

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

Grey Wolf Optimizer

1
Seyedali Mirjalili,

2
Seyed Mohammad Mirjalili,

1
Andrew Lewis

1
School of Information and Communication Technology, Griffith University, Nathan, Brisbane, QLD 4111,

Australia
2
Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti

University, G. C. 1983963113, Tehran, Iran

seyedali.mirjalili@griffithuni.edu.au, mohammad.smm@gmail.com, a.lewis@griffith.edu.au

Abstract: This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves

(Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in

nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the

leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and

attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the

results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search

Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES).

The results show that the GWO algorithm is able to provide very competitive results compared to these well-

known meta-heuristics. The paper also considers solving three classical engineering design problems

(tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the

proposed method in the field of optical engineering. The results of the classical engineering design problems and

real application prove that the proposed algorithm is applicable to challenging problems with unknown search

spaces.

Keywords: Optimization, optimization techniques, heuristic algorithm, Metaheuristics, Constrained

Optimization, GWO

1. Introduction

Meta-heuristic optimization techniques have become very popular over the last two decades. Surprisingly,

some of them such as Genetic Algorithm (GA) [1], Ant Colony Optimization (ACO) [2], and Particle Swarm

Optimization (PSO) [3] are fairly well-known among not only computer scientists but also scientists from

different fields. In addition to the huge number of theoretical works, such optimization techniques have been

applied in various fields of study. There is a question here as to why meta-heuristics have become remarkably

common. The answer to this question can be summarized into four main reasons: simplicity, flexibility,

derivation-free mechanism, and local optima avoidance.

First, meta-heuristics are fairly simple. They have been mostly inspired by very simple concepts. The

inspirations are typically related to physical phenomena, animals’ behaviors, or evolutionary concepts. The

simplicity allows computer scientists to simulate different natural concepts, propose new meta-heuristics,

hybridize two or more meta-heuristics, or improve the current meta-heuristics. Moreover, the simplicity assists

other scientists to learn meta-heuristics quickly and apply them to their problems.

Second, flexibility refers to the applicability of meta-heuristics to different problems without any special

changes in the structure of the algorithm. Meta-heuristics are readily applicable to different problems since they

mostly assume problems as black boxes. In other words, only the input(s) and output(s) of a system are

important for a meta-heuristic. So, all a designer needs is to know how to represent his/her problem for meta-

heuristics.

Third, the majority of meta-heuristics have derivation-free mechanisms. In contrast to gradient-based

optimization approaches, meta-heuristics optimize problems stochastically. The optimization process starts with

random solution(s), and there is no need to calculate the derivative of search spaces to find the optimum. This

makes meta-heuristics highly suitable for real problems with expensive or unknown derivative information.

Finally, meta-heuristics have superior abilities to avoid local optima compared to conventional optimization

techniques. This is due to the stochastic nature of meta-heuristics which allow them to avoid stagnation in local

solutions and search the entire search space extensively. The search space of real problems is usually unknown

and very complex with a massive number of local optima, so meta-heuristics are good options for optimizing

these challenging real problems.

The No Free Lunch (NFL) theorem [4] is worth mentioning here. This theorem has logically proved that

there is no meta-heuristic best suited for solving all optimization problems. In other words, a particular meta-

heuristic may show very promising results on a set of problems, but the same algorithm may show poor

performance on a different set of problems. Obviously, NFL makes this field of study highly active which

results in enhancing current approaches and proposing new meta-heuristics every year. This also motivates our

attempts to develop a new meta-heuristic with inspiration from grey wolves.

Generally speaking, meta-heuristics can be divided into two main classes: single-solution-based and

population-based. In the former class (Simulated Annealing [5] for instance) the search process starts with one

candidate solution. This single candidate solution is then improved over the course of iterations. Population-

based meta-heuristics, however, perform the optimization using a set of solutions (population). In this case the

search process starts with a random initial population (multiple solutions), and this population is enhanced over

the course of iterations. Population-based meta-heuristics have some advantages compared to single solution-

based algorithms:

 Multiple candidate solutions share information about the search space which results in sudden jumps

toward the promising part of search space

 Multiple candidate solutions assist each other to avoid locally optimal solutions

 Population-based meta-heuristics generally have greater exploration compared to single solution-based

algorithms

One of the interesting branches of the population-based meta-heuristics is Swarm Intelligence (SI). The

concepts of SI was first proposed in 1993 [6]. According to Bonabeau et al. [1], SI is “The emergent collective

intelligence of groups of simple agents”. The inspirations of SI techniques originate mostly from natural

colonies, flock, herds, and schools. Some of the most popular SI techniques are ACO [2], PSO [3], and Artificial

Bee Colony (ABC) [7]. A comprehensive literature review of the SI algorithms is provided in the next section.

Some of the advantages of SI algorithms are:

 SI algorithms preserve information about the search space over the course of iteration, whereas

Evolutionary Algorithms (EA) discard the information of the previous generations

 SI algorithms often utilize memory to save the best solution obtained so far

 SI algorithms usually have fewer parameters to adjust

 SI algorithms have less operators compared to evolutionary approaches (crossover, mutation, elitism,

and so on)

 SI algorithms are easy to implement

Regardless of the differences between the meta-heuristics, a common feature is the division of the search

process into two phases: exploration and exploitation [8-12]. The exploration phase refers to the process of

investigating the promising area(s) of the search space as broadly as possible. An algorithm needs to have

stochastic operators to randomly and globally search the search space in order to support this phase. However,

exploitation refers to the local search capability around the promising regions obtained in the exploration phase.

Finding a proper balance between these two phases is considered a challenging task due to the stochastic nature

of meta-heuristics. This work proposes a new SI technique with inspiration from the social hierarchy and

hunting behavior of grey wolf packs. The rest of the paper is organized as follows:

Section 2 presents a literature review of SI techniques. Section 3 outlines the proposed GWO algorithm. The

results and discussion of benchmark functions, semi-real problems, and a real application are presented in

Section 4, Section 5, and Section 6, respectively. Finally, Section 7 concludes the work and suggests some

directions for future studies.

2. Literature review

Meta-heuristics may be classified into three main classes: evolutionary, physics-based, and SI algorithms.

EAs are usually inspired by the concepts of evolution in nature. The most popular algorithm in this branch is

GA. This algorithm was proposed by Holland in 1992 [13] and simulates Darwnian evolution concepts. The

engineering applications of GA were extensively investigated by Goldberg [14]. Generally speaking, the

optimization is done by evolving an initial random solution in EAs. Each new population is created by the

combination and mutation of the individuals in the previous generation. Since the best individuals have higher

probability of participating in generating the new population, the new population is likely to be better than the

previous generation(s). This can guarantee that the initial random population is optimized over the course of

generations. Some of the EAs are Differential Evolution (DE) [15], Evolutionary Programing (EP) [16, 17], and

Evolution Strategy (ES) [18, 19], Probability-Based Incremental Learning (PBIL), Genetic Programming (GP)

[20], and Biogeography-Based Optimizer (BBO) [21].

As an example, the BBO algorithm was first proposed by Simon in 2008 [21]. The basic idea of this

algorithm has been inspired by biogeography which refers to the study of biological organisms in terms of

geographical distribution (over time and space). The case studies might include different islands, lands, or even

continents over decades, centuries, or millennia. In this field of study different ecosystems (habitats or

territories) are investigated for finding the relations between different species (habitants) in terms of

immigration, emigration, and mutation. The evolution of ecosystems (considering different kinds of species

such as predator and prey) over migration and mutation to reach a stable situation was the main inspiration of

the BBO algorithm.

The second main branch of meta-heuristics is physics-based techniques. Such optimization algorithms

typically mimic physical rules. Some of the most popular algorithms are Gravitational Local Search (GLSA)

[22], Big-Bang Big-Crunch (BBBC) [23], Gravitational Search Algorithm (GSA) [24], Charged System Search

(CSS) [25], Central Force Optimization (CFO) [26], Artificial Chemical Reaction Optimization Algorithm

(ACROA) [27], Black Hole (BH) [28] algorithm, Ray Optimization (RO) [29] algorithm, Small-World

Optimization Algorithm (SWOA) [30], Galaxy-based Search Algorithm (GbSA) [31], and Curved Space

Optimization (CSO) [32]. The mechanism of these algorithms is different from EAs, in that a random set of

search agents communicate and move throughout search space according to physical rules. This movement is

implemented, for example, using gravitational force, ray casting, electromagnetic force, inertia force, weights,

and so on.

