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s u m m a r y

Droughts are expected to propagate from one type to another – meteorological to agricultural to hydro-
logical to socio-economic. However, they do not possess a universal, straightforward temporal depen-
dence. Rather, assessment of one type of drought (successor) from another (predecessor) is a complex
problem depending on the basin’s physiographic and climatic characteristics, such as, spatial extent,
topography, land use, land cover and climate regime. In this paper, a wavelet decomposition based
approach is proposed to model the temporal dependence between different types of droughts. The idea
behind is to separate the rapidly and slowly moving components of drought indices. It is shown that the
temporal dependence of predecessor (say meteorological drought) on the successor (say hydrological
drought) can be better captured at its constituting components level. Such components are obtained
through wavelet decomposition retaining its temporal correspondence. Thus, in the proposed approach,
predictand drought index is predicted using the decomposed components of predecessor drought.
Several alternative models are investigated to arrive at the best possible model structure for predicting
different types of drought. The proposed approach is found to be very useful for foreseeing the agricul-
tural or hydrological droughts knowing the meteorological drought status, offering the scope for better
management of drought consequences. The mathematical framework of the proposed approach is gen-
eral in nature and can be applied to different basins. However, the limitation is the requirement of
region/catchment specific calibration of some parameters before using the proposed model, which is
not very difficult and uncommon though.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Drought is a hydrological extreme phenomenon of prolonged
water deficit. However, unlike the other extreme hydrological phe-
nomena, such as flood, it is slow initiating and long lasting phe-
nomenon leading to huge economic losses. As per the American
Meteorological Society (1997), droughts are of four types, namely
meteorological, agricultural, hydrological, and socioeconomic. The
deficit in precipitation, soil moisture and stream flow/reservoir
storage leads to meteorological, agricultural and hydrological
drought respectively.

Since the hydrological cycle is a continuous transport of water,
the occurrence of meteorological drought is expected to propagate
to other types of droughts (Maybank et al., 1995). For example,
prolonged period of meteorological drought and high evaporation
loss may evolve into soil moisture deficit, which causes agricul-
tural drought. Again, hydrological droughts may evolve as a
consequence of prolonged periods of agricultural drought. How-
ever, the temporal transition of droughts may be speculated easily,
but it is difficult to model, because the correlation between them is
affected by various climatological, topographical and geographical
characteristics. Sometimes temporal lag in correlation is also
expected if the basin size is large (Peters, 2003). Moreover, the
measurement of precipitation in a catchment is much easier, eco-
nomical and comparatively more accurate than the measurement
of soil moisture or the runoff components. Hence, an understand-
ing of temporal transition between the different types of drought
will make their management easier and economical.

For studying and characterizing droughts, several indices are
proposed by different investigators. These indices can be broadly
divided into three categories depending on the type of drought.
For quantifying meteorological drought, the Standardized Precipi-
tation Index (SPI) is one of the widely used indices. It is a normal-
ized index, so its value is unaffected by the local climatic and
geographical condition. Hence, the intensity of droughts occurring
at different places having different climatic conditions can be com-
pared using SPI (McKee et al., 1993). Similar standardized indices,
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which are mathematically consistent, are also used for soil mois-
ture and stream flow, named as Standardized Soil Moisture Index
(SSMI) and Standardized Stream Flow Index (SSFI) respectively
(Mo, 2008; Shukla et al., 2011).

Wavelet Transform (WT) is a mathematical tool effectively uti-
lized to identify and separate the slowly and rapidly varying com-
ponents of any time series. Wavelet is a finite disturbance of
limited duration with a mean of zero. WT expresses the signal as
the coefficients of shifted and scaled version of the original wave-
let, known as mother wavelet. Wavelet can be varied in both fre-
quency and time domain by changing the scale and shift
parameter respectively (Daubechies, 1988; Burrus et al., 1998).
Hence, WT represents the signal in frequency–time domain. Unlike
the Fourier transform (Duhamel and Vetterli, 1990; Fleming et al.,
2002), WT saves the time information available in signal also. Thus,
the WT is better for analyzing non-stationary signals (Mallat and
Zhang, 1993; Cao et al., 1995; Burrus et al., 1998; Soltani, 2002).
The mathematical details of wavelet transform is presented in
Appendix-A including Haar wavelet, which is used in this study.

