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Abstract: This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves 

(Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in 

nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the 

leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and 

attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the 

results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search 

Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). 

The results show that the GWO algorithm is able to provide very competitive results compared to these well-

known meta-heuristics. The paper also considers solving three classical engineering design problems 

(tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the 

proposed method in the field of optical engineering. The results of the classical engineering design problems and 

real application prove that the proposed algorithm is applicable to challenging problems with unknown search 

spaces. 

Keywords: Optimization, optimization techniques, heuristic algorithm, Metaheuristics, Constrained 

Optimization, GWO 

 

1.  Introduction 

Meta-heuristic optimization techniques have become very popular over the last two decades. Surprisingly, 

some of them such as Genetic Algorithm (GA) [1], Ant Colony Optimization (ACO) [2], and Particle Swarm 

Optimization (PSO) [3] are fairly well-known among not only computer scientists but also scientists from 

different fields. In addition to the huge number of theoretical works, such optimization techniques have been 

applied in various fields of study. There is a question here as to why meta-heuristics have become remarkably 

common. The answer to this question can be summarized into four main reasons: simplicity, flexibility, 

derivation-free mechanism, and local optima avoidance. 

First, meta-heuristics are fairly simple. They have been mostly inspired by very simple concepts. The 

inspirations are typically related to physical phenomena, animals’ behaviors, or evolutionary concepts. The 

simplicity allows computer scientists to simulate different natural concepts, propose new meta-heuristics, 

hybridize two or more meta-heuristics, or improve the current meta-heuristics.  Moreover, the simplicity assists 

other scientists to learn meta-heuristics quickly and apply them to their problems. 

Second, flexibility refers to the applicability of meta-heuristics to different problems without any special 

changes in the structure of the algorithm. Meta-heuristics are readily applicable to different problems since they 

mostly assume problems as black boxes. In other words, only the input(s) and output(s) of a system are 

important for a meta-heuristic. So, all a designer needs is to know how to represent his/her problem for meta-

heuristics. 

Third, the majority of meta-heuristics have derivation-free mechanisms. In contrast to gradient-based 

optimization approaches, meta-heuristics optimize problems stochastically. The optimization process starts with 

random solution(s), and there is no need to calculate the derivative of search spaces to find the optimum. This 

makes meta-heuristics highly suitable for real problems with expensive or unknown derivative information. 

Finally, meta-heuristics have superior abilities to avoid local optima compared to conventional optimization 

techniques. This is due to the stochastic nature of meta-heuristics which allow them to avoid stagnation in local 

solutions and search the entire search space extensively. The search space of real problems is usually unknown 

and very complex with  a massive number of local optima, so meta-heuristics are good options for optimizing 

these challenging real problems. 



The No Free Lunch (NFL) theorem [4] is worth mentioning here. This theorem has logically proved that 

there is no meta-heuristic best suited for solving all optimization problems. In other words, a particular meta-

heuristic may show very promising results on a set of problems, but the same algorithm may show poor 

performance on a different set of problems. Obviously, NFL makes this field of study highly active which 

results in enhancing current approaches and proposing new meta-heuristics every year. This also motivates our 

attempts to develop a new meta-heuristic with inspiration from grey wolves.  

Generally speaking, meta-heuristics can be divided into two main classes: single-solution-based and 

population-based. In the former class (Simulated Annealing [5] for instance) the search process starts with one 

candidate solution. This single candidate solution is then improved over the course of iterations. Population-

based meta-heuristics, however, perform the optimization using a set of solutions (population). In this case the 

search process starts with a random initial population (multiple solutions), and this population is enhanced over 

the course of iterations. Population-based meta-heuristics have some advantages compared to single solution-

based algorithms: 

 Multiple candidate solutions share information about the search space which results in sudden jumps 

toward the promising part of search space 

 Multiple candidate solutions assist each other to avoid locally optimal solutions 

 Population-based meta-heuristics generally have greater  exploration compared to single solution-based 

algorithms 

 

One of the interesting branches of the population-based meta-heuristics is Swarm Intelligence (SI). The 

concepts of SI was first proposed in 1993 [6]. According to Bonabeau et al. [1], SI is “The emergent collective 

intelligence of groups of simple agents”. The inspirations of SI techniques originate mostly from natural 

colonies, flock, herds, and schools. Some of the most popular SI techniques are ACO [2], PSO [3], and Artificial 

Bee Colony (ABC) [7]. A comprehensive literature review of the SI algorithms is provided in the next section. 

Some of the advantages of SI algorithms are: 

 

 SI algorithms preserve information about the search space over the course of iteration, whereas 

Evolutionary Algorithms (EA) discard the information of the previous generations 

 SI algorithms often utilize memory to save the best solution obtained so far 

 SI algorithms usually have fewer parameters to adjust 

 SI algorithms have less operators compared to evolutionary approaches (crossover, mutation, elitism, 

and so on) 

 SI algorithms are easy to implement 

Regardless of the differences between the meta-heuristics, a common feature is the division of the search 

process into two phases: exploration and exploitation [8-12]. The exploration phase refers to the process of 

investigating the promising area(s) of the search space as broadly as possible. An algorithm needs to have 

stochastic operators to randomly and globally search the search space in order to support this phase. However, 

exploitation refers to the local search capability around the promising regions obtained in the exploration phase. 

Finding a proper balance between these two phases is considered a challenging task due to the stochastic nature 

of meta-heuristics. This work proposes a new SI technique with inspiration from the social hierarchy and 

hunting behavior of grey wolf packs. The rest of the paper is organized as follows: 

Section 2 presents a literature review of SI techniques. Section 3 outlines the proposed GWO algorithm. The 

results and discussion of benchmark functions, semi-real problems, and a real application are presented in 

Section 4, Section 5, and Section 6, respectively. Finally, Section 7 concludes the work and suggests some 

directions for future studies.  

 

2. Literature review 

Meta-heuristics may be classified into three main classes: evolutionary, physics-based, and SI algorithms. 

