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Because of the importance of special functions, several books and a large collection of
papers have been devoted to their use and computation, the most well-known being the
Abramowitz and Stegun handbook (Abramowitz and Stegun, 1964) [1] and its successor
(Olver et al. 0000) [2]. However, until now no environment offers routines for the provable
correct multiprecision and radix-independent evaluation of these special functions. We
point out how we make good use of series and limit-periodic continued fraction
representations in a package that is being developed at the University of Antwerp. Our
scalable precision technique is mainly based on the use of sharpened a priori truncation
and round-off error upper bounds for real arguments. The implementation is validated in
the sense that it returns a sharp interval enclosure for the requested function evaluation,
at the same cost as the evaluation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Special functions are pervasive in all fields of science. The most well-known application areas are in physics, engi-
neering, chemistry, computer science and statistics. Because of their importance, several books and websites and a large
collection of papers have been devoted to these functions. Of the standard work on the subject, the Handbook of Mathemati-
cal Functions with Formulas, Graphs and Mathematical Tables edited by Milton Abramowitz and Irene Stegun [1] and published
nearly 50 years ago, the American National Institute of Standards and Technology (NIST) claims to have sold over 700 000
copies (over 150 000 directly and more than four times that number through commercial publishers)! This old handbook
became obsolete in 2010 when NIST released the online DLMF: NIST Digital Library of Mathematical Functions edited by
Frank W.J. Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W. Clark [2]. The DLMF updates, completely rewrites, and
greatly expands the material contained in the old handbook. Together with its simultaneously published print edition, the
DLMF is receiving steadily increasing usage (measured by citations).

Due to their regular appearance in mathematical models of scientific problems, special functions are also pervasive
in numerical computations. Consequently, there is no shortage of numerical routines for evaluating many of the special
functions in widely used mathematical software packages, systems and libraries such as Maple, Mathematica, MATLAB,
IMSL, CERN and NAG. However, until now none of these contains reliable, or validated routines. In this paper, a routine
must do more than just compute an accurate approximation. In addition to this, it must provide a guaranteed bound on the
error of the computed numerical value. In the case of a real-valued function, this error bound determines an interval within
which the exact function value is guaranteed to lie.
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Constructing algorithms that are accurate and stable, even without guaranteeing bounds on errors, is difficult enough.
The following quotes from 1998 and 2002 are still relevant today:

“Algorithms with strict bounds on truncation and rounding errors are not generally available for special functions. These obstacles
provide an opportunity for creative mathematicians and computer scientists.”

[Dan Lozier, General Editor of the DLMF project [3]]

“The decisions that go into these algorithm designs – the choice of reduction formulae and interval, the nature and derivation of the
approximations – involve skills that few have mastered. The algorithms that MATLAB uses for gamma functions, Bessel functions,
error functions, Airy functions, and the like are based on Fortran codes written 20 or 30 years ago.”

[Cleve Moler, Founder of MATLAB [4]]

When we compute, we have come to expect absolute reliability of arithmetic operations, input–output procedures, and
certain very elementary functions such as the square root, and we count upon the results of these operations, procedures
and functions to lie strictly within certain bounds. Our confidence in these matters is the result of the current IEEE floating-
point standard [5].

Many books and papers have been published addressing the need to extend the scope of absolute reliability to more
areas of scientific computing. Examination of these sources indicates that attention until now has been directed mainly to
processes involving finite sequences of arithmetic operations such as those arising in matrix computations and standard
numerical methods for solving polynomials, differential equations, optimization problems, and such. However, elementary
functions are barely covered, and special functions even less. On the whole, not enough attention is paid to the reliable
evaluation of functions, with the exception of [6] and the coverage of multiprecision special and elementary functions in
MPFR [7].

As it stands now, the DLMF puts a wealth of mathematical information at the fingertips of scientists who use special
functions. No provision is made for a computational component. Abramowitz and Stegun included voluminous numerical
tables that are omitted in the DLMF in favor of references to existing mathematical software. We feel the addition of
a built-in facility for computing function values on the fly would be found useful, for example by software developers.
Therefore, the University of Antwerp authors have begun an active collaboration with NIST to leverage the DLMF as a way
to bring the value of reliable computing to the attention of a wider audience. To this end we are developing a validated,
multiprecision and radix-independent library of special (and elementary) functions.

Our goal in this paper is to present our approach to the development of general algorithms that are applicable to the
reliable arbitrary-precision computation of functions. Convergent and asymptotic series expansions, differential equations,
recurrence relations, continued fractions and numerical quadrature are applicable approaches that have been employed
successfully in a variety of multiple-precision packages such as [8–10,7]. Among these we have chosen to use convergent
power series, for which truncation errors are well understood and sharply bounded, and continued fractions, for which
error-theoretic improvements in recent years [11,12] have led to similarly sharp bounds. Together the convergence domains
of these representations often cover the full area of interest for users of these functions. In the following sections we de-
scribe how a combination of both techniques, with the new results from Sections 3, 6–9, leads to validated special function
software. The current implementation builds on a complete a priori error analysis, in contrast to the partial implementation
described in [13], which makes use of a running error analysis (also see Section 8).

In Table 1 we indicate which functions and argument ranges (on the real line) are covered by our implementation. For
the definition of the special functions we refer to [14]. A similar implementation in the complex plane is the subject of
future research.

2. Round-off error accumulation

Let us assume to have at our disposal a scalable precision, IEEE 754-854 compliant [5], floating-point implementation of
the basic operations, comparisons, base and type conversions, in the rounding modes upward, downward, truncation and
round-to-nearest. Such an implementation is characterized by four parameters: the internal base β , the precision p and
the exponent range [L, U ]. The IEEE 754-854 standard was revised in 2008 [15] but most of this work was carried out in
line with the floating-point standard that was valid for the last 20 years. For a concise analysis of the differences we refer
to [16].

Here we aim at least at implementations for β = 2 with precisions p � 53, and at implementations for use with β = 2i

or β = 10i where i > 1. Our internal exponent range [L, U ] is determined by the largest available integer hardware format
(when this turns out to be insufficient, and underflow or overflow results are being generated, then an error message is
returned because the subsequent error analysis breaks down).

Rounding a value to the nearest base β precision p floating-point number (with tie break even when β/2 is odd and
odd when β/2 is even) is indicated by the operation ©p(·). Further we denote by ⊕, �, ⊗, � the exactly rounded (to the
nearest, with appropriate tie break) floating-point implementation of the basic operations +, −, ×, ÷ in the chosen base β

and precision p. Sometimes the generic notation � is used where ∗ ∈ {+,−,×,÷}. Hence, for floating-point numbers x
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Table 1
Overview of the special functions that are covered by our implementation.

