served as the Chair of
the Computer Science Department at Western
Michigan University from 2002 to 2006 and Chair
of the Computer Science Department at the
University of West Florida from 1999 to 2002.
He also served in academic positions at the
University of Missouri-Kansas City, University
of Colorado-Boulder, Syracuse University and

Kuwait University. He received his B.S. (with distinction) and M.S.
degrees in Electrical Engineering; M.S. and Ph.D. degrees in Computer
Engineering in 1984, 1986, 1987, and 1990, respectively, all from
Syracuse University, Syracuse, New York.

His research interests include Wireless Communications and Mobile
Computing, Computer Networks, Mobile Cloud Computing and Smart
Grid. He currently serves on the editorial boards of many Interna-
tional technical Journals and the Founder and EIC of Wireless Com-
munications and Mobile Computing Journal published by John Wiley
(http://www.interscience.wiley.com/ jpages/1530-8669/). He is also the
Founder and General Chair of the International Conference of Wireless
Communications, Networking and Mobile Computing (IWCMC). He is
the author of nine books and more than 300 publications in refereed
journals and conferences. He guest edited a number of special issues
in IEEE Journals and Magazines. He also served as member, Chair,
and General Chair of a number of conferences. He was selected as the
Best Teaching Assistant for two consecutive years at Syracuse Univer-
sity, 1988 and 1989. He was the Chair of the IEEE Communications
Society Wireless Technical Committee and Chair of the TAOS Technical
Committees. He served as the IEEE Computer Society Distinguished
Speaker from 2003 to 2005. Dr. Guizani is Fellow of IEEE, member
of IEEE Communication Society, IEEE Computer Society, ASEE, and
Senior Member of ACM. .

� مقا�، از �ی �ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� � ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

