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Abstract—We propose a novel hardware support for three 
relaxed memory models, Release Consistency (RC), Partial Store 
Ordering (PSO) and Total Store Ordering (TSO) in Network-on-
Chip (NoC) based distributed shared memory multicore systems. 
The RC model is realized by using a Transaction Counter and an 
Address Stack based approach to enforce the required global 
orders on the shared memory operations. The PSO and TSO 
models are realized by using a Write Transaction Counter and a 
Write Address Stack based approach to enforce the required global 
orders on the shared memory operations. In the experiments, we 
use a configurable platform based on a 2D mesh NoC using 
deflection routing policy. The results show that under synthetic 
workloads, the average execution time for the RC, PSO and TSO 
models in 8x8 network (64 cores) is reduced by 35.8%, 22.7% and 
16.5% over the sequential consistency (SC) model, respectively. 
The average speedup for the RC, PSO and TSO models in 8x8 
network under different application workloads is increased by 
34.3%, 10.6% and 8.9% over the SC model, respectively. The 
area cost for the TSO, PSO and RC models is increased by less 
than 2% over the SC model at the interface to the processor. 

Keywords- Memory consistency; Release consistency; Scalability; 
Distributed shared memory; Network-on-Chip 

I. INTRODUCTION 
The parallelization of computation, communication and 

memory architecture has to be matched [1]. The full potential 
can be harvested with Distributed Shared Memory (DSM) on-
chip by exploiting the distributed nature of Network-on-Chip 
(NoC) based systems. Since shared memory operations can be 
reordered in the network, the DSM systems may show 
unexpected behavior. A memory consistency model defines the 
execution order of the shared memory operations for the 
expected behavior of the DSM systems [2]. The strict 
Sequential Consistency (SC) model [3] does not take advantage 
of potential performance benefits in the DSM systems. As a 
result, several relaxed consistency models [2][4][9][11] 
emerged to exploit the system optimizations by relaxing the 
ordering constraints on the shared memory operations. 

Memory consistency and cache coherence are two distinct 
problems. Both aim to achieve consistent view of the memory 
system but at different levels. The cache coherence problem 
arises due to different cached copies of the same shared data. 
Memory consistency in contrast is related to the ordering 
constraints on the shared memory operations for the correct 
behavior of the DSM systems. In some situations, where these 
two problems have very different requirements (e.g. on the size 
of the cache block and the consistency object), or when a cache 
is not used (e.g. for hard real time applications) an independent 
implementation of the memory consistency and cache 
coherence is preferred [1][23-25]. 

Furthermore, heterogeneous and customized systems have 
different design constraints and requirements than general 

multiprocessors systems. The former have tighter power 
constraints, require less but heterogeneous memory, make less 
or no use of caches, and have often soft or hard real-time 
constraints. In the context of customized NoC based multicore 
(McNoC) systems, this paper studies the memory consistency 
issue with the following contributions: 
• A novel realization scheme of the Release Consistency 

(RC) model which is independent of the cache coherence 
protocol is proposed. In contrast to [25], reordering among 
the outstanding shared memory operations issued by a 
processor to the same location in the memory is avoided, 
which is mandatory to ensure the parallel program 
correctness, i.e., the read operation must always fetch the 
most recent value from the memory location in the 
adaptive NoC based DSM systems. To that end, an 
additional hardware structure called address stack (A-
Stack) is used in each node of the network (Section V). 

• The Total and Partial Store Ordering (TSO, PSO) models 
are realized using Write Transaction Counter (WTC) and 
Write Address Stack (WA-Stack) in each node of the 
network. The WTC is used to keep track of the outstanding 
shared memory write operations. The WA-Stack is used to 
constrain the outstanding write operations issued to the 
same location in the shared memory.  

• Performance of the RC, PSO, TSO and SC models is 
evaluated in the NoC based systems with 1 to 64 cores. 
 

