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A complexity measure based on selection and nesting

by Huisheng Gong and Monika Schmidt

Keywords: cyclomatic number, program complexity, degree of nesting, forward dominance.

Abstract: Many concepts concerning the quantification of program complexity have been developed
during the last few years. One of the most accepted and casy-to-apply complexity measures, McCabe’s
cyclomatic number, has been discussed and improved in scveral studies. The cyclomatic number only
considers the decision structure of a program. Therefore, this paper proposes a new method for calcu-
lating program complexity, the concept of postdomination. This takes into account the degree of nest-
ing of a program. Combining this method and the cyclomatic number, a new complexity measure will
be defined.

1. Introduction

Of the many proposals concerning the quantification of program complexity, McCabe’s concept
(MCCAU76) sccms to be one of the most accepted and casy-to-apply complexity measures. He proposes
that complexity is not closely related to program size, but rather to the number of basic paths through
a program-control graph. McCabe’s concept uses a directed-graph representation of programs and
fundamentals of graph theory to compute the compelxity measure. To start, onc draws a control
graph (directed graph) for a given program. A node in the graph corresponds to some statements, and
an arc or edge corresponds to the possible control flow among the various nodes. For such a graph G,
the cyclomatic number v(G) is defined by

v(G)=e-n +2p,

where e denotes the number of edges, n the number of nodes, and p the number of connected com-
ponents.

Therefore, a program’s complexity, measured by v(G), is assumed to be only a factor of the program’s
decision structure. However, several anomalies have been found where a higher complexity would be
calculated for a program of lesser complexity than for a more complex program.

For improvement, Myers suggests calculating v(G) as a complexity interval (MYER77). The lower
bound of the interval is defined as the number of decision statements plus one (examples for decision
statements are IF, DO WHILE, and interative DO statements), and the upper bound is the number of
individual conditions plus one. Hansen developed a measure that combines the cyclomatic number
and an operation count (HANS78). On the other hand, the McCabe measure does not consider the
complexity of nesting. Chen describes the complexity of a program with a measure MIN (maximal in-
tersect number; CHEN78). Harrison et al. measures the complexity of programs by the greatest lower
bound (GLB) of selection node (HARRS81). However, the meaning of the GLB of sclection node is
not clear.

This paper introduces a new method for calculating complexity, the concept of “postdomination,”
which takes into account the degree of nesting. With the aid of this concept we will rectify McCabe’s
cyclomatic number and define a new complexity measure.

Therefore, we consider the following five programs and their control graphs:
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IF P1 THEN 82;

ELSE S3;

IF P4 THEN SS;

S7;

ELSE S6;

IF P1 THEN

s7;

IF P2 THEN $4;

ELSE S5;

ELSE 83;

IF P1 THEN S§2;

ELSE §3;

IF P4 THEN S5;

ELSE S6;

IF P7 THEN S8;

S10;

ELSE S9;

IF P1 THEN

S10;

IF P2 THEN $4;

ELSE S5;

ELSE
IF P3 THEN S6;
ELSE S§7;

S9;
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(¢)  IF P1THEN

IF P2 THEN 1
IF P3 THEN S4;
ELSE S§;
S8; v
ELSE S6;
S9;
ELSE S§1; 10

S10;

Obviously, calculating the complexities of the above control graphs by the classical cyclomatic number
leads to:

v(a) = v(b) = 3; v(c) = v(d) = v(c) = 4.

It is not possible now to differentiate, for example, between the complexity of programs a and b.
Therefore, if we want to distinguish control graphs having the same complexities measured by
McCabe’s cyclomatic number, we have to consider a new concept, which will be introduced in the fol-
lowing section.

2. Degree of nesting
Let P be a program or a module of a program. The directed graph of P is defined by G = (V,A),

where V is a finite nonempty set, and A is a relation on V. Each element in V is called a node, and
each pair in A is called an arc or edge. Then

\ 4 =V1+V2

where
V ={xIxeV,isuc(x)l < 1}; and

V ={x1x€V,lsuc(x)l > 2};

suc(x) represents the set of (immediate) successors of node x (x is not the end node), suc(x) = {y |
(x,y) € A, x,y € V}; |suc(x)l denotes the out-degree of nodes x (the number of elements of suc(x)).

The elements of V, are called sclection or decision nodes. (Note: The arc between x and y leaves the
node x and enters the node y. We say that x is a predecessor of y, and y is a successor of x.)

Any reference to a graph in the remainder of this paper will be to a connected directed graph with a
single initial node (a node that has no predecessor).

In the following we will describe the so-called forward dominance relationship that exists in a directed

graph and is of interest in control-flow analysis (for the definition of the backward dominance or
predominance, sec HECH77, p. 55). Let s be the initial node and e the exit node of the graph G.
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Definition: If x, y€ V, x # y, then x forward dominates or postdominates y if and only if every path
in G from y to its exit node contains x. Note: x pdom y. For convenience, we let PDOM(y) = {x I x
pdom y, x € V} for each y € V. We say that x directly postdominates y if and only if 1) x pdom y, and
2) if z¢V, z pdom y, then z pdom x.

Example: Consider the graph of program 1 withs =lande =7. ThenV ={1,2,3,4,5,6, 7}, v =
{2,3,5,6,7},V, ={1, 4}, 1 pdom 1, 4 pdom 1, 7 pdom 1, and 4 directly postdominates 1.

The proof of the following lemma will be found in the appendix (see conclusion 5).
Lemma: If x €V, , then x has a unique, direct-forward dominator x’.