Special function Series Continued fraction

γ (a, x) a > 0, x 	= 0a

Γ (a, x) a ∈R, x � 0

erf(x) |x| � 1 identity via erfc(x)
erfc(x) identity via erf(x) |x| > 1
dawson(x) |x| � 1 |x| > 1

Fresnel S(x) x ∈R
b

Fresnel C(x) x ∈R
b

En(x), n > 0 n ∈N, x > 0c

2 F1(a,n; c; x) a ∈R, n ∈ Z,
c ∈R \Z−

0 , x < 1

1 F1(n; c; x) n ∈ Z,
c ∈R \Z−

0 , x ∈R

In(x) n = 0, x ∈R n ∈N, x ∈R

Jn(x) n = 0, x ∈R n ∈N, x ∈R

In+1/2(x) n = 0, x ∈R n ∈N, x ∈R

Jn+1/2(x) n = 0, x ∈R n ∈N, x ∈R

a For a > 0, a > x a faster implementation making use of series is under development.
b When |x| > 1 the implementation is slow. An improvement thereof is planned.
c When 0 < x � 1 the implementation is slow. A faster series version is planned.

and y, following the IEEE standards, the basic operations are carried out, in the absence of underflow and overflow, with a
relative error of at most

u(p) := 1/2β−p+1 (1)

which is also called half a unit-in-the-last-place in precision p:∣∣∣∣ (x � y) − (x ∗ y)

x ∗ y

∣∣∣∣ � u(p), ∗ ∈ {+,−,×,÷},
or

x � y = (x ∗ y)(1 + δ), |δ| � u(p), ∗ ∈ {+,−,×,÷}.
Formulated differently, x � y = ©p(x ∗ y) where ©p(x ∗ y) indicates the nearest base β precision p floating-point neighbor
of the exact value x ∗ y. The same holds for the square root, the remainder and the conversions between formats, from
integers and (since the revision of the IEEE standard in 2008, and also in our implementation) from and to decimal.

In order to compute a relative error bound for a sequence of operations, it is necessary to keep track of all these error
terms 1 + δ. A basic result, given in [17, p. 63], says that if all |δi | � u(p) and ρi = ±1, and if also nu(p) < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn, (2a)

|θn| � nu(p)

1 − nu(p)
=: γ (n, p). (2b)

In practice, (2) means that n errors δi each of at most u(p) in absolute value and combined with one another in products
and quotients, cannot simply be stacked together into one larger error of at most nu(p), but are glued together with some
thick glue resulting in a slightly larger [n/(1 − nu(p))]u(p). This result is very convenient, as it allows us to rewrite any
number of products and quotients of factors 1 + δi in an error analysis. Note that the reverse does not hold, meaning that
not any expression of the form 1 + θn with θn bounded above in absolute value by γ (n, p), can be rewritten as a product
of n factors (1 + δi)

ρi .
It is also possible to combine factors of the form 1 + θi . For the multiplication and division the following relations

hold [17]:

(1 + θk)(1 + θ�) = 1 + θk+�, (3a)

1 + θk

1 + θ�

=
{

1 + θk+�, if � � k,

1 + θk+2�, if � > k.
(3b)

In the division (1 + θk)/(1 + θ�), the case � > k only applies when nothing is known about the nature of θ� , meaning that
θ� is not of the form (2b). If 1 + θ� comes from products and quotients of factors 1 + δi , which is usual, then the rule
(1 + θk)/(1 + θ�) = 1 + θk+� applies for all k and � [17, p. 67].
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For the addition and subtraction with x, y � 0 it is easy to verify that:

x(1 + θk) + y(1 + θ�) = (x + y)(1 + θmax(k,�)),

x(1 + θk) − y(1 + θ�) = (x − y)(1 + θ j max(k,�)),

j � |x| + |y|
|x − y| , j ∈ N.

Note that the order in which one rewrites the error terms influences the sharpness of the final bound: (x(1 + θk) −
y(1 + θ�))(1 + θm) can be rewritten as (x − y)(1 + θm+ j max(k,�)) and as (x − y)(1 + θ jm+ j max(k,�)).

The perturbations θn and bounds γ (n, p) keep track of the accumulation of round-off errors in numerical algorithms. In
the sequel of our analysis, the errors δi , which combine into θn where the subscript n acts as a tally, relate to the accumula-
tion of floating-point errors incurred in some working precision p̂. Working precisions, which are usually somewhat larger
than destination precisions in which a computed result is delivered, are topped by a ˆ. The accompanying bounds γ (n, p̂)

are then also expressed in terms of this working precision p̂.
In the end we want to control this accumulated error and guarantee a threshold for it. We now explain how to distribute

such a threshold over individual subexpressions in products, quotients, additions and subtractions.

3. Round-off error control

Let us take a look at the floating-point expression

Ỹ = ©p(Ỹ1 � Ỹ2 � · · · � Ỹn), ∗ ∈ {×,÷}
consisting of n − 1 multiplications or divisions, say in precision p̂, and an additional rounding of the precision p̂ right-hand
side to the precision p � p̂ memory destination Ỹ . Moreover, let Ỹ i be a floating-point representation of the mathematical
quantity Yi with a relative error

Ỹ i − Yi

Yi
= εi .

If we want for Y = Y1 ∗ Y2 ∗ · · · ∗ Yn , that

Ỹ = Y (1 + ηn), |ηn| � νu(p) =: κ(ν, p),

in other words, that the computed Ỹ is an approximation for the exact quantity Y within a relative error of at most κ(ν, p)

which is usually a small multiple of the half unit-in-the-last-place u(p), then we must find out how the following values
relate to one another,

Z̃ i = Ỹ1 � · · · � Ỹ i, i = 2, . . . ,n,

Z̃ i � Ỹ i+1 = ( Z̃ i ∗ Ỹ i+1)(1 + δi), i = 2, . . . ,n − 1,

|δi| � u(p̂), i = 1, . . . ,n − 1,

Ỹ = ©p( Z̃n) = Z̃n(1 + δn),

|δn| � u(p) = β p̂−pu(p̂),

Ỹ i = Yi(1 + εi), i = 1, . . . ,n,∣∣∣∣∣
n∏

i=1

(1 + εi)
σi

n∏
i=1

(1 + δi)
ρi

∣∣∣∣∣ � 1 + κ(ν, p), σi,ρi = ±1.

We write

n−1∏
i=1

(1 + δi)
ρi = 1 + θn−1, |θn−1| � γ (n − 1, p̂)

as in Section 2, and we denote

1 + ε0 = (1 + θn−1)(1 + δn), |ε0| � γ
(
n − 1 + β p̂−p, p̂

)
. (4)

The errors εi combine into ηn and relate to more general approximation errors than the mere round-off errors δi which
combine into subscripted θ -values. The ηn are bound by some κ(ν, p) expressed in terms of the precision carried by the
memory destination for Ỹ or Ỹ i , which is in its turn denoted by an appropriately subscripted (or superscripted, if necessary)
letter p. Here ν need not be integer, but we assume ν � 2.