For the experiments, a configurable McNoC platform is 
used with DSM, distributed locks and on-chip 2D mesh 
Nostrum network [5] using deflection routing policy. We 
compare the performance of these memory models in the 
McNoC systems. The experimental results show the 
performance gain of the RC, PSO and TSO models due to the 
reordering and relaxation in the shared memory operations 
compared to the SC model. 

The paper organization is as follows. The next section gives 
an overview of the related work. In section III, the TSO, PSO 
and RC models are discussed. In section IV, the DSM based 
McNoC platform is introduced. The realization schemes of the 
three consistency models are presented in section V.  In section 
VI, simulation results and performance analysis of these 
consistency models are described in the McNoC systems and 
finally, section VII summarizes our contribution. 

II. RELATED WORK 

A. Memory Consistency in Multiprocessors DSM systems 
Several memory consistency models are discussed in the 

literature [2][3][4][9]. The SC model [3] enforces total order on 
the memory operations. The TSO model [6][7] relaxes the 
ordering constraint in the case of a write followed by a read 
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operation. The PSO model [6] further provides relaxation 
among the write operations. The ordering constraints on the 
memory operations under both TSO and PSO models are 
enforced using different kind of fences (non-memory 
references). For instance, the SPARC architectures [6] use 
(MEMBARs, SBAR), and the x86 architectures [7] use 
(MFENCE, SFENCE, LFENCE) fences. 

Adve et al. [2] proposed a counter based mechanism to 
realize the weak consistency model; however, they did not 
discuss the realization of the RC model. The weak consistency 
model [8] classifies the shared memory operations as data and 
synchronization operations. The data (read, write) operations 
issued by a processor between two consecutive synchronization 
operations can be reordered with respect to each other. The RC 
model [9] further classifies the synchronization operations as 
acquire and release operations. The DASH project [10] 
implements the RC model using tracking mechanism via 
several counters and is dependent on the cache coherence 
protocol. The directory based coherence protocol is used to 
maintain the status information of cache blocks.  

Recent work [12][13] on the directory based coherence 
protocols aims to reduce the directory overheads in terms of 
area, energy and power consumption. However, the directory 
based coherence protocols have some limitations in the larger 
networks due to extra coherence traffic, directory overhead, 
additional latencies and complexities. Token Coherence [14] 
decouples the performance and correctness of the coherence 
protocols. Tokens are associated with each memory block 
which traverses in the system and are used to track the correct 
transfer and accesses to that block. The performance protocol 
(TokenB) is based on broadcasting transient requests which is 
not scalable in the larger networks. 

Transactional memories aim to improve programmer 
productivity by moving the synchronization burden to the 
platform. The hardware approach [15] relies on additional 
transactional caches and coherence protocols. The transaction 
size is bounded by the set size of the transactional caches. The 
software approach has no such restriction and relies on the 
runtime data structures but is less efficient. A hybrid approach 
[16] combines the benefits of both. To ensure the consistent 
behavior of the memory system aborted transactions due to the 
conflicts are re-executed. Memory models are also explored at 
high-level programming languages. For example, the Java 
memory model [17] specifies the legal transformations and 
optimizations for the compiler and virtual machine/hardware.  

Of late, address translation aware memory consistency 
models at physical and virtual address levels (PAMC, VAMC) 
have been proposed [18]. To enforce total order on all 
operations, the address translation and translation coherence is 
proposed. They focus on the detection of the design and 
runtime faults due to the address translation. In [19], a memory 
model is defined in terms of instruction reordering and store 
atomicity. The main emphasis of the work is on the 
serializability and store atomicity issues.  

B. Memory Consistency in NoC based Multicores systems 
In NoC based systems, the proposed mechanism in [20] 

allows one outstanding transaction of an initiator at a time in 
the network. But, this strict ordering could not utilize the 
parallel nature of the network. A protocol stack for on-chip 

interconnects is proposed in [21]. The work specifies a stack at 
different levels of the SoC design. They briefly outline the 
mechanisms to implement the RC model at the memory-
mapped stack. However, they do not discuss the 
implementation detail of it. Streaming consistency [22] is 
based on the software cache coherence protocol. In contrast to 
the RC model the synchronization sections can overtake each 
other. However, polling and updating the circular buffer 
administration at each request level may not be feasible in the 
larger systems.  