EAs are usually inspired by the concepts of evolution in nature. The most popular algorithm in this branch is 

GA. This algorithm was proposed by Holland in 1992 [13] and simulates Darwnian evolution concepts. The 

engineering applications of GA were extensively investigated by Goldberg [14]. Generally speaking, the 

optimization is done by evolving an initial random solution in EAs. Each new population is created by the 

combination and mutation of the individuals in the previous generation. Since the best individuals have higher 

probability of participating in generating the new population, the new population is likely to be better than the 

previous generation(s). This can guarantee that the initial random population is optimized over the course of 

generations. Some of the EAs are Differential Evolution (DE) [15], Evolutionary Programing (EP) [16, 17], and 



Evolution Strategy (ES) [18, 19], Probability-Based Incremental Learning (PBIL), Genetic Programming (GP) 

[20], and Biogeography-Based Optimizer (BBO) [21].  

As an example, the BBO algorithm was first proposed by Simon in 2008  [21]. The basic idea of this 

algorithm has been inspired by biogeography which refers to the study of biological organisms in terms of 

geographical distribution (over time and space). The case studies might include different islands, lands, or even 

continents over decades, centuries, or millennia. In this field of study different ecosystems (habitats or 

territories) are investigated for finding the relations between different species (habitants) in terms of 

immigration, emigration, and mutation. The evolution of ecosystems (considering different kinds of species 

such as predator and prey) over migration and mutation to reach a stable situation was the main inspiration of 

the BBO algorithm.  

The second main branch of meta-heuristics is physics-based techniques. Such optimization algorithms 

typically mimic physical rules. Some of the most popular algorithms are Gravitational Local Search (GLSA) 

[22], Big-Bang Big-Crunch (BBBC) [23], Gravitational Search Algorithm (GSA) [24], Charged System Search 

(CSS) [25], Central Force Optimization (CFO) [26], Artificial Chemical Reaction Optimization Algorithm 

(ACROA) [27], Black Hole (BH) [28] algorithm, Ray Optimization (RO) [29] algorithm, Small-World 

Optimization Algorithm (SWOA) [30], Galaxy-based Search Algorithm (GbSA) [31], and Curved Space 

Optimization (CSO) [32]. The mechanism of these algorithms is different from EAs, in that a random set of 

search agents communicate and move throughout search space according to physical rules. This movement is 

implemented, for example, using gravitational force, ray casting, electromagnetic force, inertia force, weights, 

and so on. 

For example, the BBBC algorithm was inspired by the big bang and big crunch theories. The search agents of 

BBBC are scattered from a point in random directions in a search space according to the principles of the big 

bang theory. They search randomly and then gather in a final point (the best point obtained so far) according to 

the principles of the big crunch theory. GSA is another physics-based algorithm. The basic physical theory from 

which GSA is inspired is Newton’s law of universal gravitation. The GSA algorithm performs search by 

employing a collection of agents that have masses proportional to the value of a fitness function. During iteration, 

the masses are attracted to each other by the gravitational forces between them. The heavier the mass, the bigger 

the attractive force. Therefore, the heaviest mass, which is possibly close to the global optimum, attracts the other 

masses in proportion to their distances. 

The third subclass of meta-heuristics is the SI methods. These algorithms mostly mimic the social behavior 

of swarms, herds, flocks, or schools of creatures in nature. The mechanism is almost similar to physics-based 

algorithm, but the search agents navigate using the simulated collective and social intelligence of creatures. The 

most popular SI technique is PSO. The PSO algorithm was proposed by Kennedy and Eberhart [3] and inspired 

from the social behavior of birds flocking. The PSO algorithm employs multiple particles that chase the position 

of the best particle and their own best positions obtained so far. In other words, a particle is moved considering 

its own best solution as well as the best solution the swarm has obtained.  

Another popular SI algorithm is ACO, proposed by Dorigo et al.  in 2006 [2]. This algorithm was inspired 

by the social behavior of ants in an ant colony. In fact, the social intelligence of ants in finding the shortest path 

between the nest and a source of food is the main inspiration of ACO. A pheromone matrix is evolved over the 

course of iteration by the candidate solutions. The ABC is another popular algorithm, mimicking the collective 

behavior of bees in finding food sources. There are three types of bees in ABS: scout, onlooker, and employed 

bees. The scout bees are responsible for exploring the search space, whereas onlooker and employed bees 

exploit the promising solutions found by scout bees.  Finally, the Bat-inspired Algorithm (BA), inspired by the 

echolocation behavior of bats, has been proposed recently [33]. There are many types of bats in the nature. They 

are different in terms of size and weight, but they all have quite similar behaviors when navigating and hunting. 

Bats utilize natural sonar in order to do this. The two main characteristics of bats when finding prey have been 

adopted in designing the BA algorithm. Bats tend to decrease the loudness and increase the rate of emitted 

ultrasonic sound when they chase prey. This behavior has been mathematically modeled for the BA algorithm. 

The rest of the SI techniques proposed so far are as follows: 

 Marriage in Honey Bees Optimization Algorithm (MBO) in 2001 [34] 

 Artificial Fish-Swarm Algorithm (AFSA) in 2003 [35] 

 Termite Algorithm in 2005 [36] 

 Wasp Swarm Algorithm in 2007 [37] 

 Monkey Search in 2007 [38] 

 Bee Collecting Pollen Algorithm (BCPA) in 2008 [39] 

 Cuckoo Search (CS) in 2009 [40] 

 Dolphin Partner Optimization (DPO) in 2009 [41] 



 Firefly Algorithm (FA) in 2010 [42] 

 Bird Mating Optimizer (BMO) in 2012 [43] 

 Krill Herd (KH) in 2012 [44] 

 Fruit fly Optimization Algorithm (FOA) in 2012 [45] 

This list shows that there are many SI techniques proposed so far, many of them inspired by hunting and 

search behaviors. To the best of our knowledge, however, there is no SI technique in the literature mimicking 

the leadership hierarchy of grey wolves, well known for their pack hunting. This motivated our attempt to 

mathematically model the social behavior of grey wolves, propose a new SI algorithm inspired by grey wolves, 

and investigate its abilities in solving benchmark and real problems.  

 

3. Grey Wolf Optimizer (GWO) 

In this section the inspiration of the proposed method is first discussed. Then, the mathematical model is 

provided.  

3.1. Inspiration 

Grey wolf (Canis lupus) belongs to Canidae family. Grey wolves are considered as apex predators, meaning 

that they are at the top of the food chain. Grey wolves mostly prefer to live in a pack. The group size is 5-12 on 

average. Of particular interest is that they have a very strict social dominant hierarchy as shown in Fig. 1. 

