
Architecture Support and Comparison of Three Memory Consistency Models in NoC
based Systems

Abdul Naeem, Axel Jantsch and Zhonghai Lu
Department of Electronic Systems, KTH-Royal Institute of Technology, Sweden

E-mail: {abduln, axel, zhonghai}@kth.se

Abstract—We propose a novel hardware support for three
relaxed memory models, Release Consistency (RC), Partial Store
Ordering (PSO) and Total Store Ordering (TSO) in Network-on-
Chip (NoC) based distributed shared memory multicore systems.
The RC model is realized by using a Transaction Counter and an
Address Stack based approach to enforce the required global
orders on the shared memory operations. The PSO and TSO
models are realized by using a Write Transaction Counter and a
Write Address Stack based approach to enforce the required global
orders on the shared memory operations. In the experiments, we
use a configurable platform based on a 2D mesh NoC using
deflection routing policy. The results show that under synthetic
workloads, the average execution time for the RC, PSO and TSO
models in 8x8 network (64 cores) is reduced by 35.8%, 22.7% and
16.5% over the sequential consistency (SC) model, respectively.
The average speedup for the RC, PSO and TSO models in 8x8
network under different application workloads is increased by
34.3%, 10.6% and 8.9% over the SC model, respectively. The
area cost for the TSO, PSO and RC models is increased by less
than 2% over the SC model at the interface to the processor.

Keywords- Memory consistency; Release consistency; Scalability;
Distributed shared memory; Network-on-Chip

I. INTRODUCTION
The parallelization of computation, communication and

memory architecture has to be matched [1]. The full potential
can be harvested with Distributed Shared Memory (DSM) on-
chip by exploiting the distributed nature of Network-on-Chip
(NoC) based systems. Since shared memory operations can be
reordered in the network, the DSM systems may show
unexpected behavior. A memory consistency model defines the
execution order of the shared memory operations for the
expected behavior of the DSM systems [2]. The strict
Sequential Consistency (SC) model [3] does not take advantage
of potential performance benefits in the DSM systems. As a
result, several relaxed consistency models [2][4][9][11]
emerged to exploit the system optimizations by relaxing the
ordering constraints on the shared memory operations.

Memory consistency and cache coherence are two distinct
problems. Both aim to achieve consistent view of the memory
system but at different levels. The cache coherence problem
arises due to different cached copies of the same shared data.
Memory consistency in contrast is related to the ordering
constraints on the shared memory operations for the correct
behavior of the DSM systems. In some situations, where these
two problems have very different requirements (e.g. on the size
of the cache block and the consistency object), or when a cache
is not used (e.g. for hard real time applications) an independent
implementation of the memory consistency and cache
coherence is preferred [1][23-25].

Furthermore, heterogeneous and customized systems have
different design constraints and requirements than general

multiprocessors systems. The former have tighter power
constraints, require less but heterogeneous memory, make less
or no use of caches, and have often soft or hard real-time
constraints. In the context of customized NoC based multicore
(McNoC) systems, this paper studies the memory consistency
issue with the following contributions:
• A novel realization scheme of the Release Consistency

(RC) model which is independent of the cache coherence
protocol is proposed. In contrast to [25], reordering among
the outstanding shared memory operations issued by a
processor to the same location in the memory is avoided,
which is mandatory to ensure the parallel program
correctness, i.e., the read operation must always fetch the
most recent value from the memory location in the
adaptive NoC based DSM systems. To that end, an
additional hardware structure called address stack (A-
Stack) is used in each node of the network (Section V).

• The Total and Partial Store Ordering (TSO, PSO) models
are realized using Write Transaction Counter (WTC) and
Write Address Stack (WA-Stack) in each node of the
network. The WTC is used to keep track of the outstanding
shared memory write operations. The WA-Stack is used to
constrain the outstanding write operations issued to the
same location in the shared memory.

• Performance of the RC, PSO, TSO and SC models is
evaluated in the NoC based systems with 1 to 64 cores.

For the experiments, a configurable McNoC platform is
used with DSM, distributed locks and on-chip 2D mesh
Nostrum network [5] using deflection routing policy. We
compare the performance of these memory models in the
McNoC systems. The experimental results show the
performance gain of the RC, PSO and TSO models due to the
reordering and relaxation in the shared memory operations
compared to the SC model.

The paper organization is as follows. The next section gives
an overview of the related work. In section III, the TSO, PSO
and RC models are discussed. In section IV, the DSM based
McNoC platform is introduced. The realization schemes of the
three consistency models are presented in section V. In section
VI, simulation results and performance analysis of these
consistency models are described in the McNoC systems and
finally, section VII summarizes our contribution.

