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a b s t r a c t

Radio-frequency identification (RFID) systems can benefit from cloud databases since information on
thousands of tags is queried at the same time. If all RFID readers in a system query a cloud database,
data consistency can easily be maintained by cloud computing. Privacy-preserving authentication (PPA)
has been proposed to protect RFID security. The time complexity for searching a cloud database in an RFID
system isO(N), which is obviously inefficient. Fortunately, PPA uses tree structures tomanage tags, which
can reduce the complexity from a linear search to a logarithmic search. Hence, tree-based PPA provides
RFID scalability. However, in tree-based mechanisms, compromise of a tag may cause other tags in the
system to be vulnerable to tracking attacks. Here we propose a secure and efficient privacy-preserving
RFID authentication protocol that uses a cloud database as an RFID server. The proposed protocol not
only withstands desynchronizing and tracking attacks, but also provides scalability with O(logN) search
complexity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Radio-frequency identification (RFID) systems have attracted
much attention in recent years. They were originally designed
for military use, but are now gradually replacing optical barcode
systems. The traditional barcode system was adopted because the
cost of adding a barcode to an item is almost zero; however,
the volume of barcode storage is limited. RFID systems have
several advantages over the barcode system, such as cloud data
management, parallel processing, shorter access time, longer-
distance contactless sensing, and rewritable properties. Moreover,
RFID systems can parallel scan hundreds of items in a few
seconds, which is a dramatic improvement over barcodes, which
must be scanned individually. Since there are thousands of tags
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maintained in a system, related information for these tags should
be maintained in a central site, such as a cloud database. RFID
systems have been adopted in many applications, such as supply
chains [1], car/door locks, product sales, and e-passports [2],
because of their convenience and efficiency. An RFID system
has three components: tags (transponders) containing electronic
circuits, a back-end database server to maintain tag-related data,
and an RFID reader (transceiver) that scans the tag and queries
the database via a wireless connection. The back-end database
server can be accessed by all RFID readers and has parallel
computing ability to serve all readers at the same time. An RFID
reader (hereafter called a reader) obtains data stored in a tag
by transmitting electronic waves to interrogate the tag. When
a tag is activated, related information is returned. The back-end
server, also known as a cloud database, is responsible for parallel
computing, storing detailed information, and maintaining a look-
up table of hash values or identity and key pairs. Thus, an important
task of the back-end server is key management. The reader, back-
end server, and tags are connected wirelessly via an insecure
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channel. Hence, information transmitted from the tag to the reader
and from the reader to the server is publicly accessible and may
be subject to eavesdropping. Therefore, if information stored in
the tags is not protected via proper security measures, it may be
subject to security or privacy risks that are nonexistent in the
barcode system.

A simple way for a tag to securely transmit data for
authentication is to send ameaninglessmessage, that is, encrypted
data or a hash value. When a valid reader obtains this meaningless
value, it will retrieve the tag identity and other related information
through the back-end server. Since an invalid reader cannot
connect to the back-end server, the attacker cannot retrieve the tag
information from themeaningless message. Nevertheless, because
the tag responds with the same hash value every time, an attacker
can successfully trace the tag once the meaningless message is
received again.

There aremany types of logical operations that can be executed
to provide secrecy for RFID systems, such as modular addition,
shift, and bitwise operations and pseudo-random number genera-
tion [3]. In addition, some studies have used symmetric encryption,
one-way hash functions, and AES encryption. It is believed that
the next generation of tags can use these cryptographic functions
[4,5].

Two types of severe attack are commonly launched on RFID
systems: tracking attacks and desynchronizing attacks [4].

Tracking attack: Owing to the contactless access, an RFID reader
can freely scan a tag if the tag is not protected properly. If a tag
always responds with the same data when it is queried, privacy
problems can occur, such as when an attacker becomes aware of
the existence of the tag. In other words, the tag is tracked by the
attacker. For example, when a tag attached to a book borrowed
from a library is tracked by an attacker, the borrower’s privacy
can be compromised. Another example is if a thief can trace the
location of a valuable item stored in a public locker, then the thief
might break the locker and steal that valuable item.