The Transaction Counter (TC) based hardware approach is 
adopted in [1][23-25] to realize the memory models 
independent of the coherence protocols in the McNoC 
systems. The SC model is realized in the McNoC systems by 
stalling the processor on issuance of each memory operation 
till its completion [23]. In [1][24], the RC model is realized by 
using two TCs in each node of the network. TC1 and TC2 are 
used to keep track of the outstanding shared data operations 
issued in the non-critical and critical sections, respectively. 
However, TC2 is unnecessarily checked at the acquire points to 
be zero in [24]; it is already checked at previous release points. 
In [25], a single TC based approach is adopted to realize the 
RC model in the McNoC systems. But, these works have not 
used a mechanism to avoid reordering among the outstanding 
shared memory operations issued by a processor to the same 
location in the memory. In this paper, an additional hardware 
structure A-Stack is used to avoid reordering of transactions to 
the same address to ensure parallel program correctness, and 
the TSO and PSO models are realized by using the WTC and 
WA-Stack hardware structures. Further, we compare the 
performance of these memory models with the SC model. 

The OCP protocol [26] allows out-of-order completion of 
the tagged transactions of the same master (thread ID). But, 
non-tagged transaction requests and responses are strictly 
ordered, since connection IDs are assigned to all the masters in 
the system to restrict accesses to shared resources. The AXI 
protocol [27] allows transactions from the same master with 
different ID values to be reordered with respect to each other. 
But, transactions with the same ID value are not allowed to be 
reordered. Consequently, the A-Stack and WA-Stack structures 
in the RC and PSO/TSO models do not allow for reordering 
among the shared memory operations issued by the same 
processor with the same address (non-tagged case [26], same 
ID case [27]). But, the operations issued with different 
addresses are allowed to be reordered (tagged case [26], 
different IDs case [27]).  

To sum up, in order to focus on the memory consistency 
issues, we have realized the memory models in the customized 
McNoC systems, which have no dependence on the cache 
coherence protocols. Specifically, the TC based realization of 
RC model [25] is an improvement with respect to correctness 
and performance. 

III. TSO, PSO AND RC MODELS 
The ordering constraints under the SC, TSO and PSO 

models are compared in Figure 1. The variables (A, B, C, D, 
E, F) are ordinary shared memory variables and the variable S 
is a special synchronization (lock) variable. The variables to 
the left side of the assignment operators are written and those 
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to the right side are read. An arrow between the two variables 
indicates an ordering constraint between the operations on 
those variables. For instance, A�B indicates that an operation 
on A is followed by an operation on B in the program, and an 
operation on A is completed before the issuance of an 
operation on B. The two operations are not allowed to be 
reordered with each other. 

 

 
                   (a)                                   (b)                                 (c) 

Figure 1.  Comparison of SC, TSO and PSO models 

As illustrated in Figure 1(a), according to the SC model, the 
shared memory operations are completed in the order specified 
by the program (program order). The sequential order is 
maintained by interleaving operations on lock S among 
processors in the system.  

A. TSO Model 
The TSO model (Figure 1(b)) allows the write operation on 

C to be reordered and overlapped with respect to the following 
read operation on D. The TSO model compared to the SC 
model allows reordering and relaxation in the case of a write 
followed by read operation. It enforces the ordering constraints 
in the cases of a read followed by a write (A�B), a write 
followed by a write (E�F), or a read followed by a read 
operation. In addition, ordering constraints with respect to the 
synchronization (Sync) operations must also be enforced. The 
global orders to be enforced on the shared memory operations 
under TSO model are given in Figure 2(a). We refer to these 
global orders in section V. 

 

 
                                  (a)                                                          (b)  

Figure 2.  Global orders under:    a) TSO model      b) PSO model    

B. PSO Model 
The PSO model [6] is a refinement of the TSO model. As 

demonstrated in Figure 1(c), the PSO model further eliminates 
the ordering constraint in the case of a write operation on E 
followed by a write operation on F. It allows additional 
reordering among the write operations compared to the TSO 
model. The PSO model enforces the global orders on the 
shared memory operations as shown in Figure 2(b). 

