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Abstract: Many concepts concerning the quantification of program complexity have been developed 
during the last few years. One of the most accepted and easy-to-apply complexity measures, McCabe's 
cyclomatic number, has been discussed and improved in several studies. The cyclomatic number only 
considers the d e c ~ o n  structure of a program. Therefore, this paper proposes a new method for calcu- 
fating program complexity, the concept of postdomination. This takes into account the degree of nest- 
ing of a program. Combining this method and the cyclomatic number, a new complexity measure will 
be defined. 

1. Introduction 

Of the many proposals concerning the quantification of program complexity, McCabe's concept 
(MCCA76) seems to be one of the most accepted and easy-to-apply complexity measures. He proposes 
that complexity is not closely related to program size, but rather to the number of basic paths through 
a program-control graph. McCabe's concept uses a directed-graph representation of programs and 
fundamentaLs of graph theory to compute the compelxity measure. To start, one draws a control 
graph (directed graph) for a given program. A node in the graph corresponds to some statements, and 
an arc or edge corresponds to the possible control flow among the various nodes. For such a graph G, 
the cyclomatic number v(G) is defined by 

v(O) = e - n + 2p, 

where • denotes the number of edges, n the number of nodes, and p the number of connected com- 
ponents. 

Therefore, a program's complexity, measured by v(G), is assumed to be only a factor of the program's 
decision structure. However,  several anomalies have been found where a higher complexity would be 
calculated for a program of lesser complexity than for a more complex program. 

For improvement, Myers suggests calculating v(G) as a complexity interval 0VIYER77). The lower 
bound of the interval is defined as the number of decision statements plus one (examples for decis/on 
statements are IF, DO WHILE,  and interative DO statements), and the upper bound is the number of 
individual conditions plus one. Hansen developed a measure that combines the cyclomatic number 
and an operation count (HANS78). On the other hand, the McCabe measure does not cons/der the 
complexity of nesting. Chen describes the complexity of a program with a measure MIN (maximal in- 
tersect number; CHEN78). Harrison et al. measures the complexity of programs by the greatest lower 
bound (GLB) of selection node (HARR81). However, the meaning of the GLB of selection node is 
not clear. 

This paper introduces a new method for calculating complexity, the concept of "postdomination," 
which takes into account the degree of nesting. With the aid of this concept we will rectify McCabe's 
cyclomatic number and define a new comvlexity measure. 

Therefore, we cons/der the following five programs and their control graphs: 
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(a) 

(c) 

(d) 

IF Pl THEN S2; 

ELSE S3; 

IF P4 THEN S5; 

ELSE S6; 

S7; 

IF P1 THEN 

IF P2 THEN $4; 

ELSE S$; 

S6; 

ELSE $3; 

S?; 

IF P1 THEN S2; 

ELSE $3; 

IF P4 THEN $5; 

ELSE $6; 

IF P? THEN $8; 

ELSE S9; 

S10; 

IF P1 THEN 

ELSE 

IF P2 THEN $4; 

ELSE $5; 

$8; 

IF P3 THEN $6; 

ELSE S?; 

$9; 

2 3 

3 5 

1 

2 3 

4 

8 9 

$10; 
1.5 



(e) IF P1 THEN 

$9; 

ELSE S1; 

S10; 

IF P2 THEN 

IF F3 THEN $4; 

ELSE S5; 

$8; 

ELSE S6; 

I 

2 3 

7 4 

Obviously, calculating the complexities of the above control graphs by the classical cyclomatic number 
leads to: 

v(a) = v(b) = 3; v(c) = v(d) -- v(e) = 4. 

It is not possible now to differentiate, for example, between the complexity of programs a and b. 
Therefore, if we want to distinguish control graphs having the same complexities measured by 
McCabe's cyclomatic number, we have to consider a new concept, which will be introduced in the fol- 
lowing section. 

2. Degree of nesting 

Let P be a program or a module of a program. The directed graph of P is defined by G = (V,A), 
where V is a finite nonempty set, and A is a relation on V. Each element in V is called a node, and 
each pair in A is called an arc or edge. Then 

V - - V I + V  2 

where 
V = (x I x • V ,  Isuc(x)l < 1]; and 

V = {x Ix • V ,  I suc(x)l > 2}; 

sue(x) represents the set of (immediate) successors of node x (x is not the end node), suc(x) = {y I 
(x,y) • A, x,y • V}; I suc(x)l denotes the out-degree of nodes x (the number of elements of sue(x)). 