6 F. Backeljauw et al. / Science of Computer Programming 90 (2014) 2–20
To be more precise, the operation Ỹ1 � Ỹ2 � · · · � Ỹn is carried out in precision p̂ and then stored as Ỹ in a precision p
format, and in order to achieve this each subexpression Ỹ i is computed in its own working precision p̂i and subsequently
stored in a precision pi format where obviously pi = p̂ for i = 1, . . . ,n. This process can be repeated recursively.

How the threshold κ(ν, p) is to be distributed over the individual |εi |, i = 0, . . . ,n, is proved in Section 9. Theorem 1
tells us how accurate the operands Ỹ i must be, in other words how small εi should be, in order to guarantee∣∣∣∣ Ỹ − Y

Y

∣∣∣∣ � κ(ν, p).

We find that if

|εi | � μi
κ(ν, p)

1 + κ(ν, p)
, i = 0, . . . ,n, (5a)

n∑
i=0

μi = 1, (5b)

then

1 + |ηn| � 1 + κ(ν, p).

Similar to (2a), formula (5) tells us that the bound κ(ν, p) cannot simply be cut into fractions μiκ(ν, p) but is cut apart with
some thick scissors resulting into some slightly smaller pieces [μi/(1 + κ(ν, p))]κ(ν, p). For 1 � i � n each of the pieces
[μi/(1 + κ(ν, p))]κ(ν, p) plays the role of a bound κ(νi, pi) on εi with νi = μiν/(1 + κ(ν, p))u(p)/u(p̂) and expressed as
a multiple of u(pi) = u(p̂). It must in its turn be cut into a number of pieces if Yi is again a composite expression. Here,
because of (4),

μ0
κ(ν, p)

1 + κ(ν, p)
� γ

(
n − 1 + β p̂−p, p̂

)
, (6)

and

min
i=1,...,n

μi
κ(ν, p)

1 + κ(ν, p)
> u(p̂).

These inequalities define the range for the working precision p̂ for the computation of Ỹ1 � Ỹ2 � · · · � Ỹn , which is at the
same time the destination precision of the individual Ỹ i . The fraction μ0κ(ν, p)/(1 + κ(ν, p)) leaves room for the rounding
error to precision p and the n − 1 multiplications or divisions of the Ỹ i . The bounds μiκ(ν, p)/(1 + κ(ν, p)) should leave
enough room for the rounding error involved in representing the computed Ỹ i in precision p̂, while accommodating at
the same time the relative error εi . Unless n is rather large while β is small, p̂ is only slightly larger than p (when β

is large and n is small, p̂ may exceptionally be slightly less than p). In practice, for given p, β , n and ν , the working
precision is obtained by iteratively increasing (exceptionally decreasing) p̂ until μ0 drops (not too far) below an acceptable
threshold between 0 and 1 (in our library we have chosen μ0 � 0.751). The remaining weights μi , i = 1, . . . ,n are chosen
depending on the difficulty with which the operands Ỹ i in the expression for Ỹ are obtained numerically and add up to
μ1 + · · · + μn = 1 − μ0.

For the addition of n operands Ỹ i in precision p̂ followed by a rounding to the precision p destination Ỹ ,

Ỹ = ©p(Ỹ1 ⊕ Ỹ2 ⊕ · · · ⊕ Ỹn),

it is easy to see that with μ = μ0 from (6) the bounds

max
(|ε1|, . . . , |εn|

)
� (1 − μ)

κ(ν, p)

1 + κ(ν, p)
, 0 < μ < 1 (7)

and

|ε0| � μ
κ(ν, p)

1 + κ(ν, p)

deliver the same guarantee. In a sequence of additions and subtractions we gather the positive and negative contributions
before carrying out the subtraction. For one precision p̂ subtraction, rounded to precision p,

Ỹ = ©p(Ỹ1 � Ỹ2),

we find that with μ = μ0 from (6),

max
(|ε1|, |ε2|

) |Y1| + |Y2|
|Y1 − Y2| � (1 − μ)

κ(ν, p)

1 + κ(ν, p)
, 0 < μ < 1

should be satisfied.
When n = 1, then p̂ = p and both (5a) and (7) simplify to |ε1| � κ(ν, p).
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4. Validated function evaluation

Now we focus on the computation of a single real-valued subexpression Yi in Y = Y1 ∗ Y2 ∗ · · · ∗ Yn . In our case Yi is a
special mathematical quantity such as exp(−x2) or

√
π or Γ (1/x). For example

Y = erf(x) = Y1 × Y2, Y1 = 2√
π

, Y2 =
∞∑

n=0

(−1)nx2n+1

(2n + 1)n! .

In this section we refer to Yi as f i(zi,x), or briefly f (zx), where zi,x or zx is the argument built from an exact argument x
(in base β and precision p) passed by a user, and f is the mathematical function which is to be evaluated in zi,x or zx to
yield Yi .

The realization of a machine implementation Ỹ i = F̃ (z̃x) of a function Yi = f (zx) in a floating-point environment is
essentially a three-step procedure (we abbreviate the threshold κ(νi, pi) from Section 3 by Δ):

1. From a given (presumed exact) argument x, the actual argument zx passed to f is computed and an error analysis is
made. In the case of the transcendental functions, zx often results from x by some reduction of x to an argument lying
within specified bounds [6]. For the more complicated mathematical functions, zx results from the use of some simple
identities mapping the argument x into a specific half-line or interval.

2. After determining the argument, a mathematical model F (zx) for f (zx) is constructed and a truncation error comes into
play, which needs to be bounded:∣∣∣∣ f (zx) − F (zx)

f (zx)

∣∣∣∣ � φ1Δ. (8)

In the sequel we systematically denote the model F ≈ f by a capital italic letter.
3. When implemented, in other words, when evaluated as F̃ (z̃x), this mathematical model F (zx) is subject to an accumu-

lated round-off error, which also needs to be controlled:∣∣∣∣ F (zx) − F̃ (z̃x)

f (zx)

∣∣∣∣ � φ2Δ. (9)

We systematically denote the implementation of the model F by F̃ .

By bounding both the truncation error (8) and the round-off error (9), we obtain a bound for the total relative error for the
computation of f (zx) using the machine implementation F̃ (z̃x), since for φ1 + φ2 � 1, by the triangle inequality,∣∣∣∣ f (zx) − F̃ (z̃x)

f (zx)

∣∣∣∣ � Δ. (10)

The technique to provide a mathematical model F (zx) of a function f (zx) differs substantially when going from a fixed
finite precision context to a finite scalable precision context. In the former, the aim is to provide one best mathematical
model per fixed precision as in [18]. The model is of minimal complexity with respect to the truncation error bound
requested in the fixed finite precision. In the latter, the goal is to provide a generic technique, from which a mathematical
model yielding the imposed accuracy, is deduced at runtime. Hence best approximants are not an option since these models
have to be recomputed every time the precision is altered and a function evaluation is requested. Despite this the generic
technique should generate an approximant of as low complexity as possible.