For example, the BBBC algorithm was inspired by the big bang and big crunch theories. The search agents of

BBBC are scattered from a point in random directions in a search space according to the principles of the big

bang theory. They search randomly and then gather in a final point (the best point obtained so far) according to

the principles of the big crunch theory. GSA is another physics-based algorithm. The basic physical theory from

which GSA is inspired is Newton’s law of universal gravitation. The GSA algorithm performs search by

employing a collection of agents that have masses proportional to the value of a fitness function. During iteration,

the masses are attracted to each other by the gravitational forces between them. The heavier the mass, the bigger

the attractive force. Therefore, the heaviest mass, which is possibly close to the global optimum, attracts the other

masses in proportion to their distances.

The third subclass of meta-heuristics is the SI methods. These algorithms mostly mimic the social behavior

of swarms, herds, flocks, or schools of creatures in nature. The mechanism is almost similar to physics-based

algorithm, but the search agents navigate using the simulated collective and social intelligence of creatures. The

most popular SI technique is PSO. The PSO algorithm was proposed by Kennedy and Eberhart [3] and inspired

from the social behavior of birds flocking. The PSO algorithm employs multiple particles that chase the position

of the best particle and their own best positions obtained so far. In other words, a particle is moved considering

its own best solution as well as the best solution the swarm has obtained.

Another popular SI algorithm is ACO, proposed by Dorigo et al. in 2006 [2]. This algorithm was inspired

by the social behavior of ants in an ant colony. In fact, the social intelligence of ants in finding the shortest path

between the nest and a source of food is the main inspiration of ACO. A pheromone matrix is evolved over the

course of iteration by the candidate solutions. The ABC is another popular algorithm, mimicking the collective

behavior of bees in finding food sources. There are three types of bees in ABS: scout, onlooker, and employed

bees. The scout bees are responsible for exploring the search space, whereas onlooker and employed bees

exploit the promising solutions found by scout bees. Finally, the Bat-inspired Algorithm (BA), inspired by the

echolocation behavior of bats, has been proposed recently [33]. There are many types of bats in the nature. They

are different in terms of size and weight, but they all have quite similar behaviors when navigating and hunting.

Bats utilize natural sonar in order to do this. The two main characteristics of bats when finding prey have been

adopted in designing the BA algorithm. Bats tend to decrease the loudness and increase the rate of emitted

ultrasonic sound when they chase prey. This behavior has been mathematically modeled for the BA algorithm.

The rest of the SI techniques proposed so far are as follows:

 Marriage in Honey Bees Optimization Algorithm (MBO) in 2001 [34]

 Artificial Fish-Swarm Algorithm (AFSA) in 2003 [35]

 Termite Algorithm in 2005 [36]

 Wasp Swarm Algorithm in 2007 [37]

 Monkey Search in 2007 [38]

 Bee Collecting Pollen Algorithm (BCPA) in 2008 [39]

 Cuckoo Search (CS) in 2009 [40]

 Dolphin Partner Optimization (DPO) in 2009 [41]

 Firefly Algorithm (FA) in 2010 [42]

 Bird Mating Optimizer (BMO) in 2012 [43]

 Krill Herd (KH) in 2012 [44]

 Fruit fly Optimization Algorithm (FOA) in 2012 [45]

This list shows that there are many SI techniques proposed so far, many of them inspired by hunting and

search behaviors. To the best of our knowledge, however, there is no SI technique in the literature mimicking

the leadership hierarchy of grey wolves, well known for their pack hunting. This motivated our attempt to

mathematically model the social behavior of grey wolves, propose a new SI algorithm inspired by grey wolves,

and investigate its abilities in solving benchmark and real problems.

3. Grey Wolf Optimizer (GWO)

In this section the inspiration of the proposed method is first discussed. Then, the mathematical model is

provided.

3.1. Inspiration

Grey wolf (Canis lupus) belongs to Canidae family. Grey wolves are considered as apex predators, meaning

that they are at the top of the food chain. Grey wolves mostly prefer to live in a pack. The group size is 5-12 on

average. Of particular interest is that they have a very strict social dominant hierarchy as shown in Fig. 1.

Fig. 1. Hierarchy of grey wolf (dominance decreases from top down)

The leaders are a male and a female, called alphas. The alpha is mostly responsible for making decisions

about hunting, sleeping place, time to wake, and so on. The alpha’s decisions are dictated to the pack. However,

some kind of democratic behavior has also been observed, in which an alpha follows the other wolves in the

pack. In gatherings, the entire pack acknowledges the alpha by holding their tails down. The alpha wolf is also

called the dominant wolf since his/her orders should be followed by the pack [46]. The alpha wolves are only

allowed to mate in the pack. Interestingly, the alpha is not necessarily the strongest member of the pack but the

best in terms of managing the pack. This shows that the organization and discipline of a pack is much more

important than its strength.

The second level in the hierarchy of grey wolves is beta. The betas are subordinate wolves that help the

alpha in decision-making or other pack activities. The beta wolf can be either male or female, and he/she is

probably the best candidate to be the alpha in case one of the alpha wolves passes away or becomes very old.

The beta wolf should respect the alpha, but commands the other lower-level wolves as well. It plays the role of

an advisor to the alpha and discipliner for the pack. The beta reinforces the alpha's commands throughout the

pack and gives feedback to the alpha.

The lowest ranking grey wolf is omega. The omega plays the role of scapegoat. Omega wolves always have

to submit to all the other dominant wolves. They are the last wolves that are allowed to eat. It may seem the

omega is not an important individual in the pack, but it has been observed that the whole pack face internal

fighting and problems in case of losing the omega. This is due to the venting of violence and frustration of all

wolves by the omega(s). This assists satisfying the entire pack and maintaining the dominance structure. In

some cases the omega is also the babysitters in the pack.

If a wolf is not an alpha, beta, or omega, he/she is called subordinate (or delta in some references). Delta

wolves have to submit to alphas and betas, but they dominate the omega. Scouts, sentinels, elders, hunters, and

𝜶

𝜷

𝜹

𝝎

caretakers belong to this category. Scouts are responsible for watching the boundaries of the territory and

warning the pack in case of any danger. Sentinels protect and guarantee the safety of the pack. Elders are the

experienced wolves who used to be alpha or beta. Hunters help the alphas and betas when hunting prey and

providing food for the pack. Finally, the caretakers are responsible for caring for the weak, ill, and wounded

wolves in the pack.

In addition to the social hierarchy of wolves, group hunting is another interesting social behavior of grey

wolves. According to Muro et al. [47] the main phases of grey wolf hunting are as follows:

 Tracking, chasing, and approaching the prey

 Pursuing, encircling, and harassing the prey until it stops moving

 Attack towards the prey

These steps are shown in Fig. 2.

Fig. 2. Hunting behaviour of grey wolves: (A) chasing, approaching, and tracking prey (B-D) pursuiting, harassing, and encircling

(E) stationary situation and attack [47]

In this work this hunting technique and the social hierarchy of grey wolves are mathematically modeled in

order to design GWO and perform optimization.

3.2. Mathematical model and algorithm

In this subsection the mathematical models of the social hierarchy, tracking, encircling, and attacking prey

are provided. Then the GWO algorithm is outlined.

3.2.1. Social hierarchy:

In order to mathematically model the social hierarchy of wolves when designing GWO, we consider the

fittest solution as the alpha (). Consequently, the second and third best solutions are named beta () and delta

() respectively. The rest of the candidate solutions are assumed to be omega (). In the GWO algorithm the

hunting (optimization) is guided by , , and . The wolves follow these three wolves.

3.2.2. Encircling prey:

As mentioned above, grey wolves encircle prey during the hunt. In order to mathematically model encircling

behavior the following equations are proposed:

 ⃗⃗ ⃗⃗ ⃗⃗ (3.1)

 ⃗⃗ ⃗⃗ ⃗⃗ (3.2)

where t indicates the current iteration, and are coefficient vectors , ⃗⃗ ⃗⃗ is the position vector of the prey,

and indicates the position vector of a grey wolf.