         

Fig. 1.  Hierarchy of grey wolf (dominance decreases from top down) 

The leaders are a male and a female, called alphas. The alpha is mostly responsible for making decisions 

about hunting, sleeping place, time to wake, and so on. The alpha’s decisions are dictated to the pack. However, 

some kind of democratic behavior has also been observed, in which an alpha follows the other wolves in the 

pack. In gatherings, the entire pack acknowledges the alpha by holding their tails down. The alpha wolf is also 

called the dominant wolf since his/her orders should be followed by the pack [46]. The alpha wolves are only 

allowed to mate in the pack. Interestingly, the alpha is not necessarily the strongest member of the pack but the 

best in terms of managing the pack. This shows that the organization and discipline of a pack is much more 

important than its strength. 

The second level in the hierarchy of grey wolves is beta. The betas are subordinate wolves that help the 

alpha in decision-making or other pack activities. The beta wolf can be either male or female, and he/she is 

probably the best candidate to be the alpha in case one of the alpha wolves passes away or becomes very old. 

The beta wolf should respect the alpha, but commands the other lower-level wolves as well. It plays the role of 

an advisor to the alpha and discipliner for the pack. The beta reinforces the alpha's commands throughout the 

pack and gives feedback to the alpha. 

The lowest ranking grey wolf is omega. The omega plays the role of scapegoat. Omega wolves always have 

to submit to all the other dominant wolves. They are the last wolves that are allowed to eat. It may seem the 

omega is not an important individual in the pack, but it has been observed that the whole pack face internal 

fighting and problems in case of losing the omega. This is due to the venting of violence and frustration of all 

wolves by the omega(s). This assists satisfying the entire pack and maintaining the dominance structure. In 

some cases the omega is also the babysitters in the pack. 

If a wolf is not an alpha, beta, or omega, he/she is called subordinate (or delta in some references). Delta 

wolves have to submit to alphas and betas, but they dominate the omega.  Scouts, sentinels, elders, hunters, and 
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𝜷 

𝜹 

𝝎 



caretakers belong to this category. Scouts are responsible for watching the boundaries of the territory and 

warning the pack in case of any danger. Sentinels protect and guarantee the safety of the pack. Elders are the 

experienced wolves who used to be alpha or beta.  Hunters help the alphas and betas when hunting prey and 

providing food for the pack. Finally, the caretakers are responsible for caring for the weak, ill, and wounded 

wolves in the pack. 

In addition to the social hierarchy of wolves, group hunting is another interesting social behavior of grey 

wolves. According to Muro et al. [47] the main phases of grey wolf hunting are as follows: 

 

 Tracking, chasing, and approaching the prey 

 Pursuing, encircling, and harassing the prey until it stops moving 

 Attack towards the prey 

 

These steps are shown in Fig. 2.  

 

 

Fig. 2.  Hunting behaviour of grey wolves: (A) chasing, approaching, and tracking prey (B-D) pursuiting, harassing, and encircling 

(E) stationary situation and attack [47] 

 

In this work this hunting technique and the social hierarchy of grey wolves are mathematically modeled in 

order to design GWO and perform optimization.  

 

3.2. Mathematical model and algorithm 

In this subsection the mathematical models of the social hierarchy, tracking, encircling, and attacking prey 

are provided. Then the GWO algorithm is outlined.  

 

3.2.1. Social hierarchy:  

In order to mathematically model the social hierarchy of wolves when designing GWO, we consider the 

fittest solution as the alpha ( ). Consequently, the second and third best solutions are named beta ( ) and delta 

( ) respectively.  The rest of the candidate solutions are assumed to be omega ( ). In the GWO algorithm the 

hunting (optimization) is guided by  ,  , and  . The   wolves follow these three wolves.  

 

 



3.2.2. Encircling prey: 

As mentioned above, grey wolves encircle prey during the hunt. In order to mathematically model encircling 

behavior the following equations are proposed: 

 ⃗⃗        ⃗⃗ ⃗⃗             (3.1) 

 

          ⃗⃗ ⃗⃗          ⃗⃗  (3.2) 

 

where t indicates the current iteration,    and    are coefficient vectors ,   ⃗⃗ ⃗⃗   is the position vector of the prey, 

and    indicates the position vector of a grey wolf. 

The vectors    and    are calculated as follows: 

  = 2  .  ⃗⃗⃗  -    (3.3) 

 

       ⃗⃗  ⃗ (3.4) 

 

where components of    are linearly decreased from 2 to 0 over the course of iterations and   ,    are random 

vectors in [0,1]. 

To see the effects of equations (3.1) and (3.2), a two-dimensional position vector and some of the possible 

neighbors are illustrated in Fig. 3 (a). As can be seen in this figure, a grey wolf in the position of (X,Y) can 

update its position according to the position of the prey (X*,Y*). Different places around the best agent can be 

reached with respect to the current position by adjusting the value of    and    vectors. For instance, (X*-X,Y*) 

can be reached by setting          and         . The possible updated positions of a grey wolf in 3D space 

are depicted in Fig. 3 (b). Note that the random vectors    and    allow wolves to reach any position between the 

points illustrated in Fig. 3. So a grey wolf can update its position inside the space around the prey in any random 

location by using equations (3.1) and (3.2). 
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Fig. 3.  2D and 3D position vectors and their possible next locations 

 

The same concept can be extended to a search space with n dimensions, and the grey wolves will move in 

hyper-cubes (or hyper-spheres) around the best solution obtained so far. 



 

3.2.3. Hunting:  

 Grey wolves have the ability to recognize the location of prey and encircle them. The hunt is usually guided 

by the alpha. The beta and delta might also participate in hunting occasionally. However, in an abstract search 

space we have no idea about the location of the optimum (prey). In order to mathematically simulate the hunting 

behavior of grey wolves, we suppose that the alpha (best candidate solution) beta, and delta have better 

knowledge about the potential location of prey. Therefore, we save the first three best solutions obtained so far 

and oblige the other search agents (including the omegas) to update their positions according to the position of 

the best search agent. The following formulas are proposed in this regard. 