II. RELATED WORK

A. Memory Consistency in Multiprocessors DSM systems
Several memory consistency models are discussed in the

literature [2][3][4][9]. The SC model [3] enforces total order on
the memory operations. The TSO model [6][7] relaxes the
ordering constraint in the case of a write followed by a read

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.27

434

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.27

304

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.27

304

operation. The PSO model [6] further provides relaxation
among the write operations. The ordering constraints on the
memory operations under both TSO and PSO models are
enforced using different kind of fences (non-memory
references). For instance, the SPARC architectures [6] use
(MEMBARs, SBAR), and the x86 architectures [7] use
(MFENCE, SFENCE, LFENCE) fences.

Adve et al. [2] proposed a counter based mechanism to
realize the weak consistency model; however, they did not
discuss the realization of the RC model. The weak consistency
model [8] classifies the shared memory operations as data and
synchronization operations. The data (read, write) operations
issued by a processor between two consecutive synchronization
operations can be reordered with respect to each other. The RC
model [9] further classifies the synchronization operations as
acquire and release operations. The DASH project [10]
implements the RC model using tracking mechanism via
several counters and is dependent on the cache coherence
protocol. The directory based coherence protocol is used to
maintain the status information of cache blocks.

Recent work [12][13] on the directory based coherence
protocols aims to reduce the directory overheads in terms of
area, energy and power consumption. However, the directory
based coherence protocols have some limitations in the larger
networks due to extra coherence traffic, directory overhead,
additional latencies and complexities. Token Coherence [14]
decouples the performance and correctness of the coherence
protocols. Tokens are associated with each memory block
which traverses in the system and are used to track the correct
transfer and accesses to that block. The performance protocol
(TokenB) is based on broadcasting transient requests which is
not scalable in the larger networks.

Transactional memories aim to improve programmer
productivity by moving the synchronization burden to the
platform. The hardware approach [15] relies on additional
transactional caches and coherence protocols. The transaction
size is bounded by the set size of the transactional caches. The
software approach has no such restriction and relies on the
runtime data structures but is less efficient. A hybrid approach
[16] combines the benefits of both. To ensure the consistent
behavior of the memory system aborted transactions due to the
conflicts are re-executed. Memory models are also explored at
high-level programming languages. For example, the Java
memory model [17] specifies the legal transformations and
optimizations for the compiler and virtual machine/hardware.

Of late, address translation aware memory consistency
models at physical and virtual address levels (PAMC, VAMC)
have been proposed [18]. To enforce total order on all
operations, the address translation and translation coherence is
proposed. They focus on the detection of the design and
runtime faults due to the address translation. In [19], a memory
model is defined in terms of instruction reordering and store
atomicity. The main emphasis of the work is on the
serializability and store atomicity issues.

B. Memory Consistency in NoC based Multicores systems
In NoC based systems, the proposed mechanism in [20]

allows one outstanding transaction of an initiator at a time in
the network. But, this strict ordering could not utilize the
parallel nature of the network. A protocol stack for on-chip

interconnects is proposed in [21]. The work specifies a stack at
different levels of the SoC design. They briefly outline the
mechanisms to implement the RC model at the memory-
mapped stack. However, they do not discuss the
implementation detail of it. Streaming consistency [22] is
based on the software cache coherence protocol. In contrast to
the RC model the synchronization sections can overtake each
other. However, polling and updating the circular buffer
administration at each request level may not be feasible in the
larger systems.

The Transaction Counter (TC) based hardware approach is
adopted in [1][23-25] to realize the memory models
independent of the coherence protocols in the McNoC
systems. The SC model is realized in the McNoC systems by
stalling the processor on issuance of each memory operation
till its completion [23]. In [1][24], the RC model is realized by
using two TCs in each node of the network. TC1 and TC2 are
used to keep track of the outstanding shared data operations
issued in the non-critical and critical sections, respectively.
However, TC2 is unnecessarily checked at the acquire points to
be zero in [24]; it is already checked at previous release points.
In [25], a single TC based approach is adopted to realize the
RC model in the McNoC systems. But, these works have not
used a mechanism to avoid reordering among the outstanding
shared memory operations issued by a processor to the same
location in the memory. In this paper, an additional hardware
structure A-Stack is used to avoid reordering of transactions to
the same address to ensure parallel program correctness, and
the TSO and PSO models are realized by using the WTC and
WA-Stack hardware structures. Further, we compare the
performance of these memory models with the SC model.

The OCP protocol [26] allows out-of-order completion of
the tagged transactions of the same master (thread ID). But,
non-tagged transaction requests and responses are strictly
ordered, since connection IDs are assigned to all the masters in
the system to restrict accesses to shared resources. The AXI
protocol [27] allows transactions from the same master with
different ID values to be reordered with respect to each other.
But, transactions with the same ID value are not allowed to be
reordered. Consequently, the A-Stack and WA-Stack structures
in the RC and PSO/TSO models do not allow for reordering
among the shared memory operations issued by the same
processor with the same address (non-tagged case [26], same
ID case [27]). But, the operations issued with different
addresses are allowed to be reordered (tagged case [26],
different IDs case [27]).