The vectors and are calculated as follows:

 = 2 . ⃗⃗⃗ - (3.3)

 ⃗⃗ ⃗ (3.4)

where components of are linearly decreased from 2 to 0 over the course of iterations and , are random

vectors in [0,1].

To see the effects of equations (3.1) and (3.2), a two-dimensional position vector and some of the possible

neighbors are illustrated in Fig. 3 (a). As can be seen in this figure, a grey wolf in the position of (X,Y) can

update its position according to the position of the prey (X*,Y*). Different places around the best agent can be

reached with respect to the current position by adjusting the value of and vectors. For instance, (X*-X,Y*)

can be reached by setting and . The possible updated positions of a grey wolf in 3D space

are depicted in Fig. 3 (b). Note that the random vectors and allow wolves to reach any position between the

points illustrated in Fig. 3. So a grey wolf can update its position inside the space around the prey in any random

location by using equations (3.1) and (3.2).

X*-X

Y
*
-Y

(X,Y)

(X*,Y*)

(X*,Y)

(X,Y*)

(X,Y*-Y)

(X*-X,Y)

(X*,Y*-Y)
(X*-X,Y*-Y)

(X*-X,Y*)

 (a)

(X,Y,Z)

(X*,Y*,Z*)

(X,Y*-Y,Z*-Z)

(X*-X,Y,Z*-Z)

(X*,Y*-Y,Z*-Z)(X*-X,Y*-Y,Z-Z*)

(X*-X,Y*,Z*-Z)

(X,Y*,Z)

(X,Y*-Y,Z)

(X,Y*,Z*)

(X,Y,Z*)

(X*,Y*,Z*-Z) (X,Y*,Z*-Z)

(X*,Y,Z*-Z) (X,Y,Z*-Z)

(X*-X,Y,Z*)

(X*-X,Y,Z) (X*,Y,Z)

(X,Y,Z*)(X*,Y,Z*)

 (b)

Fig. 3. 2D and 3D position vectors and their possible next locations

The same concept can be extended to a search space with n dimensions, and the grey wolves will move in

hyper-cubes (or hyper-spheres) around the best solution obtained so far.

3.2.3. Hunting:

 Grey wolves have the ability to recognize the location of prey and encircle them. The hunt is usually guided

by the alpha. The beta and delta might also participate in hunting occasionally. However, in an abstract search

space we have no idea about the location of the optimum (prey). In order to mathematically simulate the hunting

behavior of grey wolves, we suppose that the alpha (best candidate solution) beta, and delta have better

knowledge about the potential location of prey. Therefore, we save the first three best solutions obtained so far

and oblige the other search agents (including the omegas) to update their positions according to the position of

the best search agent. The following formulas are proposed in this regard.

 ⃗⃗⃗⃗ ⃗ ⃗⃗ ⃗⃗ , ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (3.5)

 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (⃗⃗⃗⃗ ⃗), ⃗⃗⃗⃗ ⃗⃗ ⃗⃗
⃗⃗ ⃗⃗ (⃗⃗ ⃗⃗), ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

⃗⃗ ⃗⃗ (⃗⃗ ⃗⃗) (3.6)

 ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗

 (3.7)

Fig. 4 shows how a search agent updates its position according to alpha, beta, and delta in a 2D search space.

It can be observed that the final position would be in a random place within a circle which is defined by the

positions of alpha, beta, and delta in the search space. In other words alpha, beta, and delta estimate the position

of the prey, and other wolves updates their positions randomly around the prey.

or any
other

hunters

Estimated
position

of the

prey

Fig. 4. Position updading in GWO

Dd

Da

a1

a3

Db

C3

C1

C2

a2

Move

R

3.2.4. Attacking prey (exploitation):

As mentioned above the grey wolves finish the hunt by attacking the prey when it stops moving. In order to

mathematically model approaching the prey we decrease the value of . Note that the fluctuation range of is

also decreased by . In other words is a random value in the interval [-a,a] where a is decreased from 2 to 0

over the course of iterations. When random values of are in [-1,1], the next position of a search agent can be

in any position between its current position and the position of the prey. Fig. 5 (a) shows that |A|<1 forces the

wolves to attack towards the prey.

If
|A

|<
1

If
|A

|>
1

 (a) (b)

Fig. 5. Attacking prey versus searching for prey

With the operators proposed so far, the GWO algorithm allows its search agents to update their position

based on the location of the alpha, beta, and delta; and attack towards the prey. However, the GWO algorithm is

prone to stagnation in local solutions with these operators. It is true that the encircling mechanism proposed

shows exploration to some extent, but GWO needs more operators to emphasize exploration.

3.2.5. Search for prey (exploration):

Grey wolves mostly search according to the position of the alpha, beta, and delta. They diverge from each

other to search for prey and converge to attack prey. In order to mathematically model divergence, we utilize
with random values greater than 1 or less than -1 to oblige the search agent to diverge from the prey. This

emphasizes exploration and allows the GWO algorithm to search globally. Fig. 5(b) also shows that |A|>1 forces

the grey wolves to diverge from the prey to hopefully find a fitter prey. Another component of GWO that favors

exploration is . As may be seen in Equation (3.4), the vector contains random values in [0, 2]. This

component provides random weights for prey in order to stochastically emphasize (C>1) or deemphasize (C<1)

the effect of prey in defining the distance in Equation (3.1). This assists GWO to show a more random behavior

throughout optimization, favoring exploration and local optima avoidance. It is worth mentioning here that C is

not linearly decreased in contrast to A. We deliberately require C to provide random values at all times in order

to emphasize exploration not only during initial iterations but also final iterations. This component is very

helpful in case of local optima stagnation, especially in the final iterations.

The C vector can be also considered as the effect of obstacles to approaching prey in nature. Generally

speaking, the obstacles in nature appear in the hunting paths of wolves and in fact prevent them from quickly

and conveniently approaching prey. This is exactly what the vector C does. Depending on the position of a wolf,

it can randomly give the prey a weight and make it harder and farther to reach for wolves, or vice versa.

To sum up, the search process starts with creating a random population of grey wolves (candidate solutions)

in the GWO algorithm. Over the course of iterations, alpha, beta, and delta wolves estimate the probable

position of the prey. Each candidate solution updates its distance from the prey. The parameter a is decreased

from 2 to 0 in order to emphasize exploration and exploitation, respectively. Candidate solutions tend to diverge

from the prey when | |>1 and converge towards the prey when | |<1. Finally, the GWO algorithm is terminated

by the satisfaction of an end criterion.

The pseudo code of the GWO algorithm is presented in Fig. 6.

Fig. 6. Pseudo code of the GWO algorithm

To see how GWO is theoretically able to solve optimization problems, some points may be noted:

 The proposed social hierarchy assists GWO to save the best solutions obtained so far over the

course of iteration

 The proposed encircling mechanism defines a circle-shaped neighborhood around the solutions

which can be extended to higher dimensions as a hyper-sphere

 The random parameters A and C assist candidate solutions to have hyper-spheres with different

random radii

 The proposed hunting method allows candidate solutions to locate the probable position of the prey

 Exploration and exploitation are guaranteed by the adaptive values of a and A

 The adaptive values of parameters a and A allow GWO to smoothly transition between exploration

and exploitation

 With decreasing A, half of the iterations are devoted to exploration (|A|≥1) and the other half are

dedicated to exploitation (|A|<1)

 The GWO has only two main parameters to be adjusted (a and C)

There are possibilities to integrate mutation and other evolutionary operators to mimic the whole life cycle of

grey wolves. However, we have kept the GWO algorithm as simple as possible with the fewest operators to be

adjusted. Such mechanisms are recommended for future work. The source codes of this algorithm can be found

in http://www.alimirjalili.com/GWO.html and

http://www.mathworks.com.au/matlabcentral/fileexchange/44974.