 

  ⃗⃗⃗⃗  ⃗         ⃗⃗ ⃗⃗      ,   ⃗⃗ ⃗⃗          ⃗⃗ ⃗⃗      ,   ⃗⃗ ⃗⃗      ⃗⃗⃗⃗    ⃗⃗ ⃗⃗       (3.5) 

 

  ⃗⃗⃗⃗    ⃗⃗ ⃗⃗       (  ⃗⃗⃗⃗  ⃗),   ⃗⃗⃗⃗    ⃗⃗ ⃗⃗     
⃗⃗ ⃗⃗  (  ⃗⃗ ⃗⃗  ),   ⃗⃗⃗⃗    ⃗⃗ ⃗⃗     

⃗⃗ ⃗⃗  (  ⃗⃗ ⃗⃗  ) (3.6) 

 

        
  ⃗⃗⃗⃗    ⃗⃗⃗⃗    ⃗⃗⃗⃗ 

 
 (3.7) 

 

Fig. 4 shows how a search agent updates its position according to alpha, beta, and delta in a 2D search space. 

It can be observed that the final position would be in a random place within a circle which is defined by the 

positions of alpha, beta, and delta in the search space. In other words alpha, beta, and delta estimate the position 

of the prey, and other wolves updates their positions randomly around the prey.  
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Fig. 4.  Position updading in GWO 
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3.2.4. Attacking prey (exploitation): 

As mentioned above the grey wolves finish the hunt by attacking the prey when it stops moving. In order to 

mathematically model approaching the prey we decrease the value of   . Note that the fluctuation range of    is 

also decreased by   . In other words    is a random value in the interval [-a,a] where a is decreased from 2 to 0 

over the course of iterations. When random values of    are in [-1,1], the next position of a search agent can be 

in any position between its current position and the position of the prey. Fig. 5 (a) shows that |A|<1 forces the 

wolves to attack towards the prey.  

If 
|A

|<
1

If 
|A

|>
1

 

                  (a)              (b) 

Fig. 5.  Attacking prey versus searching for prey 

With the operators proposed so far, the GWO algorithm allows its search agents to update their position 

based on the location of the alpha, beta, and delta; and attack towards the prey. However, the GWO algorithm is 

prone to stagnation in local solutions with these operators. It is true that the encircling mechanism proposed 

shows exploration to some extent, but GWO needs more operators to emphasize exploration.  

3.2.5. Search for prey (exploration): 

Grey wolves mostly search according to the position of the alpha, beta, and delta. They diverge from each 

other to search for prey and converge to attack prey. In order to mathematically model divergence, we utilize    
with random values greater than 1 or less than -1 to oblige the search agent to diverge from the prey. This 

emphasizes exploration and allows the GWO algorithm to search globally. Fig. 5(b) also shows that |A|>1 forces 

the grey wolves to diverge from the prey to hopefully find a fitter prey. Another component of GWO that favors 

exploration is   . As may be seen in Equation (3.4), the    vector contains random values in [0, 2]. This 

component provides random weights for prey in order to stochastically emphasize (C>1) or deemphasize (C<1) 

the effect of prey in defining the distance in Equation (3.1). This assists GWO to show a more random behavior 

throughout optimization, favoring exploration and local optima avoidance. It is worth mentioning here that C is 

not linearly decreased in contrast to A. We deliberately require C to provide random values at all times in order 

to emphasize exploration not only during initial iterations but also final iterations. This component is very 

helpful in case of local optima stagnation, especially in the final iterations.  

The C vector can be also considered as the effect of obstacles to approaching prey in nature. Generally 

speaking, the obstacles in nature appear in the hunting paths of wolves and in fact prevent them from quickly 

and conveniently approaching prey. This is exactly what the vector C does. Depending on the position of a wolf, 

it can randomly give the prey a weight and make it harder and farther to reach for wolves, or vice versa. 

To sum up, the search process starts with creating a random population of grey wolves (candidate solutions) 

in the GWO algorithm. Over the course of iterations, alpha, beta, and delta wolves estimate the probable 

position of the prey. Each candidate solution updates its distance from the prey. The parameter a is decreased 

from 2 to 0 in order to emphasize exploration and exploitation, respectively. Candidate solutions tend to diverge 

from the prey when |  |>1 and converge towards the prey when |  |<1. Finally, the GWO algorithm is terminated 

by the satisfaction of an end criterion.  

The pseudo code of the GWO algorithm is presented in Fig. 6.  



 

Fig. 6.  Pseudo code of the GWO algorithm 

 

To see how GWO is theoretically able to solve optimization problems, some points may be noted: 

 The proposed social hierarchy assists GWO to save the best solutions obtained so far over the 

course of iteration 

 The proposed encircling mechanism defines a circle-shaped neighborhood around the solutions 

which can be extended to higher dimensions as a hyper-sphere 

 The random parameters A and C assist candidate solutions to have hyper-spheres with different 

random radii 

 The proposed hunting method  allows candidate solutions to locate the probable position of the prey 

 Exploration and exploitation are guaranteed by the adaptive values of a and A 

 The adaptive values of parameters a and A allow GWO to smoothly transition between exploration 

and exploitation 

 With decreasing A, half of the iterations are devoted to exploration (|A|≥1) and the other half are 

dedicated to exploitation (|A|<1) 

 The GWO has only two main parameters to be adjusted (a and C) 

There are possibilities to integrate mutation and other evolutionary operators to mimic the whole life cycle of 

grey wolves. However, we have kept the GWO algorithm as simple as possible with the fewest operators to be 

adjusted. Such mechanisms are recommended for future work. The source codes of this algorithm can be found 

in http://www.alimirjalili.com/GWO.html and 

http://www.mathworks.com.au/matlabcentral/fileexchange/44974. 

4. Results and discussion 

In this section the GWO algorithm is benchmarked on 29 benchmark functions. The first 23 benchmark 

functions are the classical functions utilized by many researchers [16, 48-51]. Despite the simplicity, we have 

chosen these test functions to be able to compare our results to those of the current meta-heuristics. These 

benchmark functions are listed in Table 1, Table 2, and Table 3 where Dim indicates dimension of the function, 

Range is the boundary of the function’s search space, and fmin is the optimum. The other test beds that we have 

chosen are six composite benchmark functions from a CEC 2005 special session [52]. These benchmark functions 

are the shifted, rotated, expanded, and combined variants of the classical functions which offer the greatest 

complexity among the current benchmark functions [53]. Tables 4 lists the CEC 2005 test functions, where Dim 

indicates dimension of the function, Range is the boundary of the function’s search space, and fmin is the optimum. 