Our aim is the development of a generic technique, suitable for use in a multiprecision context. However, we want
the technique to be efficient enough so that it can compete with the traditional hardware algorithms when used in an
environment of 53 binary or (approximately) 16 decimal digits accuracy. So while genericity and accuracy are our primary
goals, we also watch over the efficiency of the technique. That is why we use different mathematical models in different
subdomains of the function. In addition, we want our implementation to be reliable, in other words, that a sharp interval
enclosure for the requested function evaluation is returned without any additional cost (the argument x is sill presumed to
be exact)!

Besides series representations, as presented in Section 5, continued fraction representations of functions can be very
helpful in the multiprecision context. A lot of well-known constants in mathematics, physics and engineering, as well as
elementary and special functions enjoy very nice and rapidly converging continued fraction representations. In addition,
many of these fractions are limit-periodic. Both series and continued fraction representations are classical techniques to
approximate functions and there is a lot of literature describing implementations that make use of them [19]. However, so
far, no attempt was made at an efficient yet provable correct implementation.

It is well-known that the tail or remainder term of a convergent Taylor series expansion converges to zero. It is less
well-known that the tail of a convergent continued fraction representation does not necessarily converge to zero. It does
not even need to converge at all. A suitable approximation of the usually disregarded continued fraction tail may speed up
the convergence of the continued fraction approximants. This idea is elaborated in Section 6.
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In Section 7 mathematical models Fi(zi,x) for f i(zi,x) and their implementations F̃ i(z̃i,x) are combined to compute an
approximation Ỹ for Y within the relative error κ(ν, p). Hence the error analysis of Section 3 applies before (8) and (9).

From the bound (10) the guaranteed enclosure[
F̃ (z̃x)

1 + Δ
,

F̃ (z̃x)

1 − Δ

]
, f (zx) > 0

or [
F̃ (z̃x)

1 − Δ
,

F̃ (z̃x)

1 + Δ

]
, f (zx) < 0

is obtained. Precision p interval endpoints are obtained by performing the additions 1 ± Δ and the divisions F̃ (z̃x)/(1 ± Δ)

in appropriately rounded precision p arithmetic.
In Sections 5 and 6 we deal with the case n = 1 for Y and simplify the notation of the calling argument zx to z. It

remains that the argument x passed by a user is considered to be exact, while the calling argument z in F (z) ≈ f (z) may
not be exactly representable anymore.

5. Taylor series development

For simplicity, but without loss of generality, we assume that the Taylor series of f (z) is given at the origin:

f (z) =
∞∑

i=0

ai z
i . (11)

If we want to bound the total relative error using (10), we must determine N such that for F (z) = T N (z), the partial sum
of degree N of (11), the truncation error is bounded by (8), and evaluate T N (z), in a working precision p̂ possibly slightly
larger than the destination precision p, such that for the computed value F̃ (z̃) = T̃ N (z̃), the round-off error satisfies (9).

An upper bound for the absolute truncation error | f (z) − T N(z)| is obtained from the sequence of terms {ai zi}i of the
series (11). If the quotients ai z/ai−1 of consecutive terms are positive and strictly decreasing, and if there exists an i0 such
that

ai z

ai−1
� R < 1, i � i0,

then, for N � i0,

∞∑
i=N+1

ai z
i � aN+1zN+1

∞∑
i=0

Ri = aN+1zN+1

1 − R
.

On the other hand, if the terms in the series are alternating with −ai z/ai−1 positive and decreasing, then for any odd N ,

∞∑
i=N+1

ai z
i � aN+1zN+1.

If furthermore |q(z)| is a (tight) lower bound for | f (z)|, then we can replace the bound for the truncation error in (8) by∣∣∣∣ f (z) − T N(z)

q(z)

∣∣∣∣ � φ1Δ, (12)

from which we can determine the degree N .
Since in both cases | f (z)| � |T N (z)|, we can also replace the round-off error in (9) by∣∣∣∣ T N(z) − T̃ N(z̃)

f (z)

∣∣∣∣ �
∣∣∣∣ T N(z) − T̃ N(z̃)

T N(z)

∣∣∣∣ � φ2Δ. (13)

A standard method for the evaluation of the partial sum T N(z) is Horner’s scheme, which consists of the rearrangement

T N(z) = a0 + z
(
a1 + z

(
a2 + z(· · · + zaN)

))
. (14)

Since, for series of elementary and special functions, the coefficients ai are often related by a simple ratio ri := ai/ai−1,
Horner’s scheme can be rewritten as

T N(z) = a0
(
1 + zr1

(
1 + zr2

(
1 + zr3(· · · + zrN)

)))
, (15)
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leading to the following recursive computation scheme:

T N,N(z) = 1,

T N,i(z) = 1 + zri+1T N,i+1(z), i = N − 1, . . . ,0,

T N(z) = a0T N,0(z).

We now derive a round-off error bound for the computation of the scheme in the working precision p̂.
Let z̃, ã0 and r̃i denote the machine representations of z, a0 and ri respectively, computed at the working precision p̂,

such that

z̃ = z(1 + θn(z)),

ã0 = a0(1 + θn(a0)),

r̃i = ri(1 + θn(ri)), i = 1, . . . , N

and let the accumulated relative errors θn(z) , θn(a0) and θn(ri) be bounded according to (2b), expressed in function of u(p̂).
Inserting these data error terms and adding round-off error terms for the basic operations into the nested scheme given
above, results in

T̃ N,N(z̃) = 1,

T̃ N,i(z̃) = 1 ⊕ z̃ ⊗ r̃i+1 ⊗ T̃ N,i+1(z̃), i = N − 1, . . . ,0,

= (1 + δ3) + z(1 + θn(z))ri+1(1 + θn(ri+1))T̃ N,i+1(z̃)(1 + δ1)(1 + δ2)(1 + δ3),

T̃ N(z̃) = ã0 ⊗ T̃ N,0(z̃)

= a0 T̃ N,0(z̃)(1 + θn(a0))(1 + δ4).

Collecting all round-off error terms gives

T̃ N(z̃) =
N∑

i=0

(
(1 + θn(a0))(1 + δ3)(1 + δ4)

i−1∏
�=0

(1 + θn(z))(1 + θn(r�+1))(1 + δ1)(1 + δ2)(1 + δ3)

)
ai z

i,

which can be rearranged, using (2b) and (3a), into the following expression for the final value:

T̃ N(z̃) =
N∑

i=0

(1 + θk(i))ai z
i,

with

k(i) = 2 + n(a0) + i
(
3 + n(z)

) +
i−1∑
j=0

n(r j+1)

� 2 + n(a0) + i
(

3 + n(z) + i
max

j=1
n(r j)

)
.