To sum up, in order to focus on the memory consistency
issues, we have realized the memory models in the customized
McNoC systems, which have no dependence on the cache
coherence protocols. Specifically, the TC based realization of
RC model [25] is an improvement with respect to correctness
and performance.

III. TSO, PSO AND RC MODELS
The ordering constraints under the SC, TSO and PSO

models are compared in Figure 1. The variables (A, B, C, D,
E, F) are ordinary shared memory variables and the variable S
is a special synchronization (lock) variable. The variables to
the left side of the assignment operators are written and those

435305305

to the right side are read. An arrow between the two variables
indicates an ordering constraint between the operations on
those variables. For instance, A�B indicates that an operation
on A is followed by an operation on B in the program, and an
operation on A is completed before the issuance of an
operation on B. The two operations are not allowed to be
reordered with each other.

 (a) (b) (c)

Figure 1. Comparison of SC, TSO and PSO models

As illustrated in Figure 1(a), according to the SC model, the
shared memory operations are completed in the order specified
by the program (program order). The sequential order is
maintained by interleaving operations on lock S among
processors in the system.

A. TSO Model
The TSO model (Figure 1(b)) allows the write operation on

C to be reordered and overlapped with respect to the following
read operation on D. The TSO model compared to the SC
model allows reordering and relaxation in the case of a write
followed by read operation. It enforces the ordering constraints
in the cases of a read followed by a write (A�B), a write
followed by a write (E�F), or a read followed by a read
operation. In addition, ordering constraints with respect to the
synchronization (Sync) operations must also be enforced. The
global orders to be enforced on the shared memory operations
under TSO model are given in Figure 2(a). We refer to these
global orders in section V.

 (a) (b)

Figure 2. Global orders under: a) TSO model b) PSO model

B. PSO Model
The PSO model [6] is a refinement of the TSO model. As

demonstrated in Figure 1(c), the PSO model further eliminates
the ordering constraint in the case of a write operation on E
followed by a write operation on F. It allows additional
reordering among the write operations compared to the TSO
model. The PSO model enforces the global orders on the
shared memory operations as shown in Figure 2(b).

C. RC Model
The RC model [9][25] is a refinement of the weak

consistency model [8][23]. It classifies the synchronization
operations as acquire and release operations. Acquire and
release operations are related to the special synchronization
variables (locks, semaphores) maintained in the shared address
space. The data operations are the read and write operations
related to the ordinary shared variables. As illustrated in Figure
3(a), according to the RC model, the independent data
operations on (A, B) are allowed to be reordered with each
other, with the acquire operation on lock S and with the data
operations on (C, D) in the critical section. They are not
permitted to be reordered with respect to the release operation
on lock S. The data operations (C, D) can be reordered and
overlapped with respect to each other, but, they are not allowed
to be reordered with the acquire and release operations on lock
S. The data operations on (E, F) are allowed to be reordered
with each other, with the prior outstanding release operation on
lock S and with the prior outstanding data operations on (C, D).
However, they are not permitted to be reordered with respect to
the prior acquire operation on lock S. The data operations on
(A, B, E, F) outside the acquire-release operations can be
moved inside the critical section. The data operations on (C, D)
cannot be moved outside the critical section. The global orders
to be enforced on the shared memory operations under the RC
model are given in Figure 3(b). These global orders are
discussed in Section V with more detail.

 (a) (b)

Figure 3. a) RC model b) Global orders under RC model

IV. DSM BASED MCNOC PLATFORM
A homogenous McNoC system is shown in Figure 4(a). All

the nodes are interconnected via a packet-switched network. As
demonstrated in Figure 4(b), each processor-memory (PM)
node consists of a processor, transaction controller (TCTRL),
synchronization handler, network interface, and the local
memory.

The platform uses 2D mesh packet switched Nostrum NoC
[5] with an adaptive routing algorithm. It is a buffer-less
network and only buffers in the Network Interfaces (NIs) are
used to store the packets before injection into and after ejection
from the network. The NI connects a PM node to the network.
It deals with the transactions from the processor via TCTRL
and performs packetization, queuing, arbitration and message
passing over the network. It also receives the packet from the
network, de-packetizes it and hands it over to the processor or
memory system. The adaptive, nondeterministic nature of the
routing policy means that two consecutive packets

436306306

(transactions) from the same source to the same destination can
be reordered on the way.

The shared memory is distributed across the network. The
local memory is connected to the local processor and network
interface, respectively. All shared parts in the local memories
form the DSM in a single global address space.