Fig. 7, Fig. 8, Fig. 9, and Fig. 10 illustrate the 2D versions of the benchmark functions used. 

Generally speaking, the benchmark functions used are minimization functions and can be divided into four 

groups: unimodal, multimodal, fixed-dimension multimodal, and composite functions. Note that a detailed 

descriptions of the composite benchmark functions are available in the CEC 2005 technical report [52]. 

 

 

 

Initialize the grey wolf population Xi (i = 1, 2, ..., n)  

Initialize a, A, and C 

Calculate the fitness of each search agent 

Xα=the best search agent 

Xβ=the second best search agent 

Xδ=the third best search agent 

while (t < Max number of iterations) 

for each search agent 

Update the position of the current search agent by equation (3.7) 

end for 

Update a, A, and C 

Calculate the fitness of all search agents 

Update Xα, Xβ, and Xδ 

t=t+1 

end while 

return Xα 

http://www.alimirjalili.com/GWO.html
http://www.mathworks.com.au/matlabcentral/fileexchange/44974


Table 1.  Unimodal benchmark functions 

Function Dim  Range fmin 
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Table 2.  Multimodal benchmark functions 

Function Dim  Range fmin 
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Table 3.  Fixed-dimenstion multimodal benchmark functions 

Function Dim Range fmin 
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Table 4.  Composite benchmark functions 

Function Dim Range fmin 
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Fig. 7.  2-D versions of unimodal benchmark functions 
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Fig. 8.  2-D versions of multimodal benchmark functions 
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Fig. 9.  2-D version of fixed-dimension multimodal benchmark functions 
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Fig. 10.  2-D versions of composite benchmark functions 

 

The GWO algorithm was run 30 times on each benchmark function. The statistical results (average and 

standard deviation) are reported in Table 5 to Table 8. For verifying the results, the GWO algorithm  is compared 

to PSO [3] as an SI-based technique and GSA [24] as a physics-based algorithm. In addition, the GWO algorithm 

is compared with three EAs: DE [15], Fast Evolutionary Programing (FEP) [16], and Evolution Strategy with 

Covariance Matrix Adaptation (CMA-ES) [18]. 

 

 



Table 5.  Results of unimodal benchmark functions 

F GWO 
 

PSO 
 

GSA 
 

DE 
 

FEP 
 

 
ave std ave std ave std ave std ave std 

F1 6.59E-28 6.34E-05 0.000136 0.000202 2.53E-16 9.67E-17 8.2E-14 5.9E-14 0.00057 0.00013 

F2 7.18E-17 0.029014 0.042144 0.045421 0.055655 0.194074 1.5E-09 9.9E-10 0.0081 0.00077 

F3 3.29E-06 79.14958 70.12562 22.11924 896.5347 318.9559 6.8E-11 7.4E-11 0.016 0.014 

F4 5.61E-07 1.315088 1.086481 0.317039 7.35487 1.741452 0 0 0.3 0.5 

F5 26.81258 69.90499 96.71832 60.11559 67.54309 62.22534 0 0 5.06 5.87 

F6 0.816579 0.000126 0.000102 8.28E-05 2.5E-16 1.74E-16 0 0 0 0 

F7 0.002213 0.100286 0.122854 0.044957 0.089441 0.04339 0.00463 0.0012 0.1415 0.3522 

 

Table 6.  Results of multimodal benchmark functions 

F GWO 
 

PSO 
 

GSA 
 

DE 
 

FEP 
 

 
ave std ave std ave std ave std ave std 

F8 -6123.1 -4087.44 -4841.29 1152.814 -2821.07 493.0375 -11080.1 574.7 -12554.5 52.6 

F9 0.310521 47.35612 46.70423 11.62938 25.96841 7.470068 69.2 38.8 0.046 0.012 

F10 1.06E-13 0.077835 0.276015 0.50901 0.062087 0.23628 9.7E-08 4.2E-08 0.018 0.0021 

F11 0.004485 0.006659 0.009215 0.007724 27.70154 5.040343 0 0 0.016 0.022 

F12 0.053438 0.020734 0.006917 0.026301 1.799617 0.95114 7.9E-15 8E-15 9.2E-06 3.6E-06 

F13 0.654464 0.004474 0.006675 0.008907 8.899084 7.126241 5.1E-14 4.8E-14 0.00016 0.000073 

 

Table 7.  Results of fixed-dimension multimodal benchmark functions 

F GWO 
 

PSO 
 

GSA 
 

DE 
 

FEP 
 

 
ave std ave std ave std ave std ave std 

F14 4.042493 4.252799 3.627168 2.560828 5.859838 3.831299 0.998004 3.3E-16 1.22 0.56 

F15 0.000337 0.000625 0.000577 0.000222 0.003673 0.001647 4.5E-14 0.00033 0.0005 0.00032 

F16 -1.03163 -1.03163 -1.03163 6.25E-16 -1.03163 4.88E-16 -1.03163 3.1E-13 -1.03 4.9E-07 

F17 0.397889 0.397887 0.397887 0 0.397887 0 0.397887 9.9E-09 0.398 1.5E-07 

F18 3.000028 3 3 1.33E-15 3 4.17E-15 3 2E-15 3.02 0.11 

F19 -3.86263 -3.86278 -3.86278 2.58E-15 -3.86278 2.29E-15 N/A N/A -3.86 0.000014 

F20 -3.28654 -3.25056 -3.26634 0.060516 -3.31778 0.023081 N/A N/A -3.27 0.059 

F21 -10.1514 -9.14015 -6.8651 3.019644 -5.95512 3.737079 -10.1532 0.0000025 -5.52 1.59 

F22 -10.4015 -8.58441 -8.45653 3.087094 -9.68447 2.014088 -10.4029 3.9E-07 -5.53 2.12 

F23 -10.5343 -8.55899 -9.95291 1.782786 -10.5364 2.6E-15 -10.5364 1.9E-07 -6.57 3.14 

 