C. RC Model 
The RC model [9][25] is a refinement of the weak 

consistency model [8][23]. It classifies the synchronization 
operations as acquire and release operations. Acquire and 
release operations are related to the special synchronization 
variables (locks, semaphores) maintained in the shared address 
space. The data operations are the read and write operations 
related to the ordinary shared variables. As illustrated in Figure 
3(a), according to the RC model, the independent data 
operations on (A, B) are allowed to be reordered with each 
other, with the acquire operation on lock S and with the data 
operations on (C, D) in the critical section. They are not 
permitted to be reordered with respect to the release operation 
on lock S. The data operations (C, D) can be reordered and 
overlapped with respect to each other, but, they are not allowed 
to be reordered with the acquire and release operations on lock 
S. The data operations on (E, F) are allowed to be reordered 
with each other, with the prior outstanding release operation on 
lock S and with the prior outstanding data operations on (C, D). 
However, they are not permitted to be reordered with respect to 
the prior acquire operation on lock S. The data operations on 
(A, B, E, F) outside the acquire-release operations can be 
moved inside the critical section. The data operations on (C, D) 
cannot be moved outside the critical section. The global orders 
to be enforced on the shared memory operations under the RC 
model are given in Figure 3(b). These global orders are 
discussed in Section V with more detail. 

 

 
                            (a)                                                (b) 

Figure 3.  a) RC model     b) Global orders under RC model  

IV. DSM BASED MCNOC PLATFORM 
A homogenous McNoC system is shown in Figure 4(a). All 

the nodes are interconnected via a packet-switched network. As 
demonstrated in Figure 4(b), each processor-memory (PM) 
node consists of a processor, transaction controller (TCTRL), 
synchronization handler, network interface, and the local 
memory.  

The platform uses 2D mesh packet switched Nostrum NoC 
[5] with an adaptive routing algorithm. It is a buffer-less 
network and only buffers in the Network Interfaces (NIs) are 
used to store the packets before injection into and after ejection 
from the network. The NI connects a PM node to the network. 
It deals with the transactions from the processor via TCTRL 
and performs packetization, queuing, arbitration and message 
passing over the network. It also receives the packet from the 
network, de-packetizes it and hands it over to the processor or 
memory system. The adaptive, nondeterministic nature of the 
routing policy means that two consecutive packets 
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(transactions) from the same source to the same destination can 
be reordered on the way. 

The shared memory is distributed across the network. The 
local memory is connected to the local processor and network 
interface, respectively. All shared parts in the local memories 
form the DSM in a single global address space.  

The platform also uses distributed locks in the 
synchronization handler (SH). The SH controls N locks 
maintained in the global address space. Every lock is accessed 
in a sequential order by multiple processors in the system. A 
lock can either be in locked or unlocked status. The 
synchronization (acquire, release) requests to the SH either 
come from the local processor or from a remote processor via 
the network. If the requested lock's status is unlocked, then the 
acquire request changes its status to locked and an 
acknowledgement is sent back to the acquiring node. If the 
requested lock status is locked, a negative acknowledgement is 
sent back to the originating node. The source node sends again 
the same request until the lock is gained. A release request 
changes the lock's status to unlocked. 

 

 
                       (a)                                                              (b)  

Figure 4.  a) Homogeneous McNoC      b) PM node 

The transaction controller (TCTRL) is a customized 
interface to integrate the processor with the rest of the system. 
It also implements the key functions which may be required 
under any standard interface such as OCP [26] and AXI [27]. 
The TCTRL deals with the transactions from the processor and 
classifies them on the basis of address translation and memory 
mapping. It communicates with the processor to control the 
flow of transactions, and transmits the transactions between the 
processor and memory system. It also implements the memory 
consistency protocols using the hardware structures like (TC, 
Address-Stack).  