We will now consider such a forward dominator x’ of an element x of V (with the above lemma it ex-
ists and is unique). The nodes and edges between x and x’ construct a subgraph G’C G; G’ is called
control subgraph of node x. Obviously, G’ has only one entry node (x) and one exit node (x’). Let N
= | Vo1 (I Vy| represents the number of elements of V,), n € V,, and G,be the control subgraph of node
n. Let d, be the number of selection nodes of G .

Then the degree of nesting of the selection node n is defined as:
€ =1-(1/d,)
Since G, has a selection node n at least,sod,,> 1,and 0 < €, < 1.
We now define the degree of nesting of a graph G by:
€ =(e1+c2+...+e~)/N
Obviously, 0 <€ < 1.
3. Rectificaiton of v(G)
We define a new complexity measure for programs by:
c(G)=v([G) +e€
where v(G) is the cyclomatic number, and is the degree of nesting of G as defined above.

McCabe’s complexity measure only takes into account the decision structure of a program and is in-
dependent of the nesting structure. Although, for example, v(G) for two different programs is identi-
cal; it can be possible that they have a different degree of nesting, but the cyclomatic number doesn’t
distinguish them. However, adding the degree of nesting implicates a rectification of McCabe’s com-
plexity measure.

Calculating the new complexities of programs (a)-(¢), given above, leads to:
1) di=dy=1,50€¢;=€¢=0,e =0,c(a@a) =v(a)=3;
2) dy=2,d;,=1,5 €=1/4,c(b) = 325;
3) d1=d2=d3=l,so€=0,c(c)=v(c)=4;
4) 41=3,dz=d3=l,sae=1/9,c(d)=4,11;
5) d1=3,d,=2,dy=1,5s0 €=5/18,c(e)=4,28.

It is possible now to differentiate between programs (a) and (b) (having the same cyclomatic number),
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and between programs (c), (d), and (¢) (which also have the same cyclomatic number):
c(a) < c(b) and c(c) < c(d) < c(e).

Example: For twelve examples from McCabe (MCCAT76, p. 310 ff.) the cyclomatic number v(G) and
the extended complexity measure c(G) will be calculated and compared by their ranks.

Graph G (no.) v(G) c(G) Rank of v(G) Rank of ¢(G)
1 2 2 1 1
2 3 325 2 2
3 5 5,50 3 3
4 6 6,55 4 4
5 8 8,39 3.5 5
6 8 8,60 5,5 6
7 9 9,46 7 7
8 10 10,48 9 10
9 10 10,17 9 9
10 10 10,09 9 8
11 11 11,56 1 - 11
12 19 19,42 2 12

5. Appendix

Let G = (V,As,c) be a program control graph where V denotes the set of all nodes, A the set of all
edges, s the initial node, and e the exit node. There is no loss of generality in assuming that G has ex-
actly one initial node and one exit node.

Definition: If x, y ¢V, x # y, then x forward dominates or postdominates y if and only if every path
in G from y to its exit node contains x. Note: x pdom y. For convenience, we let PDOM(y) = {x I x

pdom y, x € V} for eachy € V.

We say that x directly postdominates y if and only if 1) x pdom y, and 2) if z € V, z pdom y,
then z pdom x.

There are five conclusions for the relation "postdominance.”

Conclusion 1: PDOM(e) = {e}.
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Proof: Obvious.

Conclusion 2: The postdominance relation of a graph G is a partial ordering.
(Note: A partial ordering on a sct S is a reflexive, antisymmetric, and transitive relation on S.)

Proof: 1) Reflexivity: For cach x ¢V, it follows from the definition that x pdom x.

2) Antisymmetry: We claim that if x, y € V, x pdom y, and y pdom x, then x = y. First, if x
=c¢ ory = ¢, it follows from conclusion 1 that x =y = e. Now consider the second case, x + ¢ and y
# e. Let (w1, w2, .. ., wk) be any path from y to e. Since x pdom y, there exists an index i;, 1 < i}
< k, such that wi; = x. Since y pdom x, there exists j;, iv < ji < k, such that wjL =y. We can con-
tinue to do this. Finally, there exists &y, 1, .., ho b .- 1< i, < §, < i,< jo< ... < Kk, such that
wi, =wi, =...=x,wj, =wj,=...=y. Because k is a finite number, it follows that x = y.

3) Transitivity: If x pdom y, y pdom z, then x pdom 2z (obvious).
Conclusion 3: The exit node ¢ of G postdominates all nodes.
Proof: Obvious.

Conclusion 4: If x V, then PDOM(x) forms a chain. (Note: A chain or linear ordering on a set S is
a partial ordering on S such that every pair of elements is comparable.

Proof: For x V, PDOM(x) is a partial ordering. We shall show that every pair of clements of
PDOM(x) is comparable by the relation pdom. That means for y, z € PDOM(x) that either y pdom z or
z pdom y. Let (wl, w2, .. ., wk) be any cycle-free path with wl = x, wk = ¢. Then there exist some
indices i, j, 1 < i, j < Kk, such that wi =y, wj = z. Without loss of generality, assume i < j (j < i).
We claim that z pdom y (y pdom x). Suppose that z does not postdominate y. Then there is a path p
from y to ¢ that does not contain z. Now (w1, .. ., wi) + p is a path from x to e that does not contain
z. But this contradicts the hypothesis that z ¢ PDOM(x).

Conclusion 5: Every node except ¢ has a unique, direct postdominator.

Proof: Let x be any node and x + ¢. Then {x,c} c PDOM(x). By conclusion 4, the postdominance re-
lation is a chain on PDOM(x) and also on PDOM(x) - {x}. We know that any finite nonemply set has a
unique minimum and maximum element. PDOM(x) - {x} is a finite nonempty chain. Therefore, it has
a unique least clement that must be the direct postdominator of x.
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