Further rewriting gives

∣∣T N(z) − T̃ N(z̃)
∣∣ =

∣∣∣∣∣
N∑

i=0

θk(i)ai z
i

∣∣∣∣∣
� N

max
i=0

|θk(i)|
N∑

i=0

∣∣ai z
i
∣∣

� γ
(
k(N), p̂

)
T +

N

(|z|),
where

T +
N (z) =

N∑
|ai|zi .
i=0
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Hence, the round-off error is bounded by∣∣∣∣ T N(z) − T̃ N(z̃)

T N(z)

∣∣∣∣ � γ
(
n(T N ), p̂

) T +
N (|z|)

|T N(z)| , (16)

where γ (n(T N ), p̂) is expressed in function of u(p̂) as in (2b) with n(T N ) := k(N).
Note that the factor

T +
N (|z|)

|T N(z)| � 1. (17)

It equals 1 if ai � 0 for all i and z � 0, or if (−1)iai � 0 for all i and z � 0. Otherwise, this factor can be arbitrarily large. As
such, it might be necessary to limit the domain for z in order to obtain a reasonable upper bound for this factor.

Bounding (16) by φ2Δ, as required in (13), gives a condition on the working precision p̂,

n(T N )u(p̂)

1 − n(T N )u(p̂)

T +
N (|z|)

|T N(z)| � φ2Δ.

This can be rewritten as

u(p̂) � φ2Δ

n(T N)
( T +

N (|z|)
|T N (z)| + φ2Δ

) ,

which results in the following bound for the working precision,

p̂ � 1 − logβ(2) − logβ(φ2Δ) + logβ

(
n(T N )

) + logβ

(
T +

N (|z|)
|T N(z)|

)
+ logβ(1 + φ2Δ).

Here, the last two terms come from the fact that

T +
N (|z|)

|T N(z)| + φ2Δ �
T +

N (|z|)
|T N(z)| (1 + φ2Δ).

6. Continued fraction representation

Let us consider a continued fraction representation of the form

f (z) = a1

1 + a2

1 + · · ·
= a1

1
+ a2

1
+ · · · =

∞∑
i=1

ai

1
, (18)

where ai := ai(z) and ai � −1/4. Here ai is called the i-th partial numerator. For the restriction ai � −1/4 we refer to [14,
p. 55]. The case where ai < −1/4 can also be dealt with but is much trickier [20, p. 159], [21].

The continued fraction is said to be limit-periodic if the limit limi→∞ ai exists (it is allowed to be +∞). We respectively
denote by the N-th approximant f N(z; w N ) and N-th tail tN(z) of (18), the values

f N(z; w N) =
N−1∑
i=1

ai

1
+ aN

1 + w N
,

tN(z) =
∞∑

i=N+1

ai

1
.

We restrict ourselves to the case where a sequence {wi}i , wi 	= 0 can be chosen such that limi→∞ f i(z; wi) =
limi→∞ f i(z;0).

The tails tN(z) of a convergent continued fraction can behave quite differently compared to the tails of a convergent
series, which always go to zero. We illustrate the different cases with an example. Take for instance the continued fraction
expansion

√
1 + 4z − 1

2
=

∞∑
i=1

z

1
, z � −1

4
.

Each tail tN (z) converges to the value (
√

1 + 4z − 1)/2 as well and hence the sequence of tails is a constant sequence. More
remarkable is that the even-numbered tails of the convergent continued fraction
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√
2 − 1 =

∞∑
i=1

(
(3 + (−1)i)/2

1

)
= 1

1
+ 2

1
+ 1

1
+ 2

1
+ · · ·

converge to
√

2 − 1 while the odd-numbered tails converge to
√

2 (hence the sequence of tails does not converge), and that
the sequence of tails {tN(z)}N = {N + 1}N of

1 =
∞∑

i=1

i(i + 2)

1

converges to +∞. When carefully monitoring the behavior of these continued fraction tails, very accurate approximants
f N(z; w N) for f (z) can be computed by making an appropriate choice for w N [12]. In our implementation we take
w N to be an exactly representable number in the floating-point set under consideration. The relative truncation error
| f (z) − f N(z; w N)|/| f (z)| is bounded by the so-called interval sequence theorem [11].

The following example illustrates that it makes quite a difference to use no tail (w N = 0), or the mathematical limit value
[14] (w N = limN→∞ tN(z)), or an accurate estimate of the N-th tail (w N ≈ tN(z)). Consider the continued fraction repre-
sentation (22). Evaluating the 13-th approximant at z = 6.5 using w13 = 0 and exact arithmetic, delivers an approximant
with 28 significant decimal digits (relative error bounded above by 5 × 10−27). Plugging in the limit of the tail sequence for
w N , results in a loss of two significant digits rather than a gain! However, making use of a double precision estimate of the
actual tail value t13(z) results in almost 40 significant decimal digits (relative error bounded above by 8 × 10−41).

Another way to view the influence of an appropriate choice for the tail is the following. At z = 6.5 the 24-th approximant
of (22) with w N = 0 guarantees a relative error bounded above by 2u(p), p = 40, β = 10. But N can easily be reduced from
24 to 19 by using w19 = −9.2861, and even further to 14 by plugging in w14 = −5.5909501809. These experiments can be
verified by the reader at cfsf.ua.ac.be.

Let the partial numerators ai(z) be represented by the base β precision p̂ floating-point approximation ãi := ãi(z̃) satis-
fying ∣∣∣∣ ãi − ai

ai

∣∣∣∣ = |θn(ai)| � γ
(
n(ai), p̂

)
, i = 1,2, . . . .

We denote for ai > 0

bi := ãi

(1 + γ (n(ai), p̂))
,

ci := ãi

(1 − γ (n(ai), p̂))
,

and for ai < 0

bi := ãi

(1 − γ (n(ai), p̂))
,

ci := ãi

(1 + γ (n(ai), p̂))
,

such that

bi � ai � ci

and assume

−1/4 � bi, 0 � bici .

The continued fraction (18) is most stably evaluated using the backward algorithm:

F̃ (N)
N+1 = w N ,

F̃ (N)
i = ãi � (

1 ⊕ F̃ (N)
i+1

)
, i = N, . . . ,1,

F̃ (z) = f̃ N(z̃; w N) = F̃ (N)
1 .

Let [D N , U N ] denote a reliable enclosure of the N-th tail tN(z). For the special mathematical functions these are easy to
obtain [11]. Then a reliable enclosure of f N(z; w N) with w N ∈ [D N , U N ] is obtained from the computation of

[Di, Ui] = [bi+1, ci+1]
, i = N − 1, . . . ,0. (19)
1 + [Di+1, Ui+1]
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Here, for 0 � bi+1 � ci+1

Di = bi+1

1 + Ui+1
,

Ui = ci+1

1 + Di+1
,

and for bi+1 � ci+1 � 0

Di = bi+1

1 + Di+1
,

Ui = ci+1

1 + Ui+1
.