The platform uses a LEON3 processor [28] in each node of 
the network. The data cache system is disabled from the base 
processor for the independant implementation of the memory 
consistency protocols. The cache coherence scheme can be 
implemented on top of this, but, the issuance and completion of 
the data transactions should be redefined to be tracked by the 
TC and A-Stack in the TCTRL. This discussion is out of the 
scope of the paper. The TCTRL is developed specifically for 
the LEON3 IP core and the main goal is to highlight the 
hierarchy and level where independent memory consistency 
protocols can be implemented in the McNoC systems. The 

TCTRL receives different types of transactions (read, write, 
memory barriers) with word granularity from the processor.  

V. REALIZATION OF THE TSO, PSO AND RC MODELS 

A. TSO Model  
The flow of the operations under the realization scheme of 

the TSO model is illustrated in Figure 5. The write (1) and read 
(3) operations to the shared memory are completed by the write 
acknowledgment (2) and return data (4), respectively. The 
synchronization operation (5) to the synchronization handler is 
completed by the synchronization acknowledgment (6).  

The TSO model is realized in the McNoC platform by 
enforcing the required global orders as given in Figure 2(a). 
Write � Write: To enforce this global order, a Write 
Transaction Counter (WTC) is used in each node of the network 
to keep track of the outstanding write operations issued by a 
processor. The WTC is initialized to zero. The WTC is 
incremented by the issuance of a write operation (1). It is 
decremented by the completion of a write operation (2). The 
WTC is checked at the issuance of each write operation and the 
issuance of a write operation is delayed by stalling the 
processor till the completion of previously issued outstanding 
write operation (WTC=0). The processor is stalled by issuing 
an active low keep-transaction-going signal by the TCTRL in 
Figure 4. 
Read � Read/Write: These global orders are enforced by 
stalling the processor on the issuance of a shared memory read 
operation (3) till its completion by returned data (4). The 
issuances of the subsequent read and write operations are 
delayed till the completion of previously issued read operation. 
 

 
Figure 5.  Realization scheme of TSO model 

      In order to ensure the parallel program correctness, 
outstanding memory operations to the same location in the 
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memory under the TSO model are constrained to accomplish 
as per program order. A hardware structure WA-Stack (Write 
Address Stack) is used in each node of the network for this 
purpose. The WA-Stack keeps track of the addresses to be 
accessed by the previously issued outstanding write operations. 
At the issuance of a write operation (1) the address to be 
accessed by the write operation is pushed on the WA-Stack. On 
the completion of the write operation (2) the address is popped 
from the WA-Stack. The issuance of a read operation (3) 
checks the WA-Stack. If the address is on the WA-Stack, then 
the issuance of the read operation is delayed until the same 
address is popped from the WA-Stack. The address is popped 
from the WA-Stack on the completion of previously issued 
write operation to the same location in the shared memory. 
      The ordering constraints with respect to the Sync operations 
are also enforced. The shared memory operations are 
completed before the issuance of a Sync operation and vice 
versa. At the issuance of a Sync operation (5) there is no 
outstanding read operation, because, the processor is stalled on 
the issuance of a read operation till its completion. However, to 
ensure the completion of the outstanding write operation WTC 
is checked at the issuance of each Sync operation. The issuance 
of a Sync operation is delayed till the completion of previously 
issued outstanding write operations (WTC=0). After the 
issuance of a Sync operation the following memory operations 
are delayed by stalling the processor till the successful 
completion of the Sync operation (6). 

B. PSO Model 
The PSO model is realized by enforcing the required global 

orders as shown in Figure 2(b). The ordering requirements 
under the PSO and TSO models are mostly similar except the 
PSO model further relaxes the ordering constraint on the shared 
memory operations in the case of a write followed by a write 
operation. 