A special type of wavelet, discrete wavelets is formed when
shift and scaling parameters are taken discrete instead of continu-
ous variables in wavelet function. In the Discrete Wavelet Trans-
form (DWT), signal is convolved with the pair of low pass and
high pass filters followed by subband down sampling producing
two components. The component, which is obtained by passing
the signal through low pass filter is called approximation compo-
nent and the other component is called detailed component. The
approximated component shows the trend of the original drought
index series and it possesses slow dynamics. On the other hand, the
detailed component shows the local details of the series and it pos-
sesses fast dynamics (Burrus et al., 1998; Mallat, 1999). The sub-
band down sampling is done as per the Nyquist–Shannon
sampling theorem (Shannon, 1949) to reduce data redundancy
by removing the component values falling on even positions, but
subband down sampling introduces time-invariance in the DWT
components. As a result minor changes in the drought series may
result in large changes in DWT components. Moreover, as in
DWT decomposition, the components series and input drought ser-
ies do not have the same length, it becomes difficult for further
analysis towards prediction. To overcome these problems, Station-
ary Wavelet Transform (SWT) is designed which avoid the subband
down sampling. The SWT results in components having data
redundancy, but have the same length as that of the original
drought series. Multi-Resolution Analysis (MRA) is a procedure in
which SWT is applied multiple time to the approximate compo-
nent to get the component at even lower frequency ranges. Thus,
Multi-Resolution Stationary Wavelet Transform (MRSWT) may be
very effective for the decomposition of the drought indices series.
Mathematical details of MRA are provided in Appendix-B.

General applications of wavelet based approaches are being
increasingly used in studying hydrological processes, such as time
series analysis (Pan et al., 2005; Westra and Sharma, 2006;
Karthikeyan and Nagesh Kumar, 2013; Sang et al., 2016), water
quality in agricultural watershed (Kang and Lin, 2007), stream flow
prediction (Smith et al., 1998; Bayazit et al., 2001), rainfall-runoff
relation (Labat et al., 2000), drought forecasting (Ozger et al.,
2011; Özger et al., 2012), trend analysis of evapotranspiration
and its relation to draught (Madhu et al., 2015), prediction of mete-
orological drought (Kim and Valdés, 2003), spatial and temporal
variability of drought (Ujeneza and Abiodun, 2014; Wang et al.,
2015), variability in monsoon rainfall in West Africa (Dieppois
et al., 2013) etc.

Most of the existing studies focus on prediction of a particular
type of drought considering its key variable(s). For instance, Kim
and Valdés, (2003) utilized a conjecture model of wavelet trans-
form and ANN for predicting meteorological drought using the past
value of the respective drought index. Ozger et al., (2011) utilized
wavelet fuzzy logic model for forecasting meteorological drought
using temperature, precipitation and climate indices like (El Nino
3.4 and Pacific Decadal Oscillation). Özger et al., (2012) utilized
wavelet fuzzy logic model for forecasting meteorological drought
by using El Nino 3.4 and persistence of the drought index series.
However, these studies do not take the inter-relation and propaga-
tion of different types of droughts into account. The objective of
this study is to identify the temporal transition from one type of
drought to another considering its time-varying characteristics at
constituent wave components of their standardized indices. To
achieve this objective, the rainfall, soil moisture and streamflow
data is converted to their standardized drought indices. These stan-
dardized indices are mathematically consistent and independent of
basin geomorphological characteristics. Three time series (one
each for each drought type being studied) are first investigated
for their pair-wise lagged correlation usually resulting from lagged
response of basin under study. The drought series are then decom-
posed using Wavelet Transform. For modeling drought inter-
relation, seven different models (model 1 to 7) based on the infor-
mation obtained by analysis of lagged correlation and wavelet
coefficients of the drought indices are then established to predict
a successor drought from a predecessor one.
2. Study area and data