The platform also uses distributed locks in the
synchronization handler (SH). The SH controls N locks
maintained in the global address space. Every lock is accessed
in a sequential order by multiple processors in the system. A
lock can either be in locked or unlocked status. The
synchronization (acquire, release) requests to the SH either
come from the local processor or from a remote processor via
the network. If the requested lock's status is unlocked, then the
acquire request changes its status to locked and an
acknowledgement is sent back to the acquiring node. If the
requested lock status is locked, a negative acknowledgement is
sent back to the originating node. The source node sends again
the same request until the lock is gained. A release request
changes the lock's status to unlocked.

 (a) (b)

Figure 4. a) Homogeneous McNoC b) PM node

The transaction controller (TCTRL) is a customized
interface to integrate the processor with the rest of the system.
It also implements the key functions which may be required
under any standard interface such as OCP [26] and AXI [27].
The TCTRL deals with the transactions from the processor and
classifies them on the basis of address translation and memory
mapping. It communicates with the processor to control the
flow of transactions, and transmits the transactions between the
processor and memory system. It also implements the memory
consistency protocols using the hardware structures like (TC,
Address-Stack).

The platform uses a LEON3 processor [28] in each node of
the network. The data cache system is disabled from the base
processor for the independant implementation of the memory
consistency protocols. The cache coherence scheme can be
implemented on top of this, but, the issuance and completion of
the data transactions should be redefined to be tracked by the
TC and A-Stack in the TCTRL. This discussion is out of the
scope of the paper. The TCTRL is developed specifically for
the LEON3 IP core and the main goal is to highlight the
hierarchy and level where independent memory consistency
protocols can be implemented in the McNoC systems. The

TCTRL receives different types of transactions (read, write,
memory barriers) with word granularity from the processor.

V. REALIZATION OF THE TSO, PSO AND RC MODELS

A. TSO Model
The flow of the operations under the realization scheme of

the TSO model is illustrated in Figure 5. The write (1) and read
(3) operations to the shared memory are completed by the write
acknowledgment (2) and return data (4), respectively. The
synchronization operation (5) to the synchronization handler is
completed by the synchronization acknowledgment (6).

The TSO model is realized in the McNoC platform by
enforcing the required global orders as given in Figure 2(a).
Write � Write: To enforce this global order, a Write
Transaction Counter (WTC) is used in each node of the network
to keep track of the outstanding write operations issued by a
processor. The WTC is initialized to zero. The WTC is
incremented by the issuance of a write operation (1). It is
decremented by the completion of a write operation (2). The
WTC is checked at the issuance of each write operation and the
issuance of a write operation is delayed by stalling the
processor till the completion of previously issued outstanding
write operation (WTC=0). The processor is stalled by issuing
an active low keep-transaction-going signal by the TCTRL in
Figure 4.
Read � Read/Write: These global orders are enforced by
stalling the processor on the issuance of a shared memory read
operation (3) till its completion by returned data (4). The
issuances of the subsequent read and write operations are
delayed till the completion of previously issued read operation.

Figure 5. Realization scheme of TSO model

 In order to ensure the parallel program correctness,
outstanding memory operations to the same location in the

437307307

memory under the TSO model are constrained to accomplish
as per program order. A hardware structure WA-Stack (Write
Address Stack) is used in each node of the network for this
purpose. The WA-Stack keeps track of the addresses to be
accessed by the previously issued outstanding write operations.
At the issuance of a write operation (1) the address to be
accessed by the write operation is pushed on the WA-Stack. On
the completion of the write operation (2) the address is popped
from the WA-Stack. The issuance of a read operation (3)
checks the WA-Stack. If the address is on the WA-Stack, then
the issuance of the read operation is delayed until the same
address is popped from the WA-Stack. The address is popped
from the WA-Stack on the completion of previously issued
write operation to the same location in the shared memory.
 The ordering constraints with respect to the Sync operations
are also enforced. The shared memory operations are
completed before the issuance of a Sync operation and vice
versa. At the issuance of a Sync operation (5) there is no
outstanding read operation, because, the processor is stalled on
the issuance of a read operation till its completion. However, to
ensure the completion of the outstanding write operation WTC
is checked at the issuance of each Sync operation. The issuance
of a Sync operation is delayed till the completion of previously
issued outstanding write operations (WTC=0). After the
issuance of a Sync operation the following memory operations
are delayed by stalling the processor till the successful
completion of the Sync operation (6).

B. PSO Model
The PSO model is realized by enforcing the required global

orders as shown in Figure 2(b). The ordering requirements
under the PSO and TSO models are mostly similar except the
PSO model further relaxes the ordering constraint on the shared
memory operations in the case of a write followed by a write
operation.

Figure 6. Realization scheme of PSO model

As illustrated in Figure 6, the issuance of a shared memory
write operation (1) is not delayed till the completion of
previously issued outstanding write operation (WTC=0). It
allows multiple outstanding shared memory write operations on
the network, which is not allowed under the TSO model
(Figure 5). The independent shared memory write operations
can be reordered with respect to each other. The PSO model
also uses WA-Stack to prohibit the reordering among the shared
memory write operations to the same location in the shared
memory. There is an additional check on the WA-Stack under
the PSO model. The WA-Stack is checked on the issuance of
each shared memory write operation (1). If the address to be
accessed by the write operation is on the WA-Stack, then there
is an outstanding write operation to the same location. The
issuance of the write operation is then delayed until the same
address is popped from the WA-Stack on the completion of a
previously issued write operation to the same location. The
rest of the realization scheme is similar to that described under
the TSO model.