The elements of V 2 are called selection or decision nodes. (Note: The arc between x and y leaves the 
node x and enters the node y. We say that x is a predecessor of y, and y is a successor of x.) 

Any reference to a graph in the remainder of this paper will be to a connected directed graph with a 
single initial node (a node that has no predecessor). 

In the following we will describe the so-called forward dominance relationship that exists in a directed 
graph and is of interest in control-flow analysis (for the definition of the backward dominance or 
predominance, see HECH77, p. 55). Let s be the initial node and e the exit node of the graph G. 
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Definition: If x ,  y e V ,  x • y ,  t h e n  x forward dominates or postdominates y if and only if every path 
in G from y to its exit node contains x. Note: x pdom y. For convenience, we let PDOM(y) -- {x I x 
pdom y, x e V} for each y e V. We say that  x directly postdominates y if and only if 1) x pdom y, and 
2) if z e V, z pdom y, then z pdom x. 

Example: Consider the graph of program I with s = 1 and e = 7. Then V = {1, 2, 3, 4, 5, 6, 7}, V 1 = 
{2, 3, 5, 6, 7}, V 2 = {1, 4}, 1 pdom 1, 4 pdom 1, 7 pdom 1, and 4 directly postdominates 1. 

The proof of the following lemma will be found in the appendix (see conclusion 5). 

Lemma: If  x e V 2 , then x has a unique,  direct-forward dominator  x'. 

We will now consider such a forward dominator  x' of an element x of V (with the above lemma it ex- 
ists and is unique).  The nodes and edges between x and x' construct a subgraph G ' c  G; G'  is called 
control subgraph of node x. Obviously, G'  has only one entry node (x) and one exit node (x'). Let  N 
= I V21 (I V21 represents the number of elements of V~.), n ~ V z , and G, be the control subgraph of  node 
n. Let  d,~ be the number  of selection nodes of G .  

Then the degree of  nesting of  the selection node n is defined as: 

E. = 1 - ( 1 / d . )  

Since C~ has a selection node n at least, so d , >  1, and 0 <_ ~ , <  1. 

We now define the degree of nesting of a graph G by: 

E --- (El + E2 + . . .  + Es)/ v 

Obviously, 0 < ~ < 1. 

3. Rectificaiton of v(G) 

We define a new complexity measure for programs by: 

c ( c )  

where v(G) is the cyclomatic number,  and is the degree of nesting of G as defined above. 

McCabe's complexity measure only takes into account the decision structure of a program and is in- 
dependent  of the nesting structure. Although,  for example, v(G) for two different  programs is identi- 
cal; it can be possible that they have a different degree of nesting, but the cyclomatic number doesn't  
distinguish them. However,  adding the degree of nesting implicates a rectification of McCabe's com- 
plexity measure. 

Calculating the new complexities of programs (a)-(e), given above, leads to: 

1) d l - - d 2 - - 1 ,  so E1 =E2 ---- 0, E ---- O, c ( a )  --- v ( a )  = 3; 

2) d I -- 2, d 2 = 1, so • = 1/4, c ( b )  = 3,25; 

3) d l - - d 2  = d 3 - -  1, so c - - 0 ,  c ( ¢ ) - -  v ( ¢ ) - - 4 ;  

4) d I = 3, d 2 -- d 3 = 1, so  c -- 1 / 9 ,  c ( d )  -- 4,11; 

5) d 1 = 3, d 2 -- 2, d 3 = 1, so E = 5/18, c ( e )  = 4,28. 

It is possible now to differentiate between programs (a) and (b) (having the same cyclomatic number),  

17 



and between programs (c), (d), and (e) (which also have the same cyclomatic number): 

c(a) < c(b) and c(c) < c(d) < c(e). 

Example: For twelve examples from McCabe (MCCA76, p. 310 ft.) the cyclomatic number v(G) and 
the extended complexity measure c(G) will be calculated and compared by their ranks. 