Desynchronizing attack: To prevent a tag from always replying
with the same message and attracting tracking attacks, the
tag and the back-end database are required to synchronize an
authentication key and refresh it after a period of time. After
refreshing the key, both the reader and the tag change and save
the latest key for the next authentication process. In other words,
the tag will reply with a different message after synchronizing.
Hence, if an attacker interrupts the update process, the tag will be
unable to refresh its key. Instead, the tag will still use the invalid
authentication key next time. Obviously, the reader will forbid
the authentication request next time since the key that tag sent
is different on the reader side. The function of the tag will no
longer exist. In a desynchronizing attack, the attacker attempts to
interfere with the communication between a tag and a reader so
that the keys stored in the database and the tag will be out-of-
sync. As a result, the reader will no longer be able to read the tag
correctly. This attack is severe in some applications. For example,
when a tag attached to a valuable item in a shop is desynchronized
with the back-end database, a thief can steal it without triggering
the RFID security alarm system.

This study focuses on the important security issue mentioned
above to design a secure and efficient RFID authentication protocol
with scalability. A simple solution to protect RFID systems from
tracking attacks has been proposed [4], but this requires O(N)
searches in the back-end database, where N is the number of
tags, and is thus inefficient for large-scale RFID systems. Some
studies have provided lower search complexity for protecting RFID
systems [6–9]. Lu et al. proposed an ACTION protocol [10] that
provides O(logN) search complexity in the back-end database.
It also preserves tag privacy even if a large number of tags
are compromised. However, we found that the ACTION protocol

may be vulnerable to tracking attacks; an attacker can trace a
tag without compromising any tags. In particular, the authors
proposed a key-updating mechanism to refresh the key stored
in the back-end server and the tag. However, we found that this
mechanism is vulnerable to desynchronization attacks [11].

The remainder of the paper is organized as follows. Related
work is reviewed in Section 2. In Section 3we present the proposed
scheme and a security analysis and detailed discussion. Section 6
concludes.

2. Related work

RFID technology has been the focus of research for many years
and many issues have been addressed. One of the most impor-
tant issues in the evolution of RFID is providing security and pri-
vacy. Some studies have focused on lightweight operations, such as
exclusive-or, addition, and shift operations [12–14]. These mech-
anisms are designed mainly for passive tags. Most of the compu-
tation load is transferred to a cloud server since these servers are
usually equipped with more powerful computational hardware.
Therefore, this reduces the computation load for lightweight tags
and shortens the overall authentication time. Nevertheless, most
of these approaches have security shortcomings [15–17].

To protect the privacy of tags, privacy-preserving authentica-
tion (PPA) was proposed [18]. This is a straightforward way to
maintain all the secret keys for tags in the cloud database. How-
ever, the cloud database has to store a large number of keys, so
PPA methods are not scalable. To solve this scalability problem,
many types of PPA mechanism have been proposed. For exam-
ple, the tree-based mechanism generates a pseudo tree graph to
map all the tags to nodes at different positions. It uses a key-
sharing mechanism in which keys may be preassigned to tags at
pseudo-positions in the tree. Owing to the characteristics of the
tree-based structure, schemes based on a balanced tree provide a
level of privacy with relatively lower search complexity. Different
key storage mechanisms are applied so that each tag has a differ-
ent key or shares part of its key with other tags. Consequently, tag-
compromising attacks may occur. This is the most critical problem
for tree-based mechanisms.

A few schemes based on balanced trees have been proposed
to address the RFID privacy issue [6–9]. Although a balanced
tree mechanism can reduce the search complexity from O(N)
to O(logN), some tags might share a proportion of the same
keys. Therefore, information may be leaked once the attacker
compromises a few tags. Avoine showed that for a balanced tree
approach, an attacker can trace all the tags with probability close
to 100% once 20 tags have been compromised [19].