 
Figure 6.  Realization scheme of PSO model 

As illustrated in Figure 6, the issuance of a shared memory 
write operation (1) is not delayed till the completion of 
previously issued outstanding write operation (WTC=0). It 
allows multiple outstanding shared memory write operations on 
the network, which is not allowed under the TSO model 
(Figure 5). The independent shared memory write operations 
can be reordered with respect to each other. The PSO model 
also uses WA-Stack to prohibit the reordering among the shared 
memory write operations to the same location in the shared 
memory. There is an additional check on the WA-Stack under 
the PSO model. The WA-Stack is checked on the issuance of 
each shared memory write operation (1). If the address to be 
accessed by the write operation is on the WA-Stack, then there 
is an outstanding write operation to the same location. The 
issuance of the write operation is then delayed until the same 
address is popped from the WA-Stack on the completion of a 
previously issued write operation to the same location. The 
rest of the realization scheme is similar to that described under 
the TSO model. 

C. RC Model 
The realization scheme of the RC model is demonstrated in 

Figure 7. A data (read, write) operation (1) to the shared 
memory is either completed by the return data or write 
acknowledgment (2). The acquire operation (3) to the 
synchronization handler is completed by the acquire 
acknowledgment (4). The release operation (5) is completed by 
the release acknowledgment (6).  

 

 
Figure 7.  Realization scheme of RC model 

      The RC model is realized in the McNoC platform by 
enforcing the required global orders as given in Figure 3(b).  
Data � Release: To enforce this global order, a Transaction 
Counter (TC) is used in each node of the network to keep track 
of the outstanding data operations issued before the release 
operation. Initially, the TC is zero. The TC is incremented by 
the issuance (1) of a data operation. It is decremented by the 
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completion (2) of a data operation. The TC is checked at the 
issuance of a release operation (5) and the issuance of a release 
operation is delayed by stalling the processor till the 
completion of previously issued outstanding data operations 
(TC=0).  
Acquire � Data/Release: These global orders are enforced by 
stalling the processor upon the issuance of an acquire operation 
(3) till the successful acquisition of a lock (4). The following 
shared memory operations in the critical section and the release 
operation are delayed for the lock acquisition. The lock must be 
gained by a processor before entering to the critical section and 
also before trying to release it. 
Release � Acquire: This global order is enforced by 
sequential order on a lock in the multiprocessors system as 
discussed in section IV. A lock must be released by a processor 
before the next acquire on it. 

The A-Stack is used in each node of the network to 
constrain the data operations issued by a processor to the same 
location in the shared memory. The A-Stack keeps track of the 
addresses to be accessed in the shared memory by the 
previously issued outstanding shared memory data operations. 
At the issuance of a data operation (1), the address to be 
accessed in the shared memory by the data operation is pushed 
on the A-Stack. On completion (2) of a data operation the 
address is popped from the A-Stack. On issuance of each data 
operation the A-Stack is checked. If the address is already on 
the A-Stack, there is an outstanding data operation issued to the 
same location in the shared memory. The issuance of the data 
operation is then delayed until that address is popped from the 
A-Stack by the completion of the previous data operation on 
the same address. 

VI. EXPERIMENTS AND RESULTS 

A. Hardware implementation cost 
The designs are synthesized by using Synopsis Design 

Compiler with SMIC 90nm technology and optimized for area. 
The synthesis results in term of nand-gate equivalent and 
maximum frequency are given in Table I. The difference in the 
area costs of the designs is mainly in the transaction controller 
(TCTRL), which uses transaction counter and address stack to 
implement the memory models. The TCTRL consumes 
26.85%, 27.3%, 26.97% and 27.04% of the total area under 
the SC, TSO, PSO and RC models, respectively. The area cost 
for the TSO, PSO and RC models are increased by 1.8% (463 
gates), 0.57% (153 gates) and 0.93% (243 gates) over the SC 
model in the TCTRL. The switch, synchronization handler 
(SH) and network interface (NI) together consume 73.14%, 
72.78%, 73.03% and 72.95% of the total area under the SC, 
TSO, PSO and RC models, respectively. In all cases, the 
maximum clock frequency is 500 MHz or above. 