C. RC Model
The realization scheme of the RC model is demonstrated in

Figure 7. A data (read, write) operation (1) to the shared
memory is either completed by the return data or write
acknowledgment (2). The acquire operation (3) to the
synchronization handler is completed by the acquire
acknowledgment (4). The release operation (5) is completed by
the release acknowledgment (6).

Figure 7. Realization scheme of RC model

 The RC model is realized in the McNoC platform by
enforcing the required global orders as given in Figure 3(b).
Data � Release: To enforce this global order, a Transaction
Counter (TC) is used in each node of the network to keep track
of the outstanding data operations issued before the release
operation. Initially, the TC is zero. The TC is incremented by
the issuance (1) of a data operation. It is decremented by the

438308308

completion (2) of a data operation. The TC is checked at the
issuance of a release operation (5) and the issuance of a release
operation is delayed by stalling the processor till the
completion of previously issued outstanding data operations
(TC=0).
Acquire � Data/Release: These global orders are enforced by
stalling the processor upon the issuance of an acquire operation
(3) till the successful acquisition of a lock (4). The following
shared memory operations in the critical section and the release
operation are delayed for the lock acquisition. The lock must be
gained by a processor before entering to the critical section and
also before trying to release it.
Release � Acquire: This global order is enforced by
sequential order on a lock in the multiprocessors system as
discussed in section IV. A lock must be released by a processor
before the next acquire on it.

The A-Stack is used in each node of the network to
constrain the data operations issued by a processor to the same
location in the shared memory. The A-Stack keeps track of the
addresses to be accessed in the shared memory by the
previously issued outstanding shared memory data operations.
At the issuance of a data operation (1), the address to be
accessed in the shared memory by the data operation is pushed
on the A-Stack. On completion (2) of a data operation the
address is popped from the A-Stack. On issuance of each data
operation the A-Stack is checked. If the address is already on
the A-Stack, there is an outstanding data operation issued to the
same location in the shared memory. The issuance of the data
operation is then delayed until that address is popped from the
A-Stack by the completion of the previous data operation on
the same address.

VI. EXPERIMENTS AND RESULTS

A. Hardware implementation cost
The designs are synthesized by using Synopsis Design

Compiler with SMIC 90nm technology and optimized for area.
The synthesis results in term of nand-gate equivalent and
maximum frequency are given in Table I. The difference in the
area costs of the designs is mainly in the transaction controller
(TCTRL), which uses transaction counter and address stack to
implement the memory models. The TCTRL consumes
26.85%, 27.3%, 26.97% and 27.04% of the total area under
the SC, TSO, PSO and RC models, respectively. The area cost
for the TSO, PSO and RC models are increased by 1.8% (463
gates), 0.57% (153 gates) and 0.93% (243 gates) over the SC
model in the TCTRL. The switch, synchronization handler
(SH) and network interface (NI) together consume 73.14%,
72.78%, 73.03% and 72.95% of the total area under the SC,
TSO, PSO and RC models, respectively. In all cases, the
maximum clock frequency is 500 MHz or above.

TABLE I. SYNTHESIS RESULTS WITH 90 NM SMIC TECHNOLOGY

 SC Model TSO Model PSO Model RC Model
A F A F A F A F

Switch 13.24 0.5 13.24 0.5 13.24 0.5 13.24 0.5
SH 3.76 1.25 3.76 1.25 3.76 1.25 3.76 1.25
NI 49.99 1.25 49.99 1.25 49.99 1.25 49.99 1.25

TCTRL 24.6 0.5 25.05 0.5 24.74 0.5 24.83 0.5
Total 91.59 92.04 91.73 91.83

A: AREA (KILO NAND GATES), F: FREQUENCY (GHZ)

B. Experimental Setup
We experimented on a configurable multicore NoC based

cycle true simulation platform constructed in VHDL (Figure
4). The LEON3 processor core is a synthesizable VHDL
model of a 32-bit processor compliant with the SPARC V8
architecture. The platform uses a DSM system and the size of
the shared, local memory of each node is 16 MB. The SH in
each node maintains 256 locks in the shared address space.
The TC and WTC each are 32 bits. The A-Stack and WA-Stack
can stack up to 64 addresses each with 24 bits. The sizes of the
stacks are kept small and they are utilized efficiently. The
addresses are popped from the stack continuously by the
completion of operations in a pipelined style. The packet
formation in the NI uses 7 fields (96 bits). The buffering
capacity at the NI is 64 packets. The Nostrum NoC [5] uses 2D
regular mesh topology and deflection routing policy. The
caches are disabled from the LEON3 processors in the
experiments, since; they are neutral for our evaluation of the
memory models. In the experiments, the effects on execution
time of network size and different traffic patterns are
investigated and speedup, overhead and efficiency under
memory models are reported.