Graph O (no.) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

v(O) 

2 

3 

5 

6 

8 

8 

9 

10 

10 

10 

11 

19 

c(O) 

2 

3,25 

5,5O 

6,55 

8,39 

8,60 

9,46 

10,48 

10,17 

I0,09 

11,56 

19,42 

Rank of v(G) 

1 

2 

3 

4 

5,5 

5,5 

7 

9 

9 

9 

11 

12 

Rank of c(O) 

1 

2 

3 

4 

5 

6 

7 

10 

9 

8 

11 

12 

5. Appcnd/x 

Let G = (V,A,s,e) be a program control graph where V denotes the set of aH node.i, A the set of all 
edges, s the initial node, and e the exit node. There is no loss of generality in assuming that G has ex- 
actly one initial node and one exit node. 

Definition: If x, y ~ V, x :g y, then x forward dominates or postdominates y if and only if every path 
in G from y to its exit node contains x. Note: x pdom y. For convenience, we let PDOM(y) --- {x I x 
pdom y, x ~ V} for each y ~ V. 

We say that x directly postdominates y if and only if 1) x pdom y, and 2) if z e V, z pdom y, 
then z pdom x. 

There are five conclusions for the relation "postdominance." 

Conclusion 1: PDOM(e) = {e). 
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Proof:  Obvious. 

Conclusion 2: The  postdominance relat ion of  a graph G is a partial ordering.  
(Note: A part ial  order ing  on a set S is a reflexive, ant isymmetric ,  and t ransi t ive relat ion on S.) 

Proof:  1) Reflexivity: For  each x ~ V, it follows f rom the definition that  x pdom x. 

2) Ant isymmetry:  We  claim that  if x, y # V, x pdom y, and y pdom x, then x = y. First, if x 
= e or y = e, it follows f rom conclusion 1 that  x = y = e. Now consider the second case, x * e and y 
• e. Let  (wl ,  w2 . . . . .  wk) be any path f rom y to e. Since x pdom y, there  exists an index it, 1 < it 
< k, such that  wit = x. Since y pdom x, there  exists jr, i t  < jt  < k, such that  wjt  = y. We can con- 
t inue to do  this. Finally, there  exists it, i~ . . . .  , Jl, J~, . . . .  1 < i t < Jl < i ~ <  j:~< . . .  < k, such that  
wi, = wi z = . . .  = x, wj, = wj2 = . . .  = y. Because k is a finite number ,  it follows that x = y. 

3) Transitivity: If  x pdom y, y pdom z, then  x pdom z (obvious). 

Conclusion 3: The  exit node e of  G postdominates  all nodes.  

Proof: Obvious. 

Conclusion 4: If x V, then PDOM(x) forms a chain. (Note: A chain or  l inear order ing on a set S is 
a partial  order ing on S such that  every pair  of  elements  is comparable.  

Proof: For  x V, PDOM(x) is a partial  ordering.  We shall show that every pair of  e lements  of 
PDOM(x) is comparable  by the relat ion pdom. That  means for  y, z # PDOM(x) that  e i ther  y pdom z or  
z pdom y. Let  (wl ,  w2, . . . .  wk) be any cycle-free path with wl  = x, wk = e. Then  there  exist some 
indices i, j, 1 <_ i, j <_ k,  such that wi = y, wj = z. Without  loss of generali ty,  assume i < j (j < i). 
We claim that z pdom y (y pdom x). Suppose that  z does not  postdominate  y. Then  there  is a path p 
f rom y to e that does not  contain z. Now (wl  . . . . .  wi) + p is a path f rom x to • that  does not  contain 
z. But this contradicts  the hypothesis  that  z ~ PDOM(x).  

Conclusion 5: Every node  except • has a unique ,  direct postdominator .  

Proof: Let  x be any node and • * e. Then  {x,e) C PDOM(x).  By conclusion 4, the postdominance re- 
lation is a chain on PDOM(x) and also on  PDOM(x) - {x). We know that any finite nonemply set has a 
unique minimum and maximum element .  PDOM(x) - {x} is a finite nonempty  chain. There fo re ,  it has 
a unique least e lement  that must be the direct  pos tdominator  of x. 
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