In 2009, Lu et al. proposed a balanced tree ACTION protocol [10]
that providesO(logN) search complexity in the back-enddatabase.
In addition, the authors claimed that it preserves tag privacy even
if a large number of tags are compromised. However, we found
that the ACTION protocol is vulnerable to tracking attacks and
desynchronizing attacks [11]. An attacker can track a tag without
compromising any tags.1

3. The proposed protocol

We developed a scalable, secure and efficient RFID authenti-
cation protocol, called CRFID, that overcomes the security weak-
nesses of existing approaches. The notation used is listed in Table 1.

The proposed scheme contains two phases: Initialization and
Read. In Initialization, each tag Ti is assigned a unique key pair ki
and si. At the same time, the reader constructs a pseudo key tree.
Note that the tag itself does not consist of any peripheral output

1 Owing to space limitations, readers should refer to the ACTION protocol and the
proposed attack directly.
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Table 1
Notation used.

Symbol Description

R RFID reader
T RFID tag
ni Nonce i
ln Length of ni
H() One-way hash function
lh Length of output H()

ki Path key for T
ki[x] The xth subkey of the path key
lk Length of a subkey
si Secret key for T
δ Branching factor for the key tree
T Key tree stored in database
d Depth of the key tree
c Number of times that TagJoin runs
N Number of tags in the system
V Victim list

Fig. 1. Read for the CRFID protocol.

to indicate failure of the authentication process. Therefore, anyone
with access to a reader cannot ascertain if the protocol has been
successfully executed. To prevent this serious RFID shortcoming,
we designed an important communication process in Step 8, as
shown in Fig. 1. In addition, the reader re-reads the tag if it
does not receive a confirmation message from the tag (Step 9).
Besides the Initialization and Read phases, the proposed scheme
also considers the situation when a new tag joins a group and
verification of key updating (keyGen and NewVerify; Algorithms 1
and 2, respectively). In the following subsections, Initialization
and Read are illustrated in detail.

3.1. Initialization

Some parameters should be determined before using the
system. These include the key tree depth d, the branching factor
δ, and the bit length for each subkey lk of the path key. The
length of the path key is d × lk. Instead, δ and lk are selected
independently according to the system and the security concern.
A recommended choice of parameters (d, δ, lk) is (4, 32, 60), as
described in Section 5.1.

Suppose there are N RFID tags and KeyGen is executed for each
tag with the inputs tag identity i and two random string values
ki and si. The algorithm for KeyGen is shown in Algorithm 1. The
output values k′i and s′i are securely imprinted to tag i, for example
bywriting it inside a radio-shieldmetal box. After processing every
tag, a key tree T is formed. Each leaf on T represents a small number
of tags (probably only one).

Algorithm 1 KeyGen
1: INPUT: Tag ID i, Path Key ki, Secret Key si. (ki and si are random

strings for Initialization .)
2: OUTPUT: New Path Key k′i , Secret Key s′i .
3: Internal Variable: Key Tree T with depth d, victim list V .
4: LetM be the root of T .
5: for j← 0, 1, . . . , d− 1 do
6: if deg(M) = δ then
7: r ← {1 · · · δ}
8: M ← Mr , where Mr is the rth child of M .
9: else

10: Create nodeM ′ and attach it toM .
11: Define label(M ′)← R{1}lk .
12: M ← M ′
13: end if
14: k′i[j] ← label(M)
15: end for
16: if label(M) is the same with one of list in V then
17: do for loop.
18: end if
19: s′i ← H(ki||k′i||si)
20: return k′i, s

′

i

3.2. Read

When a readerR tries to communicatewith a tag T , it executes
the protocol shown in Fig. 1 as follows:

(Step 1) R first picks a random number n1 of length n and sends it
to T .

(Step 2) T generates a random number n2 of length n via its built-
in PRNG generator, and computes U using Eq. (1).

(Step 3) T replies with U to R.