The Upper Mahanadi Basin, a part of the Mahanadi river basin,
is considered as the study area to demonstrate the proposed
methodology. The study basin is mostly located in the state of
Chhattisgarh in India as shown in Fig. 1. The area of the study
watershed is 29,645 km2. The approximate location of the study
area is 20�N to 23�N latitude and 80.5�E to 82.5�E longitude. Daily
rainfall data and monthly soil-moisture data for the study area are
obtained for the period of 1971 to 2005 from the India Meteorolog-
ical Department (IMD) (Rajeevan and Bhate, 2008) and Climate
Prediction Centre (CPC) of the National Oceanic and Atmospheric
Administration (NOAA) (CPC, 2014; Fan et al., 2004) respectively.
These data are available at a spatial resolution of 0.5� lati-
tude � 0.5� longitude and the data are taken from grid point lying
within the study basin as shown in Fig. 1. Daily rainfall data at each
grid point is converted to monthly rainfall depth by accumulating
it over the month. Moreover, the soil moisture data obtained from
CPC, NOAA, is produced using leaky bucket method (Huang et al.,
1996; van den Dool, 2003). This method estimates the soil mois-
ture using water balance equation and hence, the data is free from
any human intervention.

Daily stream flow data at the outlet of the basin (Jondhra sta-
tion) are collected for the period of June, 1979 to December,
2005 from the Water Resources Information System (India-WRIS
version 4, 2014) in India. Being restricted by the stream flow data
availability, the study period is considered as January 1980 to
December 2005. The daily stream flow data is converted to
monthly data by taking average over all the days. The basic statis-
tical properties of the all the data are shown in Table 1.
3. Methodology

Methodology is based on the hypothesis that the water deficit is
expected to propagate through the hydrological cycle with time
and the time series of relevant drought indices can be considered
as a wave or signal. Further, it is expected that the effect of individ-
ual factors (like climatological, topological, etc.) affecting precipita-
tion, soil moisture or streamflow should get manifested as various
constituent waves in the respective drought index time series. So,
we tried to study the drought indices time series at component



Fig. 1. Location map of upper Mahanadi River basin (Study Area) with rainfall grid points and soil moisture grid points.

Table 1
Statistical details of data used.

Variables Value or range of values of different statistical parameters

Mean Standard deviation Skewness coefficient Kurtosisa

Monthly total rainfall in mm (not spatially averaged) 86.62–117.81 125.49–183.55 1.43–1.88 4.10–6.81
Spatially averaged monthly total rainfall in mm 97.83 137.08 1.44 4.07
Monthly mean soil moisture in mm (not spatially averaged) 324.18–373.30 135.78–147.14 0.19–0.38 1.96–2.14
Spatially averaged monthly mean soil moisture in mm 343.82 141.51 0.29 2.04
Monthly mean streamflow in cumec 272.40 502.00 2.65 11.13

a Kurtosis for normal distribution is 3.
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level for revealing hidden interrelation between them. Different
models are formulated using the information of time lag to predict
the predictand drought index.

Overall methodology is broadly divided into three modules – (i)
drought characterization and generation of its time series, (ii)
Study of lagged correlation between the components of drought
index to check whether delayed response of one drought index
exist on the other, (iii) Formulation of different models considering
the lagged information of predictor drought index, based on
MRSWT and selection of most potential model type for prediction.
The methodological overview is shown in Fig. 2 for a quick grasp.
Details of these modules are presented in the following
subsections.

3.1. Drought characterization through standardized indices

A wide range of drought indices is available in the literature.
The suitability of a particular index depends on its application for
a particular problem (Keyantash and Dracup, 2002), and as such
not a single index can be considered universal. Since this study
deals with meteorological, agricultural and hydrological droughts,
it is required to utilize mathematically similar indices for all these
droughts. Keeping this point in mind, Standardized Precipitation
Index (SPI), Standardized Soil Moisture Index (SSMI) and Standard-
ized Stream Flow Index (SSFI) are used for meteorological, agricul-
tural and hydrological droughts calculated using monthly
precipitation, soil moisture and streamflow (at basin outlet)
respectively. The concept of these drought indices is statistically
similar to each other. SPI was first developed by McKee et al.
(1993) for the Fort Collins, Colorado river basin in the USA. SPI
can be defined as probability index of precipitation with respect
to the standard deviation of precipitation for a given location and
time period calculated from the historical precipitation data.