Table 8.  Results of composite benchmark functions 

F GWO 
 

PSO 
 

GSA 
 

DE 
 

CMA-ES 

 
ave std ave std ave std ave std ave std 

F24 43.83544 69.86146 100 81.65 6.63E-17 2.78E-17 6.75E-02 1.11E-01 100 188.56 

F25 91.80086 95.5518 155.91 13.176 200.6202 67.72087 28.759 8.6277 161.99 151 

F26 61.43776 68.68816 172.03 32.769 180 91.89366 144.41 19.401 214.06 74.181 

F27 123.1235 163.9937 314.3 20.066 170 82.32726 324.86 14.784 616.4 671.92 

F28 102.1429 81.25536 83.45 101.11 200 47.14045 10.789 2.604 358.3 168.26 

F29 43.14261 84.48573 861.42 125.81 142.0906 88.87141 490.94 39.461 900.26 8.32E-02 

 

4.1. Exploitation analysis: 

According to the results of Table 5, GWO is able to provide very competitive results. This algorithm 

outperforms all others in F1, F2, and F7. It may be noted that the unimodal functions are suitable for 

benchmarking exploitation. Therefore, these results show the superior performance of GWO in terms of 

exploiting the optimum. This is due to the proposed exploitation operators previously discussed.  

 

4.2. Exploration analysis: 

In contrast to the unimodal functions, multimodal functions have many local optima with the number 

increasing exponentially with dimension. This makes them suitable for benchmarking the exploration ability of 

an algorithm. According to the results of Table 6 and Table 7, GWO is able to provide very competitive results 



on the multimodal benchmark functions as well. This algorithm outperforms PSO and GSA on the majority of 

the multimodal functions. Moreover, GWO shows very competitive results compare to DE and FEP; and 

outperforms them occasionally. These results show that the GWO algorithm has merit in terms of exploration.  

 

4.3. Local minima avoidance 

The fourth class of benchmark functions employed includes composite functions, generally very challenging 

test beds for meta-heuristic algorithms. So, exploration and exploitation can be simultaneously benchmarked by 

the composite functions. Moreover, the local optima avoidance of an algorithm can be examined due to the 

massive number of local optima in such test functions. According to Table 8, GWO outperforms all others on 

half of the composite benchmark functions. The GWO algorithm also provides very competitive results on the 

remaining composite benchmark functions. This demonstrates that GWO shows a good balance between 

exploration and exploitation that results in high local optima avoidance. This superior capability is due to the 

adaptive value of A. As mentioned above, half of the iterations are devoted to exploration (|A|≥1) and the rest to 

exploitation (|A|<1). This mechanism assists GWO to provide very good exploration, local minima avoidance, 

and exploitation simultaneously.  

 

4.4. Convergence behavior analysis 

In this subsection the convergence behavior of GWO is investigated. According to Berg et al. [54], there 

should be abrupt changes in the movement of search agents over the initial steps of optimization. This assists a 

meta-heuristic to explore the search space extensively. Then, these changes should be reduced to emphasize 

exploitation at the end of optimization. In order to observe the convergence behavior of the GWO algorithm, the 

search history and trajectory of the first search agent in its first dimension are illustrated in Fig. 11. The 

animated versions of this figure can be found in supplementary materials.  Note that the benchmark functions 

are shifted in this section, and we used six search agents to find the optima.  

The second column of Fig. 11 depicts the search history of the search agents. It may be observed that the 

search agents of GWO tend to extensively search promising regions of the search spaces and exploit the best 

one. In addition, the fourth column of Fig. 11 shows the trajectory of the first particle, in which changes of the 

first search agent in its first dimension can be observed. It can be seen that there are abrupt changes in the initial 

steps of iterations which are decreased gradually over the course of iterations. According to Berg et al. [54], this 

behavior can guarantee that a SI algorithm eventually convergences to a point in search space.  

 

 

 



 

 

 

 

 

Fig. 11.  Search history and trajectory of the first particle in the first dimension 

To sum up, the results verify the performance of the GWO algorithm in solving various benchmark functions 

compared to well-known meta-heuristics. To further investigate the performance of the proposed algorithm, 

three classical engineering design problems and a real problem in optical engineering are employed in the 

following sections. The GWO algorithm is also compared with well-known techniques to confirm its results.  

 

5. GWO for classical engineering problems 

In this section three constrained engineering design problems: tension/compression spring, welded beam, 

and pressure vessel designs, are employed. These problems have several equality and inequality constraints, so 

the GWO should be equipped with a constraint handling method to be able to optimize constrained problems as 

well. Generally speaking, constraint handling becomes very challenging when the fitness function directly 

affects the position updating of the search agents (GSA for instance). For the fitness independent algorithms, 

however, any kind of constraint handling can be employed without the need to modify the mechanism of the 

algorithm (GA and PSO for instance). Since the search agents of the proposed GWO algorithm update their 

positions with respect to the alpha, beta, and delta locations, there is no direct relation between the search agents 

and the fitness function. So the simplest constraint handling method, penalty functions, where search agents are 

assigned big objective function values if they violate any of the constraints, can be employed effectively to 

handle constraints in GWO. In this case, if the alpha, beta, or delta violate constraints, they are automatically 

replaced with a new search agent in the next iteration. Any kind of penalty function can readily be employed in 

order to penalize search agents based on their level of violation. In this case, if the penalty makes the alpha, 



beta, or delta less fit than any other wolves, it is automatically replaced with a new search agent in the next 

iteration. We used simple, scalar penalty functions for the rest of problems except the tension/compression 

spring design problem which uses a more complex penalty function.  

5.1. Tension/compression spring design 

The objective of this problem is to minimize the weight of a tension/compression spring as illustrated in Fig. 

12 [55-57]. The minimization process is subject to some constraints such as shear stress, surge frequency, and 

minimum deflection. There are three variables in this problem: wire diameter (d), mean coil diameter (D), and 

the number of active coils (N). The mathematical formulation of this problem is as follows:   
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This problem has been tackled by both mathematical and heuristic approaches. Ha and Wang tried to solve 

this problem using PSO [58]. The Evolution Strategy (ES) [59], GA [60], Harmony Search (HS) [61], and 

Differential Evolution (DE) [62] algorithms have also been employed as heuristic optimizers for this problem. 