U = {n2, H(n1∥n2∥ki[0]), H(n1∥n2∥ki[1]), . . . ,
H(n1∥n2∥ki[d− 1]), H(n1∥n2∥si)}. (1)

(Step 4) R identifies T using the algorithm Identify. Basically,
starting from the root node, Identify iteratively examines
nodes to see which child of the target node M has a tree
label that satisfies Eq. (2).

H(n1∥n2∥label Mr) = H(n1∥n2∥ki[j]). (2)

Then it moves to next iteration by setting the target node
as the child node Mr . At the end of the search, a leaf node
on T that represents a small number of tags is revealed. R
identifies the tag T and obtains the corresponding values
for ki and si. This is done by finding ŝi for each tag on the
leaf that matches H(n1∥n2∥si).

(Step 5) The value (ki, si) is inserted into a trash list L. R executes
keyGen(ki, si, i) to update the key tree T and obtains k′i
and s′i . Note that the victim list V in keyGen is used by the
administrator to manually store specious tag information,
such as compromised tags. The purpose of V is to avoid
generating a path key that is dangerous.

(Step 6) R sends σ = {H(n1∥n2∥ki)⊕ k′i, H(n1∥n2∥si ∥ k′i)} to T .
(Step 7) T receives σ and executes NewVerify(σ , n1, n2) (Algo-

rithm 2) to verify σ . If σ is authentic, the algorithm out-
puts the new key pair k′i and s′i . T then executes key up-
dating whereby ki is updated to k′i and si is updated to s′i;
otherwise, T terminates the protocol.

(Step 8) T sends α = H(n1∥n2∥k′i ∥ ki) to R.

(Step 9) R verifies if σ
?
= H(n1∥n2∥k′i ∥ ki). If σ is false, R re-

reads the tag; otherwise, R updates ki to k′i and si to
s′i . In addition, for all entries (k′′i , s

′′

i ) in L, R executes
TagLeave(k′′i , s

′′

i ). Finally, it empties the trash list L.
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Fig. 2. Search complexity versus the length of ki[] and lk .

4. Security

In this section, we show that (1) Read is a secure authentication
protocol for CRFID and (2) privacy is preserved in CRFID. First,
CRFID protocol updates the path key and secret key once an
authentic read has been completed. Second, the complexity of
the number of keys stored in tags is O(1). Third, readers are
required to match d hash values from U to identify the leaf node.
Each hash value requires at most δ hash computations. Since each
node only contains a few tags, the overall search complexity is
bounded byO(δ×d).2 Thus, CRFID has three properties: resilience
to compromising attacks, a constant key size, and high searching
efficiency. CRFID withstand the two major types of RFID attack as
follows.

1. Resilient to tracking attacks. CRFID significantly increases the
length of each subkey of ki from the suggested 4 bits to 60
bits while maintaining the same δ and thus the same search
complexity. This improvement strengthens the protocol in
avoiding tracking attacks. An attacker can no longer extract the
value of each subkey fromσ . Fig. 2 shows the average number of
searches versus lk. If lk is increased to 30, forwhich the value can
still be inverted by brute force, the average number of searches
required by the reader for N = 0.1, 1, or 10 millions tags is the
same as the trivial solution described by Weis et al. [4].

2. Resilient to desynchronization attacks. Step 8 in Fig. 1 is added
to the protocol to avoid desynchronization attacks. When the
message generated in Step 8 is received byR, we can assert that
the keys stored in T have been updated. If themessage does not
arrive at R, either (1) T did not update its key and terminated
the protocol, or (2)T updated its key to (k′i, s

′

i) (the newkey pair
thatwas also generated atR). In any case,Rwill re-readT until
the message sent in Step 8 is received. Meanwhile, all key pairs
generated in previous trials are trashed to avoid phantom tags
(records that do not exist).

Assume the attacker is allowed to compromise any number of
tags except those she wants to attack. When a tag is compromised,
the secret key and key path are revealed to the attacker. She is also
allowed to eavesdrop, transmit, and overwrite messages during
Read.