The computation of all the above indices (at a particular averag-
ing time-scale, say 3-monthly) can be outlined in the following
common steps –



Fig. 2. Overview of methodological approach.
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(i) Time series of concerned variable is either accumulated or
moving averaged over the desired temporal scale.

(ii) A suitable probability density function (pdf) is fitted.
(iii) From the fitted pdf, the Cumulative Probability Distribution

(CDF) is obtained,
(iv) Using the CDF, reduced variate of the concerned variable is

computed,
(v) The reduced variate is transformed to a standard normal

variate (mean = 0 and standard deviation = 1). This is the
desired standardized index.

Conceptually, all these indices represent the number of stan-
dard deviations away (above or below) that a particular value is
from the mean. All these indices can have both positive and nega-
tive values, positive value showing a surplus and negative value
showing a deficit or drought. Additionally, it should be noted that
steps (ii) and (iv), during the index calculation, take out the clima-
tology (hence seasonality) in the calculated drought index.

Depending on the characteristics of the basin under study, some
time lag is expected before effect of predecessor drought situation
is felt over a successor one. The time lag can also originate due to nat-
ure of variable under study. For example, soil moisture is expected to
have higher memory effect than precipitation, so agricultural drought
will be comparatively slower to initiate and to end. To quantify the
time lag in drought propagation, lagged correlations between differ-
ent predictand–predictor drought indices are studied. The lag period
having highest correlation is taken as measure of delay in response
that predictor drought series has on the predictand drought series.

3.2. Modeling of drought indices interrelation

The modeling of the interrelation between the drought indices
components can lead to prediction of successor drought from the
state of predecessor one. The modeling may be achieved through
any traditional approach like, Multiple Linear Regression (MLR),
Auto-Regressive Integrated Moving Average model with exoge-
nous inputs (ARIMAX) or even soft computing approaches, such
as Artificial Neutral Network (ANN). In the present study, models
are formulated in two versions (keeping input and output variable
same) – one using feed-forward ANN with single hidden layer and
other using MLR. The independent drought indices are decom-
posed into components using MRSWT upto level 2. The mathemat-
ical details of MRSWT are presented in Appendix-B. One important
issue needs to be mentioned here. By using MRSWT based decom-
position, the prediction of droughts leads to the problem of pre-
dicting the slow and fast dynamic components separately. This
approach is more fruitful as prediction of slow dynamic or approx-
imate component can be done with more confidence because vari-
ations are expected to be smaller and less abrupt compared to fast
dynamic or detailed signal component. Prediction of the fast
dynamic component is challenging as the model has to learn the
fast dynamic and reduce noise simultaneously. The challenge can
be solved by overfit/underfit tradeoff. Learning fast dynamic can
lead to under fitting but learning to predict noise cause over fitting
(Soltani, 2002).

The decomposition through MRSWT results into three compo-
nents (d1, d2 and a2) for each of the drought indices. Models are for-
mulated on the assumption that a dependent drought index or its
components are affected by all the decomposed components of the
independent drought index simultaneously with some delay. The
information about the delay in response is given due consideration
in formulation of models. The details of seven different models so
formulated are presented in Table 2. It should also be noted that
minimum lead period also depend upon the level of decomposition
being used to avoid the use of future information during the pre-
diction. Since MRSWT with level 2 is used in this study, minimum



Table 2
Details of different types of models (No. 1 to 7). The function f is either of multiple
linear regression or feed forward ANN function with single hidden layer and the
function g represents wavelet reconstruction function. Subscripts a2, d2 and d1
represent the decomposed components of the respective drought index series at level
2. T1 is equal to 2D , where D is the level of decomposition, i.e. T1 = 22 = 4 and Tn+1 =
Tn + 1 for n = 1, 2, . . ..