TABLE I.  SYNTHESIS RESULTS WITH 90 NM SMIC TECHNOLOGY 

 SC Model TSO Model PSO Model RC Model 
A F A F A F A F 

Switch 13.24 0.5 13.24 0.5 13.24 0.5 13.24 0.5 
SH 3.76 1.25 3.76 1.25 3.76 1.25 3.76 1.25 
NI 49.99 1.25 49.99 1.25 49.99 1.25 49.99 1.25 

TCTRL 24.6 0.5 25.05 0.5 24.74 0.5 24.83 0.5 
Total  91.59  92.04  91.73  91.83  

A: AREA (KILO NAND GATES), F: FREQUENCY (GHZ) 

B. Experimental Setup 
We experimented on a configurable multicore NoC based 

cycle true simulation platform constructed in VHDL (Figure 
4). The LEON3 processor core is a synthesizable VHDL 
model of a 32-bit processor compliant with the SPARC V8 
architecture. The platform uses a DSM system and the size of 
the shared, local memory of each node is 16 MB. The SH in 
each node maintains 256 locks in the shared address space. 
The TC and WTC each are 32 bits. The A-Stack and WA-Stack 
can stack up to 64 addresses each with 24 bits. The sizes of the 
stacks are kept small and they are utilized efficiently. The 
addresses are popped from the stack continuously by the 
completion of operations in a pipelined style. The packet 
formation in the NI uses 7 fields (96 bits). The buffering 
capacity at the NI is 64 packets. The Nostrum NoC [5] uses 2D 
regular mesh topology and deflection routing policy. The 
caches are disabled from the LEON3 processors in the 
experiments, since; they are neutral for our evaluation of the 
memory models. In the experiments, the effects on execution 
time of network size and different traffic patterns are 
investigated and speedup, overhead and efficiency under 
memory models are reported. 

C. Experiments with Synthetic Workloads 
The performance of the RC, PSO, TSO and SC models are 

evaluated with three different synthetic workloads (WL1-
WL3) as shown in Figure 8. These workloads are manually 
mapped on the LEON3 processors in the network. The same 
sequence of transactions is generated by the processor in each 
node. WL1 contains data and synchronization operations and 
has both write followed by read and read followed by read 
cases. WL2 contains write followed by write, write followed by 
read and read followed by read sequences. WL3 has, in 
addition, read followed by write operations and uses two non-
overlapped critical sections. For the lock and protected 
(critical section) data operations hotspot traffic pattern is 
generated. 

                           (a)                             (b)                                 (c)  

Figure 8.  Sequences of transactions generated   a) WL1   b) WL2   c) WL3 

D. Results and Discussion 
The Synthetic workload Execution Times (SETs) are 

compared for the RC, PSO, TSO and SC models (Figure 9(a)). 
The SC model is used as the baseline model. As the system 
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scales up, the SETs are quickly increased under all the 
consistency models. It is due to the increasing network traffic 
and increasing waiting time for acquiring the locks. The SET is 
decreased under the RC model by allowing further reordering 
and relaxation compared to the other memory models. The 
average SETs of the RC, PSO and TSO models in the 8x8 
network are reduced by 35.8%, 22.7% and 16.5% over the SC 
model, respectively. For the three synthetic workloads the 
SETs under all memory models in the 8x8 network are shown 
in Figure 9(b). The SET reduction is more under the WL2 
compared to the WL1/WL3, due to the issuance of more data 
operations before the release operation. 
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Figure 9.  SETs for WL1, WL2, and WL3  

E. Application Workloads 
1) Matrix Multiplication 
The matrix multiplication application workload calculates 

the product of two integer matrices X[64x1] and Y[1x64], 
resulting in a Z[64x64]. Three matrices are decomposed into 
sub-matrices and stored in the distributed shared memory.  
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Figure 10.  Matrix Multipl:  a) AETs  b) Speedup c) Overhead  d) Efficiency 