4. Results and discussion

In this section the GWO algorithm is benchmarked on 29 benchmark functions. The first 23 benchmark

functions are the classical functions utilized by many researchers [16, 48-51]. Despite the simplicity, we have

chosen these test functions to be able to compare our results to those of the current meta-heuristics. These

benchmark functions are listed in Table 1, Table 2, and Table 3 where Dim indicates dimension of the function,

Range is the boundary of the function’s search space, and fmin is the optimum. The other test beds that we have

chosen are six composite benchmark functions from a CEC 2005 special session [52]. These benchmark functions

are the shifted, rotated, expanded, and combined variants of the classical functions which offer the greatest

complexity among the current benchmark functions [53]. Tables 4 lists the CEC 2005 test functions, where Dim

indicates dimension of the function, Range is the boundary of the function’s search space, and fmin is the optimum.

Fig. 7, Fig. 8, Fig. 9, and Fig. 10 illustrate the 2D versions of the benchmark functions used.

Generally speaking, the benchmark functions used are minimization functions and can be divided into four

groups: unimodal, multimodal, fixed-dimension multimodal, and composite functions. Note that a detailed

descriptions of the composite benchmark functions are available in the CEC 2005 technical report [52].

Initialize the grey wolf population Xi (i = 1, 2, ..., n)

Initialize a, A, and C

Calculate the fitness of each search agent

Xα=the best search agent

Xβ=the second best search agent

Xδ=the third best search agent

while (t < Max number of iterations)

for each search agent

Update the position of the current search agent by equation (3.7)

end for

Update a, A, and C

Calculate the fitness of all search agents

Update Xα, Xβ, and Xδ

t=t+1

end while

return Xα

http://www.alimirjalili.com/GWO.html
http://www.mathworks.com.au/matlabcentral/fileexchange/44974

Table 1. Unimodal benchmark functions

Function Dim Range fmin

 ∑

 30 [-100,100] 0

 ∑ ∏

 30 [-10,10] 0

 ∑ (∑

)

 30 [-100,100] 0

 { } 30 [-100,100] 0

 ∑ [
]

 30 [-30,30] 0

 ∑ []
 30 [-100,100] 0

 ∑

 [30 [-1.28,1.28] 0

Table 2. Multimodal benchmark functions

Function Dim Range fmin

 ∑ (√)

 30 [-500,500] -418.9829 5

 ∑ [
]

 30 [-5.12,5.12] 0

 (√

∑

) (

∑

) 30 [-32,32]

0

∑

 ∏ (

√
)

 30 [-600,600] 0

{ ∑ []

 } ∑

 {

30 [-50,50]

0

 { ∑ [] [

]} ∑

30 [-50,50] 0

 ∑

 ((

))

 30 [0,π] -4.687

 [
 ∑ (

 ⁄)

 ∑

] ∏

 30 [-20,20]

-1

 {[∑

] ∑

 } [∑ √

] 30 [-10,10] -1

Table 3. Fixed-dimenstion multimodal benchmark functions

Function Dim Range fmin

 (

 ∑

 ∑ ()

)

 2
[-65,65]

1

 ∑ [

]

 4

[-5,5]
0.00030

 2 [-5,5] -1.0316

 (

)

 (

) 2 [-5,5] 0.398

 [

] [

]
2 [-2,2]

3

 ∑ (∑ ()

)
 3 [1,3]

-3.86

 ∑ (∑ ()

)
 6 [0,1]

-3.32

 ∑ [
]

 4 [0,10] -10.1532

 ∑ [
]

 4 [0,10] -10.4028

 ∑ [
]

 4 [0,10] -10.5363

Table 4. Composite benchmark functions

Function Dim Range fmin

F24(CF1):

[] []
[] []

10 [-5,5] 0

F25(CF2):

[] []
[] []

10 [-5,5] 0

F26(CF3):

[] []
[] []

10 [-5,5] 0

F27(CF4):

[] []
[] [
]

10 [-5,5] 0

F28(CF5):

[] []
[] [
]

10 [-5,5] 0

f29(CF6):

[] []
[] [
]

10 [-5,5] 0

 (F1) (F2) (F3) (F4)

 (F5) (F6) (F7)

Fig. 7. 2-D versions of unimodal benchmark functions

 (F8) (F9) (F10) (F11)

 (F12) (F13)

Fig. 8. 2-D versions of multimodal benchmark functions

 (F14) (F16) (F17) (F18)

Fig. 9. 2-D version of fixed-dimension multimodal benchmark functions

(F24) (F25) (F26)

(F27) (F28) (F29)

Fig. 10. 2-D versions of composite benchmark functions

The GWO algorithm was run 30 times on each benchmark function. The statistical results (average and

standard deviation) are reported in Table 5 to Table 8. For verifying the results, the GWO algorithm is compared

to PSO [3] as an SI-based technique and GSA [24] as a physics-based algorithm. In addition, the GWO algorithm

is compared with three EAs: DE [15], Fast Evolutionary Programing (FEP) [16], and Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES) [18].

Table 5. Results of unimodal benchmark functions

F GWO

PSO

GSA

DE

FEP

ave std ave std ave std ave std ave std

F1 6.59E-28 6.34E-05 0.000136 0.000202 2.53E-16 9.67E-17 8.2E-14 5.9E-14 0.00057 0.00013

F2 7.18E-17 0.029014 0.042144 0.045421 0.055655 0.194074 1.5E-09 9.9E-10 0.0081 0.00077

F3 3.29E-06 79.14958 70.12562 22.11924 896.5347 318.9559 6.8E-11 7.4E-11 0.016 0.014

F4 5.61E-07 1.315088 1.086481 0.317039 7.35487 1.741452 0 0 0.3 0.5

F5 26.81258 69.90499 96.71832 60.11559 67.54309 62.22534 0 0 5.06 5.87

F6 0.816579 0.000126 0.000102 8.28E-05 2.5E-16 1.74E-16 0 0 0 0

F7 0.002213 0.100286 0.122854 0.044957 0.089441 0.04339 0.00463 0.0012 0.1415 0.3522

Table 6. Results of multimodal benchmark functions

F GWO

PSO

GSA

DE

FEP

ave std ave std ave std ave std ave std

F8 -6123.1 -4087.44 -4841.29 1152.814 -2821.07 493.0375 -11080.1 574.7 -12554.5 52.6

F9 0.310521 47.35612 46.70423 11.62938 25.96841 7.470068 69.2 38.8 0.046 0.012

F10 1.06E-13 0.077835 0.276015 0.50901 0.062087 0.23628 9.7E-08 4.2E-08 0.018 0.0021

F11 0.004485 0.006659 0.009215 0.007724 27.70154 5.040343 0 0 0.016 0.022

F12 0.053438 0.020734 0.006917 0.026301 1.799617 0.95114 7.9E-15 8E-15 9.2E-06 3.6E-06

F13 0.654464 0.004474 0.006675 0.008907 8.899084 7.126241 5.1E-14 4.8E-14 0.00016 0.000073

Table 7. Results of fixed-dimension multimodal benchmark functions

F GWO

PSO

GSA

DE

FEP

ave std ave std ave std ave std ave std

F14 4.042493 4.252799 3.627168 2.560828 5.859838 3.831299 0.998004 3.3E-16 1.22 0.56

F15 0.000337 0.000625 0.000577 0.000222 0.003673 0.001647 4.5E-14 0.00033 0.0005 0.00032

F16 -1.03163 -1.03163 -1.03163 6.25E-16 -1.03163 4.88E-16 -1.03163 3.1E-13 -1.03 4.9E-07

F17 0.397889 0.397887 0.397887 0 0.397887 0 0.397887 9.9E-09 0.398 1.5E-07

F18 3.000028 3 3 1.33E-15 3 4.17E-15 3 2E-15 3.02 0.11

F19 -3.86263 -3.86278 -3.86278 2.58E-15 -3.86278 2.29E-15 N/A N/A -3.86 0.000014

F20 -3.28654 -3.25056 -3.26634 0.060516 -3.31778 0.023081 N/A N/A -3.27 0.059

F21 -10.1514 -9.14015 -6.8651 3.019644 -5.95512 3.737079 -10.1532 0.0000025 -5.52 1.59

F22 -10.4015 -8.58441 -8.45653 3.087094 -9.68447 2.014088 -10.4029 3.9E-07 -5.53 2.12

F23 -10.5343 -8.55899 -9.95291 1.782786 -10.5364 2.6E-15 -10.5364 1.9E-07 -6.57 3.14

Table 8. Results of composite benchmark functions

F GWO

PSO

GSA

DE

CMA-ES

ave std ave std ave std ave std ave std

F24 43.83544 69.86146 100 81.65 6.63E-17 2.78E-17 6.75E-02 1.11E-01 100 188.56

F25 91.80086 95.5518 155.91 13.176 200.6202 67.72087 28.759 8.6277 161.99 151

F26 61.43776 68.68816 172.03 32.769 180 91.89366 144.41 19.401 214.06 74.181

F27 123.1235 163.9937 314.3 20.066 170 82.32726 324.86 14.784 616.4 671.92

F28 102.1429 81.25536 83.45 101.11 200 47.14045 10.789 2.604 358.3 168.26

F29 43.14261 84.48573 861.42 125.81 142.0906 88.87141 490.94 39.461 900.26 8.32E-02

4.1. Exploitation analysis:

According to the results of Table 5, GWO is able to provide very competitive results. This algorithm

outperforms all others in F1, F2, and F7. It may be noted that the unimodal functions are suitable for

benchmarking exploitation. Therefore, these results show the superior performance of GWO in terms of

exploiting the optimum. This is due to the proposed exploitation operators previously discussed.