4.1. Authenticity

A protocol is said to be a secure authentication protocol if an
attacker cannot be authenticated by the other protocol participants

2 If N ≪ δd , it would be more precise to denote the complexity as O(logN).

(in our case, the reader and a tag) on behalf of another protocol
participant that was not been compromised by the attacker. This
also implies that the attacker cannot reveal the secret key pair for
a tag that it does not compromise.

We construct a simulator that contains an attacker who breaks
the protocol. The simulator shows that the attacker has limited
ability to break the protocol. The simulator interacts with the
attacker as follows. When the reader is required to send a message
M to a tag (or vice versa), the simulator outputs M to the attacker,
who modifies it to M ′ and replies to the simulator. When the
attacker wants to compute a hash function, she issues a hash query
to the simulator. The simulatormaintains a hash list that tracks the
query records. If the query was never made before, the simulator
replies with a hash value of length lh and adds the query and
random string to the hash list. If the query is in the hash list, the
simulator simply replies with the value from the hash list. If the
attacker wants to compromise a tag Tj, the key pair (kj, sj) stored
inside the tag is given to the attacker.

Suppose the tag being targeted is Ti, which contains the key pair
(ki, si). The simulator starts Read and sends a random number n1
to the attacker. The attacker responds with n′1. The simulator then
replies with U = (n2,U0,U1, . . . ,Ud−1,Us), where (U0, . . . ,Ud−1)
are computed according to the protocol and Us is a random string
of length lh. Note that lh is the length of the hash H(). The attacker
needs to output U ′ = (n′2,U

′

0,U
′

1, . . . ,U
′
s) to the simulator.

The simulator rejects the message and terminates R if U ′ ≠ U
or n′1 ≠ n1. We denote by E1 the event whereby the simulator
wrongly rejects the message (i.e., the attacker successfully breaks
the protocol but the simulator rejects it). If themessage is rejected,
the attacker may opt to output σ ′ to fool the tag.

If U ′ = U and n′1 = n1, the simulator accepts the message and
continues the protocol. It outputs σ = {σ1, σ2} to the attacker,
where both σ1 and σ2 are random numbers of length lh. Again, the
attacker responds with σ ′. The simulator rejects σ ′ if it does not
equal σ . If U ′ is rejected by the simulator, the simulator rejects σ ′

as well. We denote by E2 the event whereby σ ′ is in fact legitimate
according to Algorithm 2, but the simulator wrongly rejects it.

Algorithm 2 NewVerify
1: INPUT: σ = {σ1, σ2}, n1, n2.
2: OUTPUT: New Path Key k′i , Secret Key s′i .
3: Internal Variable: Current Path Key ki, Secret Key si.
4: k′i ← σ1 ⊕H(n1||n2||ki)
5: if σ2 ≠ H(n1||n2||si||k′i) then
6: return Fail;
7: end if
8: s′i ← H(ki||k′i||si)
9: return k′i, s

′

i

Finally, the simulator outputs a random α of length lh to the
attacker. The attacker responds with α′. The simulator rejects α′ if
it does not equal α. We denote by E3 the event whereby α′ should
not be rejected, but the simulator rejects it anyways.

If all messages are not changed by the attacker, the simulator
assigns a random key pair (ki, si) to the tag.

By definition, the probability that the adversary successfully
breaks the protocol is bounded by Pr(E1) + Pr(E2) + Pr(E3). Next,
we prove that each of the above terms is negligibly small.

Pr(E1): The event E1 only happens if U ′s is legitimate. This may
be due to the followings reasons:
1. If the same n1 and n2 have been used in previous failed reads.3

This happens with probability qR × 2−ln , where qR is the total

3 Failed reads would not change the key inside the tag, and thus U was sent in
the previous session if the same n1 and n2 are applied.
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number of reads allowed by the adversary and n is the length
of n1 and n2. Note that even though n2 can be chosen by the
adversary, n1 is randomly chosen by the simulator and cannot
be predicted.

2. The attacker has queried hash valueswith the correct key. Since
all the messages in the protocol are not related to key si, this
only happens with probability of at most qH × 2−lk , where qH is
the total number of hash queries made by the attacker.4

3. The attacker outputs a legitimateU ′s that was not obtained from
hash queries or previous communications. This only happens
with probability 2−lh .