Model No. Model description

1
SSMIðtÞ ¼ f

SPIa2 ðt � T1Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ

� �

2
SSMIðtÞ ¼ f

SPIa2 ðt � T1Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ;

SSMIa2 ðt � T1Þ; SSMId2 ðt � T1Þ; SSMId1 ðt � T1Þ

0
@

1
A

3
SSMICðtÞ ¼ f

SPIa2 ðt � T1Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ;

SSMIa2 ðt � T1Þ; SSMId2 ðt � T1Þ; SSMId1 ðt � T1Þ

0
@

1
A

for c 2 d1;d2 and a2
SSMIðtÞ ¼ gðSSMId1 ; SSMId2 ; SSMIa2 Þ

4
SSFIðtÞ ¼ f

SPIa2 ðt � T1Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ

� �

5
SSFIðtÞ ¼ f

SPIa2 t � T1ð Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ;

SSMIa2 ðt � T1Þ; SSMId2 ðt � T1Þ; SSMId1 ðt � T1Þ

0
@

1
A

6

SSFIðtÞ ¼ f

SPIa2 t � T1ð Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ;

SSMIa2 ðt � T1Þ; SSMId2 ðt � T1Þ; SSMId1 ðt � T1Þ;
SSFIa2 ðt � T1Þ; SSFId2 ðt � T1Þ; SSFId1 ðt � T1Þ

0
BB@

1
CCA

7

SSFICðtÞ ¼ f

SPIa2 ðt � T1Þ; SPId2 ðt � T1Þ; SPId1 ðt � T1Þ;
SPIa2 ðt � T2Þ; SPId2 ðt � T2Þ; SPId1 ðt � T2Þ;

SSMIa2 ðt � T1Þ; SSMId2 ðt � T1Þ; SSMId1 ðt � T1Þ;
SSFIa2 ðt � T1Þ; SSFId2 ðt � T1Þ; SSFId1 ðt � T1Þ

0
BB@

1
CCA

for c 2 d1; d2 and a2
SSFIðtÞ ¼ gðSSFId1 ; SSFId2 ; SSFIa2 Þ
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lead period for prediction is 22 i.e. 4. The model that predict depen-
dent drought index component instead of drought index time ser-
ies (such as model 3 and 7) need the wavelet reconstruction to be
done on the predicted components. This procedure returns the
components from frequency–time domain into amplitude–time
domain.

All the proposed models, except those based on ANN approach
are tested using two different validation schemes – I and II. ANN
based models are validated with scheme I only. Details of these
schemes are discussed below. These validation schemes are also
illustrated in Fig. 3.

i. Scheme I – Fixed Development and Testing Period: In this
scheme everything besides the development period is con-
sidered testing period and the data set remain stationary
in one model calibration–prediction run. The parameters of
the model are estimated during the development period.
All of the testing period data are predicted in the next model
run and compared. So, in this validation scheme, a model
runs only two times, one for calibration in development per-
iod and other for prediction of testing data set.

ii. Scheme II – Moving Window Approach: In this scheme, test-
ing period data length is same as that of development per-
iod, but these data periods are moving over time from one
iteration to another. The model is first developed with the
development period data set and for prediction, the window
is shifted by one time step and the data from this new time
step is considered in the testing period pool. Hence, though
there is overlap between the development and testing per-
iod datasets, only one time step of the time series is consid-
ered as predicted in each iteration. For the next iteration,
both development and testing periods are shifted by one
time step and the process is continued until the prediction
of whole remaining time series is complete. This scheme is
useful to update the model parameters to capture any slow
moving changes in the time series, particularly in the con-
text of climate change. Similar kind of methodology has
been used to predict components of wavelet transform
(Mabrouk et al., 2008), analyse the sensitivity of rainfall–
runoff model (Massmann et al., 2014), assess impact of cli-
mate change on streamflow in Weihe River (Jiang et al.,
2015).