4.2. Exploration analysis:

In contrast to the unimodal functions, multimodal functions have many local optima with the number

increasing exponentially with dimension. This makes them suitable for benchmarking the exploration ability of

an algorithm. According to the results of Table 6 and Table 7, GWO is able to provide very competitive results

on the multimodal benchmark functions as well. This algorithm outperforms PSO and GSA on the majority of

the multimodal functions. Moreover, GWO shows very competitive results compare to DE and FEP; and

outperforms them occasionally. These results show that the GWO algorithm has merit in terms of exploration.

4.3. Local minima avoidance

The fourth class of benchmark functions employed includes composite functions, generally very challenging

test beds for meta-heuristic algorithms. So, exploration and exploitation can be simultaneously benchmarked by

the composite functions. Moreover, the local optima avoidance of an algorithm can be examined due to the

massive number of local optima in such test functions. According to Table 8, GWO outperforms all others on

half of the composite benchmark functions. The GWO algorithm also provides very competitive results on the

remaining composite benchmark functions. This demonstrates that GWO shows a good balance between

exploration and exploitation that results in high local optima avoidance. This superior capability is due to the

adaptive value of A. As mentioned above, half of the iterations are devoted to exploration (|A|≥1) and the rest to

exploitation (|A|<1). This mechanism assists GWO to provide very good exploration, local minima avoidance,

and exploitation simultaneously.

4.4. Convergence behavior analysis

In this subsection the convergence behavior of GWO is investigated. According to Berg et al. [54], there

should be abrupt changes in the movement of search agents over the initial steps of optimization. This assists a

meta-heuristic to explore the search space extensively. Then, these changes should be reduced to emphasize

exploitation at the end of optimization. In order to observe the convergence behavior of the GWO algorithm, the

search history and trajectory of the first search agent in its first dimension are illustrated in Fig. 11. The

animated versions of this figure can be found in supplementary materials. Note that the benchmark functions

are shifted in this section, and we used six search agents to find the optima.

The second column of Fig. 11 depicts the search history of the search agents. It may be observed that the

search agents of GWO tend to extensively search promising regions of the search spaces and exploit the best

one. In addition, the fourth column of Fig. 11 shows the trajectory of the first particle, in which changes of the

first search agent in its first dimension can be observed. It can be seen that there are abrupt changes in the initial

steps of iterations which are decreased gradually over the course of iterations. According to Berg et al. [54], this

behavior can guarantee that a SI algorithm eventually convergences to a point in search space.

Fig. 11. Search history and trajectory of the first particle in the first dimension

To sum up, the results verify the performance of the GWO algorithm in solving various benchmark functions

compared to well-known meta-heuristics. To further investigate the performance of the proposed algorithm,

three classical engineering design problems and a real problem in optical engineering are employed in the

following sections. The GWO algorithm is also compared with well-known techniques to confirm its results.

5. GWO for classical engineering problems

In this section three constrained engineering design problems: tension/compression spring, welded beam,

and pressure vessel designs, are employed. These problems have several equality and inequality constraints, so

the GWO should be equipped with a constraint handling method to be able to optimize constrained problems as

well. Generally speaking, constraint handling becomes very challenging when the fitness function directly

affects the position updating of the search agents (GSA for instance). For the fitness independent algorithms,

however, any kind of constraint handling can be employed without the need to modify the mechanism of the

algorithm (GA and PSO for instance). Since the search agents of the proposed GWO algorithm update their

positions with respect to the alpha, beta, and delta locations, there is no direct relation between the search agents

and the fitness function. So the simplest constraint handling method, penalty functions, where search agents are

assigned big objective function values if they violate any of the constraints, can be employed effectively to

handle constraints in GWO. In this case, if the alpha, beta, or delta violate constraints, they are automatically

replaced with a new search agent in the next iteration. Any kind of penalty function can readily be employed in

order to penalize search agents based on their level of violation. In this case, if the penalty makes the alpha,

beta, or delta less fit than any other wolves, it is automatically replaced with a new search agent in the next

iteration. We used simple, scalar penalty functions for the rest of problems except the tension/compression

spring design problem which uses a more complex penalty function.

5.1. Tension/compression spring design

The objective of this problem is to minimize the weight of a tension/compression spring as illustrated in Fig.

12 [55-57]. The minimization process is subject to some constraints such as shear stress, surge frequency, and

minimum deflection. There are three variables in this problem: wire diameter (d), mean coil diameter (D), and

the number of active coils (N). The mathematical formulation of this problem is as follows:

 ⃗ [] []
 ⃗

 ,

 ⃗

 ⃗

 (5.1)

 ⃗

 ⃗

This problem has been tackled by both mathematical and heuristic approaches. Ha and Wang tried to solve

this problem using PSO [58]. The Evolution Strategy (ES) [59], GA [60], Harmony Search (HS) [61], and

Differential Evolution (DE) [62] algorithms have also been employed as heuristic optimizers for this problem.

The mathematical approaches that have been adopted to solve this problem are the numerical optimization

technique (constraints correction at constant cost) [55] and mathematical optimization technique [56]. The

comparison of results of these techniques and GWO are provided in Table 9. Note that we use a similar penalty

function for GWO to perform a fair comparison [63]. Table 9 suggests that GWO finds a design with the

minimum weight for this problem.

(a) (b) (c)

Fig. 12. Tension/compression spring: (a) shematic, (b) stress heatmap (c) displacement heatmap

Table 9. Comparison of results for tension/compression spring design problem

Algorithm
Optimum variables

Optimum weight
d D N

GWO 0.05169 0.356737 11.28885 0.012666

GSA 0.050276 0.323680 13.525410 0.0127022

PSO (Ha and Wang) 0.051728 0.357644 11.244543 0.0126747
ES (Coello and Montes) 0.051989 0.363965 10.890522 0.0126810

GA (Coello) 0.051480 0.351661 11.632201 0.0127048

HS (Mahdavi et al.) 0.051154 0.349871 12.076432 0.0126706
DE (Huang et al.) 0.051609 0.354714 11.410831 0.0126702

Mathematical optimization (Belegundu) 0.053396 0.399180 9.1854000 0.0127303

Constraint correction (Arora) 0.050000 0.315900 14.250000 0.0128334

5.2. Welded beam design:

The objective of this problem is to minimize the fabrication cost of a welded beam as shown in Fig. 13 [60].

The constraints are as follows:

 Shear stress ()

 Bending stress in the beam (θ)

 Buckling load on the bar ()
 End deflection of the beam ()

 Side constraints.

This problem has four variables such as thickness of weld (h), length of attached part of bar (l), the height of

the bar (t), and thickness of the bar (b). The mathematical formulation is as follows:

 ⃗ [] []
 ⃗

 ⃗ ⃗
 ⃗ ⃗
 ⃗ ⃗
 ⃗
 ⃗ ⃗
 ⃗

 ⃗
 (5.2)

 ⃗ √

√

 (

)

 √

 {√ [

]}

 ⃗

 ⃗

 ⃗
 √

(

√

)

Coello [64] and Deb [65, 66] employed GA, whereas Lee and Geem [67] used HS to solve this problem.