Thus, we can estimate the upper bound of Pr(E1) as

Pr(E1) ≤ qR × 2−ln + qH × 2−lk + 2−lh . (3)

Pr(E2): E2 only occurs when σ2 is legitimate. We can further
divide this event into three cases.

1. If the same n1 and n2 are used in the previous round, which only
happens in qR× 2−ln , the same σ can be reused by the attacker.

2. If the attacker has queried a hash in the form H(n1∥n2∥si ∥ x)
for any value x, she can also produce a legitimate σ . However,
since all messages in our protocol are not related to si, this will
only happen with probability qH × 2−lk .

3. Other than the above two cases, the attacker generates
a legitimate σ2 without querying the hash function. The
probability of this happening is bounded by 2−lh .

Thus, we conclude that the upper bound of Pr(E2) is given by

Pr(E2) ≤ qR × 2−ln + qH × 2−lk + 2−lh . (4)

Pr(E3): E3 only happens when α is legitimate. Similar to the
above analysis, this occurs only when:

1. α is a previous simulator output, which will only happen qR ×
2−2ln since both n1 and n2 cannot be controlled by the adversary.

2. The attacker queries a hash value in the form H(n1∥n2∥k′i ∥ ki),
which only happens with probability qH × 2−2lk .

3. α is unrelated to the hash queries for any past communication.
This α is legitimate with probability 2−lh .

Thus, Pr(E3) is bounded by

Pr(E3) ≤ qR × 2−2ln + qH × 2−2lk + 2−lh . (5)

To summarize, the overall probability for breaking of protocol
Pr(A) is given by

Pr(A) ≤ qR × 2−ln(2−ln + 2)

+ qH × 2−lk(2−lk + 2)+ 3 · 2−lh , (6)

which is negligible for reasonably large ln, lk, lh and polynomial
numbers of hash queries qH and online reads qR.

Note that (6) is independent of the number of tags compro-
mised, since each tag has a different secret key si. By fitting some
realistic value such as (ln, lk, lh, qR, qH) = (60, 60, 60, 216, 230),
the maximum probability for an attacker breaking CRFID is less
than 2−29.

4.2. Privacy

To tackle tracking attacks, the protocol must provide less
information to attackers when a tag is illegally read. If an attacker
does not compromise any tags to reveal path keys ki, she will
unable to finish the protocol and/or to extract any subkey of ki.

4 This part is not considered in the proof of ACTION. As the result, the protocol
suffers from tracking attacks.

In this case the attacker has insufficient information to mount a
tracking attack. Thus, the following discussion is only relevant if
the attacker has compromised a set of tags and revealed some path
keys for the system.

When a tag is read illegally, an attacker can conclude a possible
set of tags S that may generate the message. We use the privacy
function P(c) to measure the privacy provided by each scheme.
P(c) is defined as 1

|S|
, where c is the number of compromised tags.

An ideal privacy-preserving scheme would generate a function
P(c) = 1/(N − c),∀c ≤ N − 1, where N is the total number of
tags in the system.

In both legitimate reads (passive overhearing) and illegal reads
(active scanning), the message U = (n2,U0,U1, . . . ,Ud−1,Us)
only provides information to an attacker to identify the tag. If the
attacker does not compromise any tags, it is almost infeasible to
confirmwhether two communication flows belong to the same tag
or not unless the attacker can guess the path key ki or the secret
key si from the communication, or if the same n1 and n2 were used
in two failure reads (which is very unlikely). Thus, we can denote
P(0) ≈ 1

N .
Note that all keys stored in a tag are updated after a legitimate

read. The communication leaks no information to the attacker to
identify this tag. Thus, we only focus our discussion on illegal reads
that provide information to the attacker.