C. Experiments with Synthetic Workloads
The performance of the RC, PSO, TSO and SC models are

evaluated with three different synthetic workloads (WL1-
WL3) as shown in Figure 8. These workloads are manually
mapped on the LEON3 processors in the network. The same
sequence of transactions is generated by the processor in each
node. WL1 contains data and synchronization operations and
has both write followed by read and read followed by read
cases. WL2 contains write followed by write, write followed by
read and read followed by read sequences. WL3 has, in
addition, read followed by write operations and uses two non-
overlapped critical sections. For the lock and protected
(critical section) data operations hotspot traffic pattern is
generated.

 (a) (b) (c)

Figure 8. Sequences of transactions generated a) WL1 b) WL2 c) WL3

D. Results and Discussion
The Synthetic workload Execution Times (SETs) are

compared for the RC, PSO, TSO and SC models (Figure 9(a)).
The SC model is used as the baseline model. As the system

439309309

scales up, the SETs are quickly increased under all the
consistency models. It is due to the increasing network traffic
and increasing waiting time for acquiring the locks. The SET is
decreased under the RC model by allowing further reordering
and relaxation compared to the other memory models. The
average SETs of the RC, PSO and TSO models in the 8x8
network are reduced by 35.8%, 22.7% and 16.5% over the SC
model, respectively. For the three synthetic workloads the
SETs under all memory models in the 8x8 network are shown
in Figure 9(b). The SET reduction is more under the WL2
compared to the WL1/WL3, due to the issuance of more data
operations before the release operation.

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

2000

4000

6000

8000

10000

12000

E
xe

cu
tio

n
Ti

m
e

(C
yc

le
s)

Network Size

 SET(RC)
 SET(PSO)
 SET(TSO)
 SET(SC)

WL1 WL2 WL3 Avg-WLs1-3

0

2000

4000

6000

8000

10000

12000

14000

16000

Ex
ec

ut
io

n
Ti

m
e

(C
yc

le
s)

Workloads

 SET(RC)
 SET(PSO)
 SET(TSO)
 SET(SC)

 (a) (b)

Figure 9. SETs for WL1, WL2, and WL3

E. Application Workloads
1) Matrix Multiplication
The matrix multiplication application workload calculates

the product of two integer matrices X[64x1] and Y[1x64],
resulting in a Z[64x64]. Three matrices are decomposed into
sub-matrices and stored in the distributed shared memory.

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

50000

100000

150000

200000

250000

E
xe

cu
tio

n
Ti

m
e

(C
yc

le
s)

Network Size

 AET(RC)
 AET(PSO)
 AET(TSO)
 AET(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

10

20

30

40

50

S
pe

ed
up

Network Size

 Speedup(RC)
 Speedup(PSO)
 Speedup(TSO)
 Speedup(SC)

 (a) (b)

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

20000

40000

60000

80000

100000

120000

140000

O
ve

rh
ea

d(
C

yc
le

s)

Network Size

 Overhead(RC)
 Overhead(PSO)
 Overhead(TSO)
 Overhead(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ffi

ci
en

cy

Network Size

 Efficiency(RC) Efficiency(PSO)
 Efficiency(TSO) Efficiency(SC)

 (c) (d)

Figure 10. Matrix Multipl: a) AETs b) Speedup c) Overhead d) Efficiency

The Application workload Execution Times (AETs) under
all memory models are decreased due to the division of the
computation cost in the larger networks (Figure 10(a)). The
AETs under the RC, PSO and TSO models in the 8x8 network
are reduced by 24.1%, 3.2% and 1.8% over the SC model,

respectively. The speedup is defined as the ratio of the single
core execution time (Ts) and the execution time of the
multicore (Tm). The speedup (Figure 10(b)) grows faster under
the RC model compared to the other memory models as the
system size scales up. The AET reduction and speedup under
the RC model is higher compared to the other memory models
due to additional reordering and overlapping in the shared
memory operations. We define the overhead of the multicore
system as: Nc*Tm-Ts, where, Nc is the number of cores in the
system. The overhead increases as the system size grows due
to the increasing communication cost (Figure 10(c)). The
efficiency of the multicore system is defined as the ratio
speedup/Nc. The RC model maintains high efficiency
throughout compared to the stricter memory models (Figure
10(d)) when the system size is increased.

2) Pattern Search
The application searches P[64] data patterns against the

M[64] data elements, which are initialized in the distributed
shared memory across the network. Each node operates on the
data patterns in its local shared memory and the data elements
from remote nodes, and writes the output results into its local
shared memory. The output values N[64] are the number of
times the data patterns that appear in the data elements.