3.3. Model performance evaluation

Performances of different models are assessed based on four
statistical measures, namely correlation coefficient (r), Refined
Index of Agreement (Dr), Nash–Sutcliffe efficiency (NSE) and unbi-
ased Root Mean Square Error (uRMSE). Expressions for r and NSE
can be found elsewhere (Krause et al., 2005). The expression of
Dr is given by (Willmott et al., 2012)

Dr frac ¼
Pn

i¼1 Yi � Xijj
2
Pn

i¼1 Xi � �X
���� ð12aÞ

Dr ¼
1� Dr frac for Dr frac 6 1

1
Dr frac

� 1 for Dr frac > 1

(
ð12bÞ

where Xi and Yi are the ith observed and predicted values and n is
the total number of observations. uRMSE is the RMSE calculated
between the deviations of observed and predicted values from their
respective means. Lower the value of uRMSE, better the model
performance.

4. Results and discussions

Monthly data of rainfall and soil moisture are distributed spa-
tially and needed to be spatially averaged. However, one-way anal-
ysis of variance (ANOVA) and Bonferroni test are conducted to
check the significance of spatial viability of the data at different
grid points. For rainfall, only in one month (August) and only at
one site, site mean differs from the overall monthly mean. In all
other months, the overall monthly mean across all sites is not sig-
nificantly different form the individual site means. In case of soil
moisture, the overall spatial monthly mean is in good agreement
with individual site means in all cases (all months and all sites).

Taking monthly rainfall depth, soil moisture time series and
stream flow series as input SPI, SSMI and SSFI respectively are cal-
culated using a mixed distribution – Gamma distribution for non-
zero values with probability mass at zero. For monthly rainfall
depth accumulation was done during SPI calculation but for all
other variables moving average are calculated during index calcu-
lation. Notations of SPI-1, SSMI-1 and SSFI-1 are used for 1-month
time scale. Similarly, SPI-3, SSMI-3 and SSFI-3 are used for 3-month
time scale. SPI-3, SSMI-3, and SSFI-3 time series are shown in Fig. 4.
By visual inspection of the figure, it can be inferred that indices
does not possess seasonality. For studying the interrelation and
propagation of different types of droughts, possible predecessor–
successor or predictor–predictand pairs are selected. For instance,
SPI is taken as predictor for SSMI and SSFI; SSMI is considered a
predictor for SSFI. These relations are deemed valid irrespective
of averaging period. The study period chosen is January, 1980 to
December, 2005, so all drought index series are having 312 data
points. First 160 data points are considered for the initial scrutiny
and model development. The rest of the data are used for model
testing. For initial scrutiny, the pairwise correlation coefficients
(r) and the refined index of agreement (Dr) between the indices
are computed and the results are tabulated in Table 3. From Table 3,
the correlation coefficient and refined index of agreement is higher
for 3-month time scale indices. It is due to higher average period



Fig. 3. Schematic diagram of two types of validation schemes. In scheme II, at any model testing iteration only the last value is recorded for performance assessment though
the testing period overlaps the model development period of the same iteration.
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used to calculate the indices, which lead to more smoothening in
data. Moreover, it is found that linear association between SSFI
and SPI and SSFI and SSMI are similar and statistically significant.
This observation supports the fact that both precipitation and soil
moisture have their influence on streamflow variation. Direct run-
off due to precipitation events in catchment may affect the stream-
flow immediately, whereas the soil moisture is expected to affect
streamflow by delayed subsurface flow. This suggests to incorpo-
rate the combination of different predictors (say, SPI and SSMI)
with suitable lag to achieve possible better performance in predict-
ing target drought index (say SSFI). It should also be noted that, so
far the lagged information is not considered from any of the predic-
tor. The values in Table 3 are used as a reference for comparing the
performance of different models as mentioned in the methodology.
Any model that can exhibit better performance compared to these
values can be considered as efficient and improvement over these
reference values can be quantified.