Richardson’s random method, Simplex method, Davidon-Fletcher-Powell, Griffith and Stewart’s successive

linear approximation are the mathematical approaches that have been adopted by Ragsdell and Philips [68] for

this problem. The comparison results are provided in Table 10. The results show that GWO finds a design with

the minimum cost compared to others.

(a) (b) (c)

Fig. 13. Structure of welded beam design (a) shematic (b) stress heatmap (c) displacement heatmap

Table 10. Comparison results of the welded beam design problem

Algorithm
Optimum variables

Optimum cost
h l t b

GWO 0.205676 3.478377 9.03681 0.205778 1.72624
GSA 0.182129 3.856979 10.00000 0.202376 1.879952

GA Coello) N/A N/A N/A N/A 1.8245

GA (Deb) N/A N/A N/A N/A 2.3800
GA (Deb) 0.2489 6.1730 8.1789 0.2533 2.4331

HS (Lee and Geem) 0.2442 6.2231 8.2915 0.2443 2.3807

Random 0.4575 4.7313 5.0853 0.6600 4.1185
Simplex 0.2792 5.6256 7.7512 0.2796 2.5307

David 0.2434 6.2552 8.2915 0.2444 2.3841

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815

5.3. Pressure vessel design:

The objective of this problem is to minimize the total cost consisting of material, forming, and welding of a

cylindrical vessel as in Fig. 14. Both ends of the vessel are capped, and the head has a hemi-spherical shape.

There are four variables in this problem:

 Thickness of the shell ()
 Thickness of the head ()

 Inner radius (R)

 Length of the cylindrical section without considering the head (L)

This problem is subject to four constraints. These constraints and the problem are formulated as follows:

 ⃗ [] []
 ⃗

 ⃗
 ⃗

 ⃗

 ⃗ (5.3)

This problem has also been popular among researchers and optimized in various studies. The heuristic

methods that have been adopted to optimize this problem are: PSO [58], GA [57, 60, 69], ES [59], DE [62], and

ACO [70]. Mathematical methods used are augmented Lagrangian Multiplier [71] and branch-and-bound [72].

The results of this problem are provided in Table 11. According to this table, GWO is again able to find a design

with the minimum cost.

 (a) (b) (c)

Fig. 14. Pressure vessel (a) shematic (b) stress heatmap (c) displacement heatmap

Table 11. Comparison results for pressure vessel design problem

Algorithm
Optimum variables

Optimum cost
Ts Th R L

GWO 0.812500 0.434500 42.089181 176.758731 6051.5639

GSA 1.125000 0.625000 55.9886598 84.4542025 8538.8359
PSO (He and Wang) 0.812500 0.437500 42.091266 176.746500 6061.0777

GA (Coello) 0.812500 0.434500 40.323900 200.000000 6288.7445

GA (Coello and Montes) 0.812500 0.437500 42.097398 176.654050 6059.9463
GA (Deb and Gene) 0.937500 0.500000 48.329000 112.679000 6410.3811

ES (Montes and Coello) 0.812500 0.437500 42.098087 176.640518 6059.7456

DE (Huang et al.) 0.812500 0.437500 42.098411 176.637690 6059.7340
ACO (Kaveh and Talataheri) 0.812500 0.437500 42.103624 176.572656 6059.0888

Lagrangian Multiplier (Kannan) 1.125000 0.625000 58.291000 43.6900000 7198.0428

branch-bound (Sandgren) 1.125000 0.625000 47.700000 117.701000 8129.1036

In summary, the results on the three classical engineering problems demonstrate that GWO shows high

performance in solving challenging problems. This is again due to the operators that are designed to allow GWO

to avoid local optima successfully and converge towards the optimum quickly. The next section probes the

performance of the GWO algorithm in solving a recent real problem in the field of optical engineering.

6. Real application of GWO in optical engineering (optical buffer design)

 The problem investigated in this section is called optical buffer design. In fact, an optical buffer is one of the

main components of optical CPUs. The optical buffer slows the group velocity of light and allows the optical

CPUs to process optical packets or adjust its timing. The most popular device to do this is a Photonic Crystal

Waveguide (PCW). PCWs mostly have a lattice-shaped structure with a line defect in the middle. The radii of

holes and shape of the line defect yield different slow light characteristics. Varying radii and line defects provides

different environments for refracting the light in the waveguide. The researchers in this field try to manipulate the

radii of holes and pins of line defect in order to achieve desirable optical buffering characteristics. There are also

different types of PCW that are suitable for specific applications. In this section the structure of a PCW called a

Bragg Slot PCW (BSPCW) is optimized by the GWO algorithm. This problem has several constraints, so we

utilize the simplest constraint handling method for GWO in this section as well.

BSPCW structure was first proposed by C. Caer et al. in 2011 [73]. The structure of BSPCWs is illustrated in

Fig. 15. The background slab is silicon with a refractive index equal to 3.48. The slot and holes are filled by a

material with a refractive index of 1.6. The Bragg slot structure allows the BSPCW to have precise control of

dispersion and slow light properties. The first five holes adjacent to the slot have the highest impact on slow light

properties, as discussed in [73]. As may be seen in Fig. 15, l, wl, and wh define the shape of the slot and have an

impact on the final dispersion and slow light properties as well. So, various dispersion and slow light properties

can be achieved by manipulating the radii of holes, l, wl, and wh.

Fig. 15. BSPCW structure with super cell, nbackground =3.48 and nfilled=1.6.

There are two metrics for comparing the performance of slow light devices: Delay-Bandwidth Product (DBP)

and Normalized DBP (NDBP), which are defined as follows [74]:

 (6.1)

where Δt indicates the delay and Δf is the bandwidth of the slow light device.

In slow light devices the ultimate goal is to achieve maximum transmission delay of an optical pulse with

highest PCW bandwidth. Obviously, Δt should be increased in order to increase DBP. This is achieved by

increasing the length of the device (L). To compare devices with different lengths and operating frequencies,

NDBP is a better choice [75]:

 ̅̅ ̅ (6.2)

where ̅̅ ̅̅ is the average of the group index , Δω is the normalized bandwidth, and ω0 is the normalized central
frequency of light wave.

 Since NDBP has a direct relation to the group index (), can be formulated as follows [76]:

 (6.3)

where ω is the dispersion, k indicates the wave vector, C is the velocity of light in free space, and shows the

group index. Since is changing in the bandwidth range, it should be averaged as follows:

 ̅̅ ̅ ∫

 (6.4)

The bandwidth of a PCW refers to the region of the curve where has an approximately constant value

with a maximum fluctuation rage of ±10% [75]. Detailed information about PCWs can be found in [77-80].

Finally, the problem is mathematically formulated for GWO as follows:

 ⃗ [] [

]

 ⃗
 ̅̅ ̅̅

 ()

 (6.5)

2R5

2R4

2R2

2R3

2R1

wh

Si

wl

Filled

l

a Super cell

 ,

Note that we consider five constraints for the GWO algorithm. The second to fifth constraints avoid band

mixing. To handle feasibility, we assign small negative objective function values (-100) to those search agents

that violate the constraints.

The GWO algorithm was run 20 times on this problem and the best results obtained are reported in Table 12.

Note that the algorithm was run by 24 CPUs on a Windows HPC cluster at Griffith University. This table shows

that there is a substantial, 93% and 65% improvement in bandwidth (Δλ) and NDBP utilizing the GWO

algorithm.

The photonic band structure of the BSPCW optimized is shown in Fig. 16(a). In addition, the corresponded

group index and optimized super cell are shown in Fig. 16 (b) and Fig. 17. These figures show that the optimized

structure has a very good bandwidth without band mixing as well. This again demonstrated the high performance

of the GWO algorithm in solving real problems.