Themore tags compromised by the attacker, themore path keys
are revealed to the attacker. Let C be the set of compromised tags
and let K be the union of all subkeys of path keys from set C.
Assume that tag Ti has key pair ki and si and outputs the messages
U0,U1 · · ·Ud−1 during an illegal read by the attacker.We define the
event Ex,y to be the case whereby ki[0], ki[1], . . . , ki[x − 1] ∈ K
but ki[x], ki[x+ 2], . . . , ki[d− 1] ∉ K; in addition, y nodes under
the node corresponding to ki[x] are compromised.

Given the event Ex,y, on average there are N̄x,y out of the
remaining N − c − 1 in the set S, where N̄x,y can be calculated as

N̄x,y = 1+
(δ − y)(N − c − 1)

δx
. (7)

To compute the probability of Ex,y, the following analogy is used.
There are δx bins with c balls to fill. Let C be a group of δ bins.
We want to find the probability that exactly y bins in C are not
empty such that one particular bin in C (the node that generates
the message) cannot be filled by any ball. Let β be the number of
non-empty bins after filling some bins. Pr(Ex,y) can be calculated
as f (c, y, 0) according to

f (c, y, β) =
δ − β − 1

δx
f (c − 1, y− 1, β + 1)

+
δx
− δ + β

δx
f (c − 1, y, β) (8)

f (1, 1, β) =
(δ − β − 1)

δx
(9)

f (c, 0, β) =


δx
− δ + β

δx

c

(10)

f (u, v, β) = 0, ∀u < v. (11)
Eq. (8) can be viewed as follows. When there are c balls, β

bins in C are filled and y bins in C need to be filled. This can be
accomplished in two ways. In the first case, an empty bin in C is
filled with a ball, so there are β + 1 bins filled with c − 1 balls and
y − 1 bins left. In the second case, if a ball is placed in neither an
empty bin in C nor a forbidden bin, this leaves c − 1 balls and y
bins to fill. Eq. (9) states that when there is one ball left for one bin,
the ball can be placed in any one of the empty bins in C except the
forbidden one. Thus, there are δ − β − 1 bins. Eq. (10) represents
the casewhereby there are c balls left but no additional empty bins
need to be filled. Then all balls must be placed either outside the
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Fig. 3. Privacy level provided by the scheme as a function of the number of
compromised tags for 0.1M-tag, 1M-tag, and 10M-tag systems.

group C or into non-empty bins, where there are δx
− δ + β bins

in total. Eq. (11) addresses the case whereby there are not enough
balls to fill the remaining bins; the probability for this situation is
zero.

The privacy function P(c) can be computed by combining (7)–
(11):

P(c) =
1

d−1
x=1

δ−1
y=1

Pr(Ex,y)N̄x,y

. (12)

Fig. 3 shows privacy as a function of the number of tags being
compromised for systems of different scales.

Note that a tracking attack only works for active scans before a
tag is read legitimately again. Once a tag is read by the reader, the
key pair stored in the tag is updated and the information tracked
by the attacker will no longer be useful.

5. Discussion

5.1. Parameter setting

In this section, we discuss how the system parameters should
be chosen for high scalability, quick searching, short authentication
times, and high security levels for CRFID. Four parameters are
discussed in detail: δ, d, N , and lk. The total number of tags N
depends on the application. We will see that δ and d should be
set as a function of N . Setting of lk is independent of the other
parameters.

Our design idea involves the lowest calculation and waiting
times for both R and T . Thus, R waits when T is calculating;
similarly, T waits when R is calculating. To avoid too many tags
sharing the same path key (to reduce the search time for legitimate
reading and prevent tracking attackswhen tags are compromised),
δd should be proportional to N . δ is the branching factor for the key
tree. A small δ value can speed up the search time when a tag is
read; however, itmay also lead to a value of d that is too large. Thus,
T and R would have to perform the hash operation more times
and the total time for the authentication process would increase.
Conversely, a large δ value can reduce the tag computation load,
but will increase the R search time when identifying T . Besides,
the key size stored in T is d× lk, which also relies on d. Rewritable
storage on some types of RFID tags can be a key constraint when
choosing parameters.