The Application workload Execution Times (AETs) under 
all memory models are decreased due to the division of the 
computation cost in the larger networks (Figure 10(a)). The 
AETs under the RC, PSO and TSO models in the 8x8 network 
are reduced by 24.1%, 3.2% and 1.8% over the SC model, 

respectively. The speedup is defined as the ratio of the single 
core execution time (Ts) and the execution time of the 
multicore (Tm). The speedup (Figure 10(b)) grows faster under 
the RC model compared to the other memory models as the 
system size scales up. The AET reduction and speedup under 
the RC model is higher compared to the other memory models 
due to additional reordering and overlapping in the shared 
memory operations. We define the overhead of the multicore 
system as: Nc*Tm-Ts, where, Nc is the number of cores in the 
system. The overhead increases as the system size grows due 
to the increasing communication cost (Figure 10(c)). The 
efficiency of the multicore system is defined as the ratio 
speedup/Nc. The RC model maintains high efficiency 
throughout compared to the stricter memory models (Figure 
10(d)) when the system size is increased. 

 
2) Pattern Search 
The application searches P[64] data patterns against the 

M[64] data elements, which are initialized in the distributed 
shared memory across the network. Each node operates on the 
data patterns in its local shared memory and the data elements 
from remote nodes, and writes the output results into its local 
shared memory. The output values N[64] are the number of 
times the data patterns that appear in the data elements.  
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Figure 11.  Pattern Search:   a) AETs  b) Speedup  c) Overhead d) Efficiency 

The AET under the RC, PSO and TSO models in the 8x8 
network is reduced by 40.6%, 1.8% and 0.4% over the SC 
model, respectively (Figure 11(a)). The speedup for the RC 
model is 56.8 (almost ideal) while for the PSO, TSO and SC 
models are 36.9, 36.4 and 36.2 (Figure 11(b)). The AET 
reduction is more and speedup is high due to low computation 
to communication ratio compared to the matrix multiplication 
application. As a result, the RC model allows more outstanding 
data operations in the network, which can overlap and pipeline 
with each other. Similarly, the overhead and efficiency are also 
affected. The overhead in the 8x8 network is reduced by 
84.6%, 4.1% and 0.9% under the RC, PSO and TSO models 
over the SC model, respectively (Figure 11(c)). The efficiency 
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(Figure 11(d)) on the 8x8 system for the RC model is high 
0.88 (close to the ideal case 1), while for the PSO, TSO and 
SC models are 0.58, 0.57 and 0.56, respectively. 

 
3) Bit Count/Data Analysis 
The application analyzes a data vector M[1024] and 

calculates the number of set bits (1) in each integer data item. 
The M data elements are initialized in the distributed shared 
memory across the network. These data items are read, 
analyzed and the output values (number of 1s) are stored in the 
distributed shared memory. Five different traffic patterns are 
used. Each node operates on the data items in its (Bit 
complement, local shared, random, tornado of degree one and 
transpose) node and also writes the output results in to the 
same node.  
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Figure 12.  Bit Count:  a) AETs    b) Speedup 

As illustrated in Figure 12(a), the AETs reduction is more 
for the RC, PSO and TSO models over the SC model under the 
bit complement traffic pattern, while least is observed under 
the local shared traffic pattern. The AETs are dependent on 
the physical distance between the initiator and target nodes in 
the network. The AETs are high under random traffic pattern, 
because, irregular traffic pattern increases the network 
congestion and delay. The AETs under the RC, PSO and TSO 
models on the average are reduced by 44.5%, 27.2% and 
24.9% over the SC model in the 8x8 network. As expected, the 
AET reduction is more under the RC model. Likewise, the 
speedup is high under the local shared and least under random 
traffic pattern (Figure 12(b)). 

VII. CONCLUSION 
The hardware support (transaction counter, address stack) 

for the three memory models and their performance 
comparison are shown in the McNoC systems. The results 
show that under synthetic workloads, the average execution 
time for the RC, PSO and TSO models in the 8x8 network is 
reduced by 35.8%, 22.7% and 16.5% over the SC model, 
respectively. For the application workloads, the execution time 
in the 8x8 network under the RC, PSO and TSO models is 
decreased on average by 36.4%, 10.7% and 9% compared to 
the SC model. The area cost for the relaxed models is increased 
by less than 2% over the SC model at the processor interface. 
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