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

20000

40000

60000

80000

100000

E
xe

cu
tio

n
Ti

m
e

(C
yc

le
s)

Network Size

 AET(RC)
 AET(PSO)
 AET(TSO)
 AET(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

10

20

30

40

50

60

S
pe

ed
up

Network Size

 Speedup(RC)
 Speedup(PSO)
 Speedup(TSO)
 Speedup(SC)

 (a) (b)

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

20000

40000

60000

80000

O
ve

rh
ea

d
(C

yc
le

s)

Network Size

 Overhead(RC)
 Overhead(PSO)
 Overhead(TSO)
 Overhead(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ffi

ci
en

cy

Network Size

 Efficiency(RC) Efficiency(PSO)
 Efficiency(TSO) Efficiency(SC)

 (c) (d)

Figure 11. Pattern Search: a) AETs b) Speedup c) Overhead d) Efficiency

The AET under the RC, PSO and TSO models in the 8x8
network is reduced by 40.6%, 1.8% and 0.4% over the SC
model, respectively (Figure 11(a)). The speedup for the RC
model is 56.8 (almost ideal) while for the PSO, TSO and SC
models are 36.9, 36.4 and 36.2 (Figure 11(b)). The AET
reduction is more and speedup is high due to low computation
to communication ratio compared to the matrix multiplication
application. As a result, the RC model allows more outstanding
data operations in the network, which can overlap and pipeline
with each other. Similarly, the overhead and efficiency are also
affected. The overhead in the 8x8 network is reduced by
84.6%, 4.1% and 0.9% under the RC, PSO and TSO models
over the SC model, respectively (Figure 11(c)). The efficiency

440310310

(Figure 11(d)) on the 8x8 system for the RC model is high
0.88 (close to the ideal case 1), while for the PSO, TSO and
SC models are 0.58, 0.57 and 0.56, respectively.

3) Bit Count/Data Analysis
The application analyzes a data vector M[1024] and

calculates the number of set bits (1) in each integer data item.
The M data elements are initialized in the distributed shared
memory across the network. These data items are read,
analyzed and the output values (number of 1s) are stored in the
distributed shared memory. Five different traffic patterns are
used. Each node operates on the data items in its (Bit
complement, local shared, random, tornado of degree one and
transpose) node and also writes the output results in to the
same node.

Bit_Comp

Loc_Shared
Random

Tornado
Transpose

Average
0

400

800

1200

1600

2000

2400

2800

3200

E
xe

cu
tio

n
Ti

m
e

(C
yc

le
s)

Traffic Pattern

 AET(RC)
 AET(PSO)
 AET(TSO)
 AET(SC)

Bit_Comp

Loc_Shared
Random Tornado

Transpose
Average

0

10

20

30

40

50

Sp
ee

du
p

Traffic Patterns

 Speedup(RC) Speedup(PSO)
 Speedup(TSO) Speedup(SC)

 (a) (b)
Figure 12. Bit Count: a) AETs b) Speedup

As illustrated in Figure 12(a), the AETs reduction is more
for the RC, PSO and TSO models over the SC model under the
bit complement traffic pattern, while least is observed under
the local shared traffic pattern. The AETs are dependent on
the physical distance between the initiator and target nodes in
the network. The AETs are high under random traffic pattern,
because, irregular traffic pattern increases the network
congestion and delay. The AETs under the RC, PSO and TSO
models on the average are reduced by 44.5%, 27.2% and
24.9% over the SC model in the 8x8 network. As expected, the
AET reduction is more under the RC model. Likewise, the
speedup is high under the local shared and least under random
traffic pattern (Figure 12(b)).

VII. CONCLUSION
The hardware support (transaction counter, address stack)

for the three memory models and their performance
comparison are shown in the McNoC systems. The results
show that under synthetic workloads, the average execution
time for the RC, PSO and TSO models in the 8x8 network is
reduced by 35.8%, 22.7% and 16.5% over the SC model,
respectively. For the application workloads, the execution time
in the 8x8 network under the RC, PSO and TSO models is
decreased on average by 36.4%, 10.7% and 9% compared to
the SC model. The area cost for the relaxed models is increased
by less than 2% over the SC model at the processor interface.

REFERENCES
[1] Axel Jantsch et al., "Memory architecture and management in an NoC

platform," in: Axel Jantsch and D. Soudris, editors, Scalable Multicore
Architectures: Design Methodologies and Tools. Springer, 2011.

[2] S. V. Adve et al., “Shared Memory Consistency Models: A Tutorial,”
Digital Western Research Laboratory, report no. 95/7, USA, 1995.

[3] L. Lamport, “How to Make a Multiprocessors Computer That Correctly
Executes Multiprocessor Programs,” IEEE Transaction on Computers,
Vol. C-28. No. 9, pp. 690-691, September 1979.