Table 12. Structural parameters and calculation results

Structural parameter Wu et al.[81] GWO

R1 - 0.33235a
R2 - 0.24952a

R3 - 0.26837a

R4 - 0.29498a
R5 - 0.34992a

l - 0.7437a

Wh - 0.2014a
Wl - 0.60073a

a(nm) 430 343

 ̅̅ ̅ 23 19.6

Δλ(nm) 17.6 33.9

Order of magnitude of β2 (a/2ᴫc2) 103 103

NDBP 0.26 0.43

 (a) (b)

Fig. 16. (a) Photonic band structure of the optimized BSPCW structure (b) The group index (ng) of the optimized BSPCW structure

0.25 0.3 0.35 0.4 0.45 0.5
0.16

0.18

0.2

0.22

0.24

0.26

Wavevector--ka/2

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

 (


a/
2


c=
a/

λ
)

Guided mode

Light line

of SiO2

0.214 0.216 0.218 0.22 0.222 0.224
0

20

40

60

80

100

Normalized Frequency (a/2c=a/λ)

T
h

e
G

ro
u
p

 I
n
d

ex
—

n
g



 L

H

Fig. 17. Optimized super cell of BSPCW.

This comprehensive study shows that the proposed GWO algorithm has merit among the current meta-

heuristics. First, the results of the unconstrained benchmark functions demonstrate the performance of the GWO

algorithm in terms of exploration, exploitation, local optima avoidance, and convergence. Second, the results of

the classical engineering problems show the superior performance of the proposed algorithm in solving semi-

real constrained problems. Finally, the results of the optical buffer design problem show the ability of the GWO

algorithm in solving the real problems.

7. Conclusion

This work proposed a novel SI optimization algorithm inspired by grey wolves. The proposed method

mimicked the social hierarchy and hunting behavior of grey wolves. Twenty nine test functions were employed

in order to benchmark the performance of the proposed algorithm in terms of exploration, exploitation, local

optima avoidance, and convergence. The results showed that GWO was able to provide highly competitive

results compared to well-known heuristics such as PSO, GSA, DE, EP, and ES. First, the results on the

unimodal functions showed the superior exploitation of the GWO algorithm. Second, the exploration ability of

GWO was confirmed by the results on multimodal functions. Third, the results of the composite functions

showed high local optima avoidance. Finally, the convergence analysis of GWO confirmed the convergence of

this algorithm.

Moreover, the results of the engineering design problems also showed that the GWO algorithm has high

performance in unknown, challenging search spaces. The GWO algorithm was finally applied to a real problem

in optical engineering. The results on this problem showed a substantial improvement of NDBP compared to

current approaches, showing the applicability of the proposed algorithm in solving real problems. It may be

noted that the results on semi-real and real problems also proved that GWO can show high performance not only

on unconstrained problems but also on constrained problems.

For future work, we are going to develop binary and multi-objective versions of the GWO algorithm.

References

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from natural to artificial systems: OUP USA, 1999.

[2] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," Computational Intelligence Magazine, IEEE, vol. 1, pp. 28-
39, 2006.

[3] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural Networks, 1995. Proceedings., IEEE International

Conference on, 1995, pp. 1942-1948.
[4] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," Evolutionary Computation, IEEE Transactions

on, vol. 1, pp. 67-82, 1997.

[5] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, "Optimization by simulated annealing," science, vol. 220, pp. 671-680, 1983.
[6] G. Beni and J. Wang, "Swarm intelligence in cellular robotic systems," in Robots and Biological Systems: Towards a New

Bionics?, ed: Springer, 1993, pp. 703-712.

[7] B. Basturk and D. Karaboga, "An artificial bee colony (ABC) algorithm for numeric function optimization," in IEEE swarm
intelligence symposium, 2006, pp. 12-14.

[8] O. Olorunda and A. P. Engelbrecht, "Measuring exploration/exploitation in particle swarms using swarm diversity," in

Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on, 2008,
pp. 1128-1134.

[9] E. Alba and B. Dorronsoro, "The exploration/exploitation tradeoff in dynamic cellular genetic algorithms," Evolutionary

Computation, IEEE Transactions on, vol. 9, pp. 126-142, 2005.

R5=120 nm

R4=101 nm

R2=84 nm

R3=92 nm

R1=114 nm

l=255 nm

wl=69 nm wh=206 nm

[10] L. Lin and M. Gen, "Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation," Soft

Computing, vol. 13, pp. 157-168, 2009.
[11] S. Mirjalili and S. Z. M. Hashim, "A new hybrid PSOGSA algorithm for function optimization," in Computer and Information

Application (ICCIA), 2010 International Conference on, 2010, pp. 374-377.

[12] S. Mirjalili, S. Z. Mohd Hashim, and H. Moradian Sardroudi, "Training feedforward neural networks using hybrid particle swarm
optimization and gravitational search algorithm," Applied Mathematics and Computation, vol. 218, pp. 11125-11137, 2012.

[13] J. H. Holland, "Genetic algorithms," Scientific american, vol. 267, pp. 66-72, 1992.

[14] D. Goldberg, "Genetic Algorithms in optimization, search and machine learning," Addison Wesley, New York. Eiben AE, Smith
JE (2003) Introduction to Evolutionary Computing. Springer. Jacq J, Roux C (1995) Registration of non-segmented images using

a genetic algorithm. Lecture notes in computer science, vol. 905, pp. 205-211, 1989.

[15] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,"
Journal of global optimization, vol. 11, pp. 341-359, 1997.

[16] X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," Evolutionary Computation, IEEE Transactions on, vol. 3,

pp. 82-102, 1999.
[17] D. Fogel, Artificial intelligence through simulated evolution: Wiley-IEEE Press, 2009.

[18] N. Hansen, S. D. Müller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with

covariance matrix adaptation (CMA-ES)," Evolutionary Computation, vol. 11, pp. 1-18, 2003.
[19] I. Rechenberg, "Evolution strategy," Computational Intelligence: Imitating Life, vol. 1, 1994.

[20] J. R. Koza, "Genetic programming," 1992.

[21] D. Simon, "Biogeography-based optimization," Evolutionary Computation, IEEE Transactions on, vol. 12, pp. 702-713, 2008.
[22] B. Webster and P. J. Bernhard, "A local search optimization algorithm based on natural principles of gravitation," in Proceedings

of the 2003 International Conference on Information and Knowledge Engineering (IKE’03), Las Vegas, Nevada, USA, 2003, pp.

255-261.
[23] O. K. Erol and I. Eksin, "A new optimization method: big bang–big crunch," Advances in Engineering Software, vol. 37, pp.

106-111, 2006.

[24] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm," Information sciences, vol. 179, pp.
2232-2248, 2009.

[25] A. Kaveh and S. Talatahari, "A novel heuristic optimization method: charged system search," Acta Mechanica, vol. 213, pp. 267-
289, 2010.

[26] R. A. Formato, "Central force optimization: A new metaheuristic with applications in applied electromagnetics," Progress In

Electromagnetics Research, vol. 77, pp. 425-491, 2007.
[27] B. Alatas, "ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization," Expert Systems with

Applications, vol. 38, pp. 13170-13180, 2011.

[28] A. Hatamlou, "Black hole: A new heuristic optimization approach for data clustering," Information sciences, 2012.
[29] A. Kaveh and M. Khayatazad, "A new meta-heuristic method: Ray Optimization," Computers & Structures, vol. 112, pp. 283-

294, 2012.

[30] H. Du, X. Wu, and J. Zhuang, "Small-world optimization algorithm for function optimization," in Advances in Natural
Computation, ed: Springer, 2006, pp. 264-273.

[31] H. Shah-Hosseini, "Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous

optimisation," International Journal of Computational Science and Engineering, vol. 6, pp. 132-140, 2011.
[32] F. F. Moghaddam, R. F. Moghaddam, and M. Cheriet, "Curved Space Optimization: A Random Search based on General

Relativity Theory," arXiv preprint arXiv:1208.2214, 2012.

[33] X.-S. Yang, "A new metaheuristic bat-inspired algorithm," in Nature inspired cooperative strategies for optimization (NICSO
2010), ed: Springer, 2010, pp. 65-74.

[34] H. A. Abbass, "MBO: Marriage in honey bees optimization-A haplometrosis polygynous swarming approach," in Evolutionary

Computation, 2001. Proceedings of the 2001 Congress on, 2001, pp. 207-214.
[35] X. Li, "A new intelligent optimization-artificial fish swarm algorithm," Doctor thesis, Zhejiang University of Zhejiang, China,

2003.

[36] M. Roth, "Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks," 2005.