The mathematical approaches that have been adopted to solve this problem are the numerical optimization 

technique (constraints correction at constant cost) [55] and mathematical optimization technique [56]. The 

comparison of results of these techniques and GWO are provided in Table 9. Note that we use a similar penalty 

function for GWO to perform a fair comparison [63]. Table 9 suggests that GWO finds a design with the 

minimum weight for this problem.   

 

(a)     (b)     (c) 

Fig. 12.  Tension/compression spring: (a) shematic, (b) stress heatmap (c) displacement heatmap  

 

Table 9.  Comparison of results for tension/compression spring design problem 

Algorithm 
Optimum variables 

Optimum weight 
d D N 

GWO 0.05169 0.356737 11.28885 0.012666 

GSA 0.050276 0.323680 13.525410 0.0127022 

PSO (Ha and Wang) 0.051728 0.357644 11.244543 0.0126747 
ES (Coello and Montes) 0.051989 0.363965 10.890522 0.0126810 

GA (Coello) 0.051480 0.351661 11.632201 0.0127048 

HS (Mahdavi et al.) 0.051154 0.349871 12.076432 0.0126706 
DE (Huang et al.) 0.051609 0.354714 11.410831 0.0126702 

Mathematical optimization (Belegundu) 0.053396 0.399180 9.1854000 0.0127303 

Constraint correction (Arora) 0.050000 0.315900 14.250000 0.0128334 

 



5.2. Welded beam design: 

The objective of this problem is to minimize the fabrication cost of a welded beam as shown in Fig. 13 [60].  

The constraints are as follows: 

 

 Shear stress ( ) 

 Bending stress in the beam (θ) 

 Buckling load on the bar (  ) 
 End deflection of the beam ( ) 

 Side constraints.  

 

This problem has four variables such as thickness of weld (h), length of attached part of bar (l), the height of 

the bar (t), and thickness of the bar (b). The mathematical formulation is as follows: 
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Coello [64] and Deb [65, 66] employed GA, whereas Lee and Geem [67] used HS to solve this problem. 

Richardson’s random method, Simplex method, Davidon-Fletcher-Powell, Griffith and Stewart’s successive 

linear approximation are the mathematical approaches that have been adopted by Ragsdell and Philips [68]  for 

this problem. The comparison results are provided in Table 10. The results show that GWO finds a design with 

the minimum cost compared to others.   

 



 

(a)                                              (b)                        (c) 

Fig. 13.   Structure of welded beam design (a) shematic (b) stress heatmap (c) displacement heatmap 

 

Table 10.  Comparison results of the welded beam design problem 

Algorithm 
Optimum variables 

Optimum cost 
h l t b 

GWO 0.205676 3.478377 9.03681 0.205778 1.72624 
GSA 0.182129 3.856979 10.00000 0.202376 1.879952 

GA Coello) N/A N/A N/A N/A 1.8245 

GA (Deb) N/A N/A N/A N/A 2.3800 
GA (Deb) 0.2489 6.1730 8.1789 0.2533 2.4331 

HS (Lee and Geem) 0.2442 6.2231 8.2915 0.2443 2.3807 

Random 0.4575 4.7313 5.0853 0.6600 4.1185 
Simplex 0.2792 5.6256 7.7512 0.2796 2.5307 

David 0.2434 6.2552 8.2915 0.2444 2.3841 

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815 

 

5.3. Pressure vessel design: 

The objective of this problem is to minimize the total cost consisting of material, forming, and welding of a 

cylindrical vessel as in Fig. 14. Both ends of the vessel are capped, and the head has a hemi-spherical shape. 

There are four variables in this problem:  

 

 Thickness of the shell (  ) 
 Thickness of the head (  ) 

 Inner radius (R) 

 Length of the cylindrical section without considering the head (L) 

 

This problem is subject to four constraints. These constraints and the problem are formulated as follows: 
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This problem has also been popular among researchers and optimized in various studies. The heuristic 

methods that have been adopted to optimize this problem are: PSO [58], GA [57, 60, 69], ES [59], DE [62], and 

ACO [70]. Mathematical methods used are augmented Lagrangian Multiplier [71] and branch-and-bound [72]. 

The results of this problem are provided in Table 11. According to this table, GWO is again able to find a design 

with the minimum cost.  



  

        (a)                                     (b)   (c) 

Fig. 14.   Pressure vessel (a) shematic (b) stress heatmap (c) displacement heatmap 

 

Table 11.  Comparison results for pressure vessel design problem 

Algorithm 
Optimum variables 

Optimum cost 
Ts Th R L 

GWO 0.812500 0.434500 42.089181 176.758731 6051.5639 

GSA 1.125000 0.625000 55.9886598 84.4542025 8538.8359 
PSO (He and Wang) 0.812500 0.437500 42.091266 176.746500 6061.0777 

GA (Coello) 0.812500 0.434500 40.323900 200.000000 6288.7445 

GA (Coello and Montes) 0.812500 0.437500 42.097398 176.654050 6059.9463 
GA (Deb and Gene) 0.937500 0.500000 48.329000 112.679000 6410.3811 

ES (Montes and Coello) 0.812500 0.437500 42.098087 176.640518 6059.7456 

DE (Huang et al.) 0.812500 0.437500 42.098411 176.637690 6059.7340 
ACO (Kaveh and Talataheri) 0.812500 0.437500 42.103624 176.572656 6059.0888 

Lagrangian  Multiplier (Kannan) 1.125000 0.625000 58.291000 43.6900000 7198.0428 

branch-bound (Sandgren) 1.125000 0.625000 47.700000 117.701000 8129.1036 

 

In summary, the results on the three classical engineering problems demonstrate that GWO shows high 

performance in solving challenging problems. This is again due to the operators that are designed to allow GWO 

to avoid local optima successfully and converge towards the optimum quickly. The next section probes the 

performance of the GWO algorithm in solving a recent real problem in the field of optical engineering.  