The lagged correlation between all possible predictor–
predictand drought index pairs is then calculated. The results are
shown in Fig. 5. It is noticed that the correlation coefficient
between SSMI-3 and SPI-3 with lag 1, is the highest. This result
suggests that SSMI has higher memory and changes slowly as com-
pared to SPI. Thus, utilization of lagged values from predictor time
series may enhance the prediction performance. In case of SSFI-3 and
SSMI-3 as well as SSFI-3 and SPI-3, the correlation coefficient is
highest without any lag. These observations suggest that SSFI is
affected by both SPI and SSMI; utilization of values from these two
predictors combined should enhance the prediction performance.
In all predictor–predictand pairs, the value of correlation coeffi-
cients decreases gradually with the further increase in lag. More-
over, the lag considered in modeling of inter-relation of drought
indices should be either equal or greater than the averaging period
and minimum lead period requirement as discussed in Section 3.2.
To reiterate, minimum required lead period for prediction is 4
since MRSWT with level 2 is used in this study. In case of drought
indices calculated using 3 month accumulation, SPI-3 with lag 4 and
5 may be considered while predicting SSMI-3. Similarly, for SSFI-3,
SPI-3 with lag 4, 5 and SSMI-3 with lag 4 may be important. Differ-
ent combinations of the predictors, lead to seven different models
denoted as model 1 to model 7 as detailed in Table 2. Model 1, 2
and 3 are used for predicting SSMI and model 4 to 7 is used for pre-
dicting the SSFI. During the application of models, the predictor
drought time series is first decomposed into its components using
MRSWT. For example, the components of SPI-3 are shown in Fig. 6.
The predictand drought index or its components are predicted
using the components of predictor drought indices. The model per-
formances during the development period and testing period are
tabulated in Tables 4 and 5 respectively. It should be noted that
for ANN based model, each model is trained 200 times and best
trained model is selected for prediction. During development per-
iod, the model performance is found to improve (Tables 4a and 4b)
as compared to Table 3. For instance, corresponding to one month
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Fig. 4. Time series of (a) SPI-3 b) SSMI-3 (c) SSFI-3 for the period January, 1980 – December, 2005.

Table 3
Correlation coefficient (r) and refined index of agreement (Dr) for different drought
indices pairs during development period.

Averaging period
(in months)

Performance
statistics

Predictand
drought index

Predictor
drought index

SPI SSMI

1 r SSMI 0.401 1.000
SSFI 0.588 0.607

Dr SSMI 0.436 1.000
SSFI 0.516 0.502

3 r SSMI 0.590 1.000
SSFI 0.682 0.661

Dr SSMI 0.543 1.000
SSFI 0.585 0.564

R. Maity et al. / Journal of Hydrology 539 (2016) 417–428 423
averaging period, the coefficient of correlation for MLR version of
model 2 during development period is 0.831 between observed
and predicted SSMI-1 (Table 4a) which is higher than the coeffi-
cient of correlation (0.401) between observed SSMI-1 and SPI-1
(Table 3). Though it is apparent that model 2 (for SSMI) and 6
(for SSFI) are the best among other alternatives, it should be noted
that the previous values of SSMI and SSFI are used in model 2 and 6
respectively. On the other hand, model 1 use only information of
SPI (with lags) and model 5 uses only SPI and SSMI (with lags),
not the previous values of predictand series. Thus, the merit of
model 1 (in case of SSMI) and model 5 (in case of SSFI) should be
duly credited. Moreover, model 3 and 7 (these models use inverse
wavelet transform to generate the predicted drought time series)
also show comparable performance to model 2 and 6. It is also
noticed from Table 4b that ANN versions of models are performing
better than MLR version in most of the cases during model devel-
opment period. However, the difference in performance between
MLR and ANN is found to decrease when the averaging period is
higher, i.e., 3. For example, the correlation coefficient between
observed and predicted SSMI-1 for MLR version and ANN version
of model 2 are 0.831 and 0.873 respectively but for SSMI-3 it is
0.941 and 0.962 respectively. The performance of models predict-
ing SSFI is in general, inferior compared to model predicting SSMI.
The decrease in performance may be due to combined effect of
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higher memory of soil moisture and the fact that many factors that
affect streamflow, like evapotranspiration, air temperature, etc.,
are not considered while predicting the SSFI.

Model performance during testing period is shown in Table 5.
As mentioned earlier, two different validation schemes are fol-
lowed for MLR version of models. For MLR version of models pre-
dicting SSMI, it is noticed that the model performance is either
better or comparable with validation scheme I as compared to val-
idation scheme II. Similarly, for MLR models predicting SSFI, model
performance is either better or comparable with validation scheme