[37] P. C. Pinto, T. A. Runkler, and J. M. Sousa, "Wasp swarm algorithm for dynamic MAX-SAT problems," in Adaptive and

Natural Computing Algorithms, ed: Springer, 2007, pp. 350-357.

[38] A. Mucherino and O. Seref, "Monkey search: a novel metaheuristic search for global optimization," in AIP conference
proceedings, 2007, p. 162.

[39] X. Lu and Y. Zhou, "A novel global convergence algorithm: bee collecting pollen algorithm," in Advanced Intelligent Computing

Theories and Applications. With Aspects of Artificial Intelligence, ed: Springer, 2008, pp. 518-525.
[40] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in Nature & Biologically Inspired Computing, 2009. NaBIC 2009.

World Congress on, 2009, pp. 210-214.

[41] Y. Shiqin, J. Jianjun, and Y. Guangxing, "A Dolphin Partner Optimization," in Intelligent Systems, 2009. GCIS'09. WRI Global
Congress on, 2009, pp. 124-128.

[42] X.-S. Yang, "Firefly algorithm, stochastic test functions and design optimisation," International Journal of Bio-Inspired

Computation, vol. 2, pp. 78-84, 2010.
[43] A. Askarzadeh and A. Rezazadeh, "A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell:

bird mating optimizer," International Journal of Energy Research, 2012.

[44] A. H. Gandomi and A. H. Alavi, "Krill Herd: a new bio-inspired optimization algorithm," Communications in Nonlinear Science
and Numerical Simulation, 2012.

[45] W.-T. Pan, "A new fruit fly optimization algorithm: taking the financial distress model as an example," Knowledge-Based

Systems, vol. 26, pp. 69-74, 2012.
[46] L. D. Mech, "Alpha status, dominance, and division of labor in wolf packs," Canadian Journal of Zoology, vol. 77, pp. 1196-

1203, 1999.

[47] C. Muro, R. Escobedo, L. Spector, and R. Coppinger, "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in
computational simulations," Behavioural processes, vol. 88, pp. 192-197, 2011.

[48] J. Digalakis and K. Margaritis, "On benchmarking functions for genetic algorithms," International journal of computer

mathematics, vol. 77, pp. 481-506, 2001.
[49] M. Molga and C. Smutnicki, "Test functions for optimization needs," Test functions for optimization needs, 2005.

[50] X.-S. Yang, "Test problems in optimization," arXiv preprint arXiv:1008.0549, 2010.

[51] S. Mirjalili and A. Lewis, "S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization," Swarm and

Evolutionary Computation, vol. 9, pp. 1-14, 2013.
[52] J. Liang, P. Suganthan, and K. Deb, "Novel composition test functions for numerical global optimization," in Swarm Intelligence

Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, 2005, pp. 68-75.

[53] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari, "Problem definitions and evaluation criteria
for the CEC 2005 special session on real-parameter optimization," KanGAL Report, vol. 2005005, 2005.

[54] F. van den Bergh and A. Engelbrecht, "A study of particle swarm optimization particle trajectories," Information sciences, vol.

176, pp. 937-971, 2006.
[55] J. S. Arora, Introduction to optimum design: Academic Press, 2004.

[56] A. D. Belegundu, "Study of mathematical programming methods for structural optimization," Dissertation Abstracts

International Part B: Science and Engineering[DISS. ABST. INT. PT. B- SCI. & ENG.], vol. 43, p. 1983, 1983.
[57] C. A. Coello Coello and E. Mezura Montes, "Constraint-handling in genetic algorithms through the use of dominance-based

tournament selection," Advanced Engineering Informatics, vol. 16, pp. 193-203, 2002.

[58] Q. He and L. Wang, "An effective co-evolutionary particle swarm optimization for constrained engineering design problems,"
Engineering Applications of Artificial Intelligence, vol. 20, pp. 89-99, 2007.

[59] E. Mezura-Montes and C. A. C. Coello, "An empirical study about the usefulness of evolution strategies to solve constrained

optimization problems," International Journal of General Systems, vol. 37, pp. 443-473, 2008.
[60] C. A. Coello Coello, "Use of a self-adaptive penalty approach for engineering optimization problems," Computers in Industry,

vol. 41, pp. 113-127, 2000.

[61] M. Mahdavi, M. Fesanghary, and E. Damangir, "An improved harmony search algorithm for solving optimization problems,"
Applied Mathematics and Computation, vol. 188, pp. 1567-1579, 2007.

[62] F. Huang, L. Wang, and Q. He, "An effective co-evolutionary differential evolution for constrained optimization," Applied

Mathematics and Computation, vol. 186, pp. 340-356, 2007.
[63] X. S. Yang, Nature-inspired metaheuristic algorithms: Luniver Press, 2011.

[64] A. Carlos and C. COELLO, "Constraint-handling using an evolutionary multiobjective optimization technique," Civil

Engineering Systems, vol. 17, pp. 319-346, 2000.
[65] K. Deb, "Optimal design of a welded beam via genetic algorithms," AIAA journal, vol. 29, pp. 2013-2015, 1991.

[66] K. Deb, "An efficient constraint handling method for genetic algorithms," Computer methods in applied mechanics and
engineering, vol. 186, pp. 311-338, 2000.

[67] K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory

and practice," Computer methods in applied mechanics and engineering, vol. 194, pp. 3902-3933, 2005.
[68] K. Ragsdell and D. Phillips, "Optimal design of a class of welded structures using geometric programming," ASME Journal of

Engineering for Industries, vol. 98, pp. 1021-1025, 1976.

[69] K. Deb and A. S. Gene, "A robust optimal design technique for mechanical component design," presented at the D. Dasgupta, Z.
Michalewicz (Eds.), Evolutionary Algorithms in Engineering Applications, Berlin, 1997.

[70] A. Kaveh and S. Talatahari, "An improved ant colony optimization for constrained engineering design problems," Engineering

Computations: Int J for Computer-Aided Engineering, vol. 27, pp. 155-182, 2010.
[71] B. Kannan and S. N. Kramer, "An augmented Lagrange multiplier based method for mixed integer discrete continuous

optimization and its applications to mechanical design," Journal of mechanical design, vol. 116, p. 405, 1994.

[72] E. Sandgren, "Nonlinear integer and discrete programming in mechanical design," 1988, pp. 95-105.
[73] C. Caer, X. Le Roux, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, "Dispersion engineering of wide slot

photonic crystal waveguides by Bragg-like corrugation of the slot," Photonics Technology Letters, IEEE, vol. 23, pp. 1298-1300,

2011.
[74] T. Baba, "Slow light in photonic crystals," Nature Photonics, vol. 2, pp. 465-473, 2008.

[75] Y. Zhai, H. Tian, and Y. Ji, "Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal

waveguide," Lightwave Technology, Journal of, vol. 29, pp. 3083-3090, 2011.
[76] D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, "Slow light engineering in polyatomic photonic crystal

waveguides based on square lattice," Optics Communications, vol. 284, pp. 5829-5832, 2011.

[77] S. M. Mirjalili and S. Mirjalili, "Light property and optical buffer performance enhancement using Particle Swarm Optimization

in Oblique Ring-Shape-Hole Photonic Crystal Waveguide," in Photonics Global Conference (PGC), 2012, 2012, pp. 1-4.

[78] S. M. Mirjalili, K. Abedi, and S. Mirjalili, "Optical buffer performance enhancement using Particle Swarm Optimization in Ring-

Shape-Hole Photonic Crystal Waveguide," Optik - International Journal for Light and Electron Optics, vol. 124, pp. 5989-5993,
2013.

[79] S. M. Mirjalili, S. Mirjalili, and A. Lewis, "A Novel Multi-objective Optimization Framework for Designing Photonic Crystal

Waveguides," Photonics Technology Letters, IEEE, vol. 26, pp. 146-149, 2014.
[80] S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, "A tri-objective Particle Swarm Optimizer for designing line defect

Photonic Crystal Waveguides," Photonics and Nanostructures - Fundamentals and Applications.

[81] J. Wu, Y. Li, C. Peng, and Z. Wang, "Wideband and low dispersion slow light in slotted photonic crystal waveguide," Optics
Communications, vol. 283, pp. 2815-2819, 2010.

� مقا�، از �ی �
ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� �
 ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