[4] David E. Culler et al. “Parallel Computer Architecture: A
Hardware/Software Approach,” Morgan Kaufmann Publishers,1999.

[5] A. Jantsch “The Nostrum NoC,” in: http://www.ict.kth.se/nostrum.
[6] David L. Weaver and Tom Germond, editors. “The SPARC

ArchitectureManual,” Prentice Hall, 1994, SPARC International, Ver. 9.
[7] P. Sewell et al., “x86-TSO: A Rigorous and Usable Programmer’s

Model for x86 Multiprocessors,” Communications of the ACM, 2010.
[8] M. Dubois et al., “Memory access buffering in multiprocessors,” in:

Proc. of 13th Ann. Inter. Symp. on Comp. Arch. (ISCA’86), 1986.
[9] K. Gharachorloo et al. “Memory consistency and event ordering in

scalable shared-memory multiprocessors,” Computer Architecture News,
18(2): 15-26, June 1990.

[10] D. Lenoski et al., “The Stanford Dash Multiprocessor,” Computer, 87(3),
March 1992, pp. 418- 429.

[11] Daniel J. Sorin et al., “A Primer on Memory Consistency and Cache
Coherence,” Morgan & Claypool Publishers, 2011.

[12] J. Zebchuk, V. Srinivasan, M.K. Qureshi, and A. Moshovos, “A Tagless
Coherence Directory,” MICRO '09: 2009 42st International Symposium
on Microarchitecture, New York, NY, 2009.

[13] Ferdman, M.; Lotfi-Kamran, P.; Balet, K.; Falsafi, B.; "Cuckoo
directory: A scalable directory for many-core systems," in: Proc. of 17th
International Symposium on High Performance Computer Architecture
(HPCA), pp.169-180, Feb. 2011.

[14] M.M.K. Martin, M.D. Hill, and D.A. Wood, ‘‘Token Coherence:
Decoupling Performance and Correctness,’’ Proc. 30th Ann. Int’l Symp.
Computer Architecture (ISCA '03), ACM Press, 2003, pp. 182-193.

[15] M. Herlihy and J. E. B. Moss. “Transactional memory: Architectural
support for lock-free data structures,” In: Proc. of the 20th Ann. Int’l
Symp. on Computer architecture (ISCA’93), pages 289–300, 1993.

[16] P. Damron et al, “Hybrid Transactional Memory,” in Proc. of the 12th
international conference on (ASPLOS’06), California, Oct. 2006.

[17] J. Manson, W. Pugh, and S. Adve. “The Java memory model,” In: Proc.
of the ACM Symposium on Principles of Programming Languages
(POPL’05), pages 378–391, Long Beach, CA, Jan. 2005.

[18] Romanescu, B.; Lebeck, A.; Sorin, D.J.; , "Address Translation Aware
Memory Consistency," IEEE Micro, , vol.31, no.1, pp.109-118, 2011.

[19] Arvind; Maessen, J.-W.; , "Memory Model = Instruction Reordering +
Store Atomicity," in: proc. of 33rd International Symposium on
Computer Architecture (ISCA '06), pp.29-40, 2006.

[20] F. Petrot, A. Greiner, P. Gomez, “On cache coherence and memory
consistency issues in NoC based shared memory multiprocessor SoC
architectures,” in: Proc. of 9th Euromicro Conf. on Digital System
Design: Architectures, Methods and Tools, pp. 53-60, Croatia, 2006.

[21] Andreas Hansson, and Kees Goossens. “An On-Chip Interconnect and
Protocol Stack for Multiple Communication Paradigms and
Programming Models,” In: Proc. of CODES+ISSS’09, France, 2009.

[22] J.W. van den Brand and M. Bekooij, Streaming consistency: a model for
efficient MPSoC design, in: Proceedings of 10th EUROMICRO
Conference on Digital System Design Architectures, Methods and Tools
(DSD2007), August 2007, pp. 27-34.

[23] A. Naeem et al., “Realization and Performance Comparison of
Sequential and Weak Memory Consistency Models in Network-on-Chip
based Multi-core Systems,” In Proc. of the ASP-DAC, Japan, 2011.

[24] A. Naeem, X. Chen, Z. Lu, and A. Jantsch, “Scalability of Relaxed
Consistency Models in NoC based Multicore Architectures,” ACM
SIGARCH Computer Architecture News, April 2010, 37(5): 8-15.

[25] A. Naeem et al., “Realization and scalability of release and protected
release considtency models in NoC based systems,” in: Proc. of
Euromicro Conf. on Digital Systems Design, DSD, Oulu, Finland, 2011.

[26] OCP International Partnership. OCP Specification 2.2, 2007.
[27] “AMBA AXI Protocol Specification,” in: http://infocenter.arm.com/
[28] http://jorisvr.nl/leon3_insntiming.html

441311311