Fig. 4. Authentication cost as a function of the computation ratio δ. (y-axis
represents the authentication cost.)

According to the proposed scheme, R performs one exclusive-
or operation and a maximum of d× δ+ 5 hash operations; T per-
forms one exclusive-or operation and d+ 5 hash operations. Since
the exclusive-or operation has a relativelyminor computation load
comparedwith the hash operation, we only consider the total hash
operation performed. An important issue we consider is that the
computational abilities of R and T differ because of their hard-
ware features. R has more powerful computation ability than T .
Since R only authenticates one tag at a time within an extremely
short period, each the time for each authentication event should
be minimized. To balance the execution time as evenly as possi-
ble between the reader side and the tag side, the minimum cost
for R and T should be calculated. Hence, we examined different
computation ratios R between R and T . R = 1 means that the time
spent for R to perform one hash operation is the same as for T .
R = 100 means that R is 100 times faster than T when perform-
ing one hash operation. Thenwe estimated the authentication cost
for different R values to obtain the best δ and d values. Fig. 4 shows
the authentication cost (Auth_cost) as a function of δ for different
R values according to Eq. (13).
Auth_cost = (δ × d+ 5)+ (d+ 5)× R. (13)

5.2. Case study

The total numbers of tags N may vary in different applications.
For simplicity, we take N = 220 (i.e., a million) as an example
and discuss the other parameter settings accordingly. For the case
of δ = 16 and d = 5, the key tree contains 165(=220) leaf
nodes. This means that there are 220 different combinations for
the tree path. Since δ = 16, every internal node of the tree is
assigned 16 indices, each of which is a lk-bit random number.
The path key for T is a combination of the corresponding index
from the root to the leaf node. For the CRFID protocol, only R
knows these 16 randomly generated values for each internal node;
nevertheless, for the ACTION protocol, the subkey is exactly the
values of 1, 2, . . . , 2lk , which is publicly known. In addition, the
search complexity is related to the choice of δ.

Fig. 3 shows that lk should be greater than 60 bits to maintain
the security requirement. In other words, each subkey is a 60-bit-
long random number. Although there are still only 16 different
subkeys for each node (δ = 16), an attacker does not know
these 16 possible values since each subkey is an unrelated large
260-bit value. Therefore, an attacker cannot enumerate all 260

possible values to retrieve 16 possible hash values. The probability
of guessing a correct subkey decreases from 2−4 to 2−60. Thus, if
it takes 1 s to break 220 hash values, the total time needed will
be 240 s instead of 2−4. This significantly increases the breaking
time. Consequently, the proposed scheme not only maintains the
same search complexity of O(logN) but also greatly decreases the
breaking probability.
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5.3. Scalability

The proposed scheme was originally designed so that each leaf
node is associated with only one tag. Hence, for a key tree with
(δ, d) = (32, 4), there are 220 leaf nodes, corresponding to a tag
capacity of 220. In reality, the system can hold more than 220 tags.
That is, a leaf node may be associated with more than one tag.
It is also guaranteed that the tolerance of the situation that the
amounts of tags are greater than 220.

Although these two tags have the same path key, their
secret keys are different. Moreover, the key updating mechanism
refreshes the path key and secret key on log-in. Therefore, if a
tag is compromised, the attacker is unable to trace the other tags
that belong to the same leaf node since the path key is changed
immediately.Moreover, the secrecy of a tag is providedby its secret
key, which is different from that of other tags. Hence, the proposed
scheme holds more than 220 tags. Note that 220 tags is enough for
most current applications.

6. Conclusion

We proposed a secure and efficient RFID authentication
scheme and presented a formal security analysis and detailed
discussion. The parameters and security strength were confirmed
by experimental results. Our improved solution maintains the
same search complexity and significantly improves the security
strength of each part of the path key. Most importantly, to protect
against desynchronizing attacks, the reader reads the tag again
after updating the key. If the tag respondswith themessage created
by the previous key, this indicates that key updating has not yet
been completed.
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