With −1/4 � bi � ai � ci , we have −1/2 � Di � ti(z) � Ui . Then for the mathematical approximation F (z) = f N(z; w N), the
truncation error satisfies∣∣∣∣ f (z) − f N(z; w N)

f (z)

∣∣∣∣ � U N − D N

1 + D N

N−1∏
i=1

Mi,

Mi = max

{∣∣∣∣ Di

1 + Di

∣∣∣∣, ∣∣∣∣ Ui

1 + Ui

∣∣∣∣}, D N � w N � U N .

From the condition

U N − D N

1 + D N

N−1∏
i=1

Mi � φ1Δ,

N is deduced, following the ideas in [11]. Depending on the sign of the partial numerators ai and their monotonicity
behavior (ascending, descending, oscillatory), even/odd approximants of ti(z), i = 1, . . . , N , provide interval representations
for each of the values Di and Ui . We found it most useful to aim for 12–13 decimal significant digits in w N ∈ ]D N , U N [.

A proper working precision p̂ � p is obtained from the upper bound for the round-off error in the backward algorithm
for f N(z; w N ). It is proved in [22] that for

|θn(ai)| � γ
(
n(ai), p̂

)
,

ΓN = max
i=1,...,N

n(ai)

1 − n(ai)u(p̂)
,

M = max
i=1,...,N

Mi,

the round-off error in the backward algorithm, when carried out in base β precision p̂ floating-point arithmetic, satisfies∣∣∣∣ f N(z; w N) − f̃ N(z̃; w N)

f N(z; w N)

∣∣∣∣ � (4 + ΓN)
1 − MN

1 − M
u(p̂).

From the upper bound

(4 + ΓN)
1 − MN

1 − M
u(p̂) � φ2Δ,

we can solve for the precision p̂ as follows. Let p̌ denote the approximate precision defined by

u(p̌) = φ2Δ

1−MN

1−M (4 + maxN
i=1 n(ai))

.

Then with

a = N
max
i=1

n(ai),

b = 1 − MN

1 − M
,

c = φ2Δ,
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the function f (a,b, c) in Lemma 3 equals f (a,b, c) = u(p̂)/u(p̌). It follows from this lemma that p̌ � p̂ < p̌ + 1 (because
β � 2). Since the exact solution p̂ is difficult to compute for small Δ, we may safely bound the working precision by p̌ + 1,
giving

p̌ � 2 − logβ(2) − logβ(φ2Δ) + logβ

(
1 − MN

1 − M

)
+ logβ

(
4 + N

max
i=1

n(ai)
)
.

7. Example: the error and complementary error functions

We consider the error function and the complementary error function

erf(x) = 2√
π

x∫
0

e−t2
dt,

erfc(x) = 2√
π

∞∫
x

e−t2
dt

for x ∈R. These functions are closely related to one another through

erfc(x) = 1 − erf(x). (20)

Furthermore, we can limit the discussion to x > 0 since

erf(0) = 0,

erf(−x) = −erf(x),

erfc(−x) = 2 − erfc(x).

In addition we implement the special cases

erf(−∞) = −1,

erf(+∞) = 1,

erf(not-a-number) = not-a-number.

For the implementation of erf(x) and erfc(x) we have chosen the representations (series and continued fractions) with the
highest rate of convergence on each of the two regions [0,1] and (1,+∞). For a comparison of the different series and
continued fraction representations of several special functions, we refer to the many numerical tables in [14, Chapter 13].

7.1. Series implementation of erf(x) for 0 < x � 1

The Maclaurin series of erf(x) is defined by

erf(x) = f1(x) × f2(x) = 2√
π

×
∞∑

i=0

(−1)i x2i+1

(2i + 1)i! .

Suppose that for the corresponding floating-point expression

ẽrf(x) = ©p
(

F̃1(z̃1,x) ⊗ F̃2(z̃2,x)
)
,

we require∣∣∣∣erf(x) − ẽrf(x)

erf(x)

∣∣∣∣ � κ(ν, p) = 2u(p), ν = 2, n = 2.

Using (6) with

μ0 = 1 + νu(p)

ν

1 + n−1
β p̂−p

1 − (
1 + n−1

β p̂−p

)
u(p)

, (21)

we can compute the precision p̂, in which both F̃1(z̃1,x) and F̃2(z̃2,x) need to be delivered and in which the floating-point
product F̃1(z̃1,x) ⊗ F̃2(z̃2,x) needs to be computed. For β = 10 this results in p̂ = p + 1 with μ0 � 0.55.
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Table 2
For β = 10, given p and x, the N-th partial sum of f2(x) evaluated in precision p̂, guarantees a total relative error of
at most 2u(p) for |erf(x) − ẽrf(x)|/|erf(x)|.

x p n p̂

0.125 50 19 56
100 34 106
250 77 256

0.250 50 23 56
100 42 106
250 91 256

0.375 50 27 56
100 47 106
250 102 257

0.500 50 30 56
100 52 106
250 112 257

x p N p̂

0.625 50 33 56
100 57 106
250 121 257

0.750 50 36 56
100 62 106
250 129 257

0.875 50 39 56
100 66 106
250 137 257

1.000 50 41 56
100 70 106
250 144 257

To comply with (5b), we take μ1 = μ2 = 1
2 (1 − μ0). The values F̃1(z̃1,x) and F̃2(z̃2,x) are themselves computed in

respective working precisions p̂1 and p̂2 which are determined separately using the same principles. The bounds for the
relative truncation errors ε1 and ε2 associated with F̃1(z̃1,x) and F̃2(z̃2,x) are given by (5a). In the remainder of this section,
we focus on the evaluation of f2(x).

Before determining the degree N of the partial sum T N (x) of the series f2(x) using (12), we note that a sufficient lower
bound for f2(x) is given by

q(x) = x − x3

3
,

for which f2(x)/q(x) � 1.121, for 0 < x � 1. Since the series is alternating, we take the minimal odd degree N for which

x2N+3

(2N + 3)(N + 1)!
1

q(x)
� 1

2
κ(ν2, p).

Note that the value of N depends on x and increases for growing values of x.
We can compute the partial sum F2(x) = T N (x) using (15) by replacing x by z = x2 and a0 by x. Since the input x is

assumed to be exactly representable, we get

n(z) = 1,

n(a0) = 0.

Otherwise, the tally n(z) is increased accordingly. Furthermore, note that the coefficients of the series given by f2(x) are
related by the ratio

rn = − 2n − 1

n(2n + 1)
.

If we assume that N is such that N(2N +1) remains exactly representable (which is, for instance, the case for N � 67 108 863
when computing N(2N + 1) in IEEE double precision floating-point arithmetic), then computing this ratio involves only one
floating-point division, so we have

N
max
n=1

n(rn) = 1.

Taken together, the value of n(T N ) is given by

n(T N ) = 1 + 5N.