6. Real application of GWO in optical engineering (optical buffer design) 

 The problem investigated in this section is called optical buffer design. In fact, an optical buffer is one of the 

main components of optical CPUs. The optical buffer slows the group velocity of light and allows the optical 

CPUs to process optical packets or adjust its timing. The most popular device to do this is a Photonic Crystal 

Waveguide (PCW). PCWs mostly have a lattice-shaped structure with a line defect in the middle. The radii of 

holes and shape of the line defect yield different slow light characteristics. Varying radii and line defects provides 

different environments for refracting the light in the waveguide. The researchers in this field try to manipulate the 

radii of holes and pins of line defect in order to achieve desirable optical buffering characteristics. There are also 

different types of PCW that are suitable for specific applications.  In this section the structure of a PCW called a 

Bragg Slot PCW (BSPCW) is optimized by the GWO algorithm. This problem has several constraints, so we 

utilize the simplest constraint handling method for GWO in this section as well. 

BSPCW structure was first proposed by C. Caer et al. in 2011 [73]. The structure of BSPCWs is illustrated in 

Fig. 15. The background slab is silicon with a refractive index equal to 3.48. The slot and holes are filled by a 

material with a refractive index of 1.6. The Bragg slot structure allows the BSPCW to have precise control of 

dispersion and slow light properties. The first five holes adjacent to the slot have the highest impact on slow light 

properties, as discussed in [73]. As may be seen in Fig. 15, l, wl, and wh define the shape of the slot and have an 

impact on the final dispersion and slow light properties as well. So, various dispersion and slow light properties 

can be achieved by manipulating the radii of holes, l, wl, and wh. 
 

 



 

Fig. 15.  BSPCW structure with super cell, nbackground =3.48 and nfilled=1.6. 

 
There are two metrics for comparing the performance of slow light devices: Delay-Bandwidth Product (DBP) 

and Normalized DBP (NDBP), which are defined as follows [74]: 
 

          (6.1) 

 
where Δt indicates the delay and Δf is the bandwidth of the slow light device. 

In slow light devices the ultimate goal is to achieve maximum transmission delay of an optical pulse with 

highest PCW bandwidth. Obviously, Δt should be increased in order to increase DBP. This is achieved by 

increasing the length of the device (L). To compare devices with different lengths and operating frequencies, 

NDBP is a better choice [75]: 

       ̅̅ ̅       (6.2) 

  

where    ̅̅ ̅̅  is the average of the group index , Δω is the normalized bandwidth, and ω0 is the normalized central 
frequency of light wave. 

 Since NDBP has a direct relation to the group index (  ),   can be formulated as follows [76]: 
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where ω is the dispersion, k indicates the wave vector, C is the velocity of light in free space, and    shows the 

group index. Since    is changing in the bandwidth range, it should be averaged as follows: 

  ̅̅ ̅  ∫      
  

  

  

  

 (6.4) 

 

The bandwidth of a PCW refers to the region of the    curve where    has an approximately constant value 

with a maximum fluctuation rage of ±10% [75]. Detailed information about PCWs can be found in [77-80].  

Finally, the problem is mathematically formulated for GWO as follows: 
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Note that we consider five constraints for the GWO algorithm. The second to fifth constraints avoid band 

mixing. To handle feasibility, we assign small negative objective function values (-100) to those search agents 

that violate the constraints. 

The GWO algorithm was run 20 times on this problem and the best results obtained are reported in Table 12. 

Note that the algorithm was run by 24 CPUs on a Windows HPC cluster at Griffith University. This table shows 

that there is a substantial, 93% and 65% improvement in bandwidth (Δλ) and NDBP utilizing the GWO 

algorithm. 

The photonic band structure of the BSPCW optimized is shown in Fig. 16(a). In addition, the corresponded 

group index and optimized super cell are shown in Fig. 16 (b) and Fig. 17. These figures show that the optimized 

structure has a very good bandwidth without band mixing as well. This again demonstrated the high performance 

of the GWO algorithm in solving real problems. 

 

Table 12.  Structural parameters and calculation results 

Structural parameter Wu et al.[81] GWO 

R1 - 0.33235a 
R2 - 0.24952a 

R3 - 0.26837a 

R4 - 0.29498a 
R5 - 0.34992a 

l - 0.7437a 

Wh - 0.2014a 
Wl - 0.60073a 

a(nm) 430 343 

  ̅̅ ̅ 23 19.6 

Δλ(nm) 17.6 33.9 

Order of magnitude of β2 (a/2ᴫc2) 103 103 

NDBP 0.26 0.43 

 

 
 

      (a)         (b) 

Fig. 16.  (a) Photonic band structure of the optimized BSPCW structure (b) The group index (ng) of the optimized BSPCW structure 
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Fig. 17.  Optimized super cell of BSPCW. 

This comprehensive study shows that the proposed GWO algorithm has merit among the current meta-

heuristics. First, the results of the unconstrained benchmark functions demonstrate the performance of the GWO 

algorithm in terms of exploration, exploitation, local optima avoidance, and convergence. Second, the results of 

the classical engineering problems show the superior performance of the proposed algorithm in solving semi-

real constrained problems. Finally, the results of the optical buffer design problem show the ability of the GWO 

algorithm in solving the real problems. 

7. Conclusion 

This work proposed a novel SI optimization algorithm inspired by grey wolves. The proposed method 

mimicked the social hierarchy and hunting behavior of grey wolves. Twenty nine test functions were employed 

in order to benchmark the performance of the proposed algorithm in terms of exploration, exploitation, local 

optima avoidance, and convergence. The results showed that GWO was able to provide highly competitive 

results compared to well-known heuristics such as PSO, GSA, DE, EP, and ES. First, the results on the 

unimodal functions showed the superior exploitation of the GWO algorithm. Second, the exploration ability of 

GWO was confirmed by the results on multimodal functions. Third, the results of the composite functions 

showed high local optima avoidance. Finally, the convergence analysis of GWO confirmed the convergence of 

this algorithm.  

Moreover, the results of the engineering design problems also showed that the GWO algorithm has high 

performance in unknown, challenging search spaces. The GWO algorithm was finally applied to a real problem 

in optical engineering. The results on this problem showed a substantial improvement of NDBP compared to 

current approaches, showing the applicability of the proposed algorithm in solving real problems. It may be 

noted that the results on semi-real and real problems also proved that GWO can show high performance not only 

on unconstrained problems but also on constrained problems.  

For future work, we are going to develop binary and multi-objective versions of the GWO algorithm.  
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