Finally, we note that for 0 < x � 1, the factor (17) is bounded by 2. We choose φ1 = 1/2 = φ2 to obtain the respective
values for N and p̂ listed in Table 2 for different x and p and β = 10.
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7.2. Continued fraction implementation on 1 < x

A rapidly converging continued fraction representation for erfc(x) is given by

erfc(x) = f1(x)

f2(x)
× f3(x) = e−x2

√
π

(22)

×
(

2x/(2x2 + 1)

1
+

∞∑
i=2

−(2i−3)(2i−2)

(2x2+4i−7)(2x2+4i−3)

1

)
. (23)

We expect the floating-point implementation

ẽrfc(x) = ©p
(

F̃1(z̃1,x) � F̃2(z̃2,x) ⊗ F̃3(z̃3,x)
)
,

to satisfy∣∣∣∣erfc(x) − ẽrfc(x)

erfc(x)

∣∣∣∣ � κ(ν, p) = 2u(p), ν = 2, n = 3.

Since n is larger, the fraction μ0 given by (21) is slightly larger. Furthermore we take μ1 = μ2 = 1
4 (1 − μ0) and μ3 =

1
2 (1 − μ0). Again we find that for β = 10 the floating-point division and product F̃1(z̃1,x) � F̃2(z̃2,x) ⊗ F̃3(z̃3,x) need to be

computed in precision p̂ = p + 1, now guaranteeing μ0 � 0.6. So the individual F̃ i(z̃i,x), i = 1,2,3 are delivered in memory
destinations of size pi = p + 1, i = 1,2,3. They are in their turn computed in working precisions p̂i , i = 1,2,3 which are
determined in the same way. The bounds for the relative truncation errors ε1, ε2 and ε3 associated with F̃1(z̃1,x), F̃2(z̃2,x)

and F̃3(z̃3,x) are obtained from (5a) as above. In the remainder of this section we focus on f3(x).
When computing

a1(x) = 2x

2x2 + 1
,

ai(x) = −(2i − 3)(2i − 2)

(2x2 + 4i − 7)(2x2 + 4i − 3)
, i � 2,

in floating-point arithmetic, we find

n(a1) = 5,

n(ai) = 9, i � 2.

Here we assume that 2N − 3, 2N − 2, 4N − 7 and 4N − 3 are exactly representable in IEEE double precision arithmetic
(which is satisfied for N � 2.25 × 1015). If this is not the case, the tally n(ai) can be adapted accordingly. Also x is again
assumed to be an exactly representable number in the destination precision p (and the higher working precisions). For the
sake of being radix-independent, the multiplication 2x is not assumed to be an exact operation.

Double precision interval enclosures [bi, ci] for the partial numerators ai and the inner bounds

Di �
i+�−1∑
j=i+1

b j

1
+ bi+�

1 + (−1 + √
4bi+�+1 + 1)/2

� ti(x),

ti(x) �
i+�−1∑
j=i+1

c j

1
+ ci+�

1 − 1/2
� Ui,

and outer bounds

i+�−1∑
j=i+1

b j

1
+ bi+�

1 − 1/2
� Di,

Ui �
i+�−1∑
j=i+1

c j

1
+ ci+�

1 + (−1 + √
4ci+�+1 + 1)/2

,

lead to upper bounds for M1, . . . , MN−1 and U N − D N and a lower bound for D N [11,13]. Upper bounds for M1, . . . , MN−1
and DN can be obtained with � = 1 while larger values for � are recommended for an accurate bound on U N − D N .

We choose φ1 = 1/2 = φ2 to find the values for N and p̌ given in Table 3 for a variety of x- and p-values and β = 10.



16 F. Backeljauw et al. / Science of Computer Programming 90 (2014) 2–20
Table 3
For β = 10, given p and x, the N-th approximant of f3(x) evaluated in precision p̌ with double precision tail estimate w N , guarantees a total relative error
of at most 2u(p) for |erfc(x) − ẽrfc(x)|/|erfc(x)|.

x p N p̌ w N

1.750 50 165 54 −4.329496127779110e−01
100 871 104 −4.705213176840440e−01
250 6242 255 −4.889463306700787e−01

2.500 50 84 54 −3.681442608479621e−01
100 438 104 −4.408225669101029e−01
250 3088 255 −4.775605158021344e−01

3.250 50 55 54 −2.961145010800355e−01
100 271 104 −4.030228242779376e−01
250 1851 254 −4.623699926667059e−01

4.000 50 40 54 −2.240298230456090e−01
100 182 104 −3.568083173196760e−01
250 1240 254 −4.435599088170887e−01

4.750 50 28 54 −1.491872106512259e−01
100 138 104 −3.096699530828058e−01
250 900 254 −4.216730831698096e−01

5.500 50 24 54 −1.046709780247154e−01
100 102 104 −2.545017655429691e−01
250 685 254 −3.967538546425260e−01

6.250 50 18 54 −6.056715517294565e−02
100 87 104 −2.115853181648406e−01
250 549 254 −3.702016868974058e−01

7.000 50 13 54 −3.029929019566408e−02
100 70 104 −1.640969910050955e−01
250 450 254 −3.415466979650395e−01

7.3. Further implementation details

A transcript of the documented code that implements Sections 7.1 and 7.2, completely paralleling the description in
this paper, can be downloaded from the webpages cant.ua.ac.be/publications or cfsf.ua.ac.be. The variable
names in the code equal the mathematical notations used in the paper.

8. Tips and tricks of the trade

8.1. Multiprecision arithmetic

In the above analysis we assume that the scalable precision base β arithmetic follows the IEEE 754-854 standard. The
main reason is that our error analysis is based on this model. However, typically, multiprecision software implementations,
as opposed to fixed precision hardware implementations, support some additional features. Some of these may even bring
the accumulated error down. We point out which features in our own library MpIeee qualify as such:

• Where the 1985 standard requires the base conversions (between decimal and the internal base β) to be exactly
rounded only for a limited range of real decimal numbers, in the MpIeee library the conversions are exactly rounded
for all real decimal numbers. Thanks to the use of C++, all input, output and arithmetic operations are simply expressed
by overriding intrinsic operators.

• All operations accept multiprecision numbers with different precisions for the (one or two) operands and the result. As
such, MpIeee allows for mixed-precision arithmetic. Making use of the technique of delayed evaluation when (non-
compound) operations or function evaluations are assigned to a destination, an expression of the form Y = ©p(Y1 � Y2)

where the precisions p, p1 and p2 may differ, is carried out with one single rounding error of at most u(p).
• In a multiprecision implementation the bound κ(ν, p) is best passed as logβ(κ(ν, p)), rounded down. Otherwise (double

precision) underflow may result when β and p are large and the bound is stored in double precision (it is not very
sensible to not use a hardware type for it).

8.2. Running error analysis

Instead of a straightforward implementation of the continued fraction technique above, a faster implementation as de-
scribed in [13] can be used. The latter makes use of a running error analysis rather than a fully a priori error analysis. Both
are built on the same mathematical continued fraction toolbox though.
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Besides double precision and multiprecision interval enclosures for the partial numerators ai , it also needs a crude but
guaranteed interval enclosure for the continued fraction tail ti(z), if necessary only from a certain i on. The only requirement
is that this enclosure is not so crude that it unnecessarily stretches beyond −1 because then the arithmetic breaks down.

To avoid the validated computation of the intervals [Di, Ui] for the truncation error bound, and ]Di, Ui[ for the choice
of wi , the running error technique introduces, besides the true relative error r := |y− ỹ|/|y| for a magnitude y approximated
by a computed value ỹ, a computable relative error r̃ := |y − ỹ|/| ỹ|. Both are intimately related by

r̃

1 + r̃
� r � r̃

1 − r̃
r

1 + r
� r̃ � r

1 − r

whenever both r and r̃ are less than 1. But a bound for the latter is more easily computable at runtime: it suffices to have
a bound for |y − ỹ|. In order to guarantee that r � κ(ν, p) one must impose the stricter r̃ � κ(ν, p)/(1 + κ(ν, p)).

9. Lemmas and theorems

Lemma 1. Assume a > 0 and a + b > 0 and let there be given n positive numbers μi , i = 1, . . . ,n, that satisfy

n∑
i=1

μi = 1. (24)

Then

(a + b)an−1 �
n∏

i=1

(a + μib) �
(

a + b

n

)n

. (25)

The lower bound is reached when exactly one of the μi is equal to 1 and the others are zero. The upper bound is reached when all μi
are equal to 1/n.

Proof. Define the function

f (μ1, . . . ,μn) = −
n∑

i=1

log(a + μib).

Because of the conditions on a and b, the argument of each logarithm is strictly positive so f is a bounded, continuous
function. The product in (25) reaches a maximum when f reaches a minimum and vice versa. Furthermore, the Hessian of
f is a diagonal matrix with positive entries b2/(a + μib)2, so f is a convex function.

To minimize f with the equality constraint (24), we consider the function

g(μ1, . . . ,μn, λ) = f (μ1, . . . ,μn) + λ

(
n∑

i=1

μi − 1

)
where λ is a Lagrange multiplier. It is easily checked that the gradient of g is zero only when

μ1 = · · · = μn = 1

n
, λ = b

a + b/n

and since f is convex and the constraint is linear, this corresponds to a global minimum. This proves the upper bound
in (25).

Since g has only one critical point (corresponding to a global minimum), the maximum must occur at the boundary,
where one or more of the μi are zero. Let us assume, without loss of generality, that μn = 0. Minimizing the product
in (25) then corresponds to minimizing a similar product with n − 1 factors instead of n, so we have reduced the dimension
of the problem by 1. Repeating this argument n − 2 times, we find that μ1 = 1 and μ2 = · · · = μn = 0 (or, since the problem
is symmetric in the μi , that exactly one of the μi is 1 and the others are zero). This proves the lower bound of (25). �

Note that the upper bound in (25) is a variation on the well-known fact that the maximum volume of an n-dimensional
rectangular parallelepiped whose edges cannot exceed a certain length is that of a hypercube.

Lemma 2. Let a � 0. Then

log(1 + a) � a

1 + a
.
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Proof. Define f (a) = log(1 + a) − a/(1 + a). Then f ′(a) = a/(1 + a)2 � 0 and f (0) = 0. So f only increases, starting from
zero, which proves the lemma. �

Using the previous lemmas it is not so difficult to prove the following result. Before proceeding with the proof, we point
out that 1 + κ with κ � 0, also bounds the worst case scenario

1 �
∏m

i=1(1 + |εi |)∏n
i=m+1(1 − |εi|) � 1 + κ.

Theorem 1. Let κ � 0 and n real numbers εi be given with n > 1. Assume that

|εi | � μiκ

1 + κ
, i = 1, . . . ,n

with

n∑
i=1

μi = 1.

Then ∣∣∣∣ ∏m
i=1(1 + εi)∏n

i=m+1(1 + εi)

∣∣∣∣ � 1 + κ

for any 0 � m � n.

Proof. We first look at the numerator. Use the bound on εi to write∣∣∣∣∣
m∏

i=1

(1 + εi)

∣∣∣∣∣ �
m∏

i=1

(
1 + μiκ

1 + κ

)
.

Putting

m∑
i=1

μi = c � 1

we use Lemma 1 with μi/c instead of μi to find

m∏
i=1

(
1 + μiκ

1 + κ

)
�

(
1 + κc

m(1 + κ)

)m

�
(

1 + κc

m(1 + κc)

)m

= f (m).

Differentiating f (m) and writing (for simplicity) x = κc/(m(1 + κc)) we get

f ′(m) =
[

log(1 + x) − x

1 + x

]
(1 + x)m � 0

where the last equality holds because of Lemma 2. Furthermore we have that

lim
m→∞ f (m) = exp

(
κc

1 + κc

)
� 1 + κc

where the last equality again holds because of Lemma 2. It is also easy to see that f (1) � 1 + κc. Combining the previous
statements we see that∣∣∣∣∣

m∏
i=1

(1 + εi)

∣∣∣∣∣ � 1 + κc.

Now let us bound the denominator. First observe that∣∣∣∣ 1
∣∣∣∣ � 1 � 1 + κ
1 + εi 1 − |εi| 1 + κ(1 − μi)



F. Backeljauw et al. / Science of Computer Programming 90 (2014) 2–20 19
so that we obtain∣∣∣∣∣
n∏

i=m+1

1

1 + εi

∣∣∣∣∣ � (1 + κ)n−m∏n
i=m+1[1 + κ(1 − μi)] .

Apply Lemma 1 to the denominator of this expression with μi/(1 − c) instead of μi to find that

n∏
i=m+1

[
1 + κ(1 − μi)

]
� (1 + κc)(1 + κ)n−m−1.

Combining this with the previous results proves the theorem. �
The following lemma is needed to compute the working precision in the continued fraction algorithm.

Lemma 3. Define the function f :R3 →R by

f (a,b, c) = a + 4

8ac

(
4b + ab + ac −

√
(4b + ab + ac)2 − 16abc

)
.

If a � 0, b � 1 and 0 < c � 1 then

1

2
< f (a,b, c) � 1.

Proof. First note that the argument of the square root is positive on the given domain (it is positive for a = 0 and increases
with a), so the function f is indeed real.

Some computations show that

∂

∂b
f (a,b, c) � 0,

from which it follows that

f (a,1, c) � f (a,b, c) � f (a,∞, c) = 1,

proving the upper bound (equality holds when a = 0).
Some more computations yield that

∂

∂c
f (a,1, c) � 0,

from which it follows that f (a,1, c) � f (a,1,1).
Finally, it is easily shown that f (a,1,1) > 1/2, with equality in the limit when a → ∞. Combining the previous inequal-

ities gives the lower bound of the lemma, thus finishing the proof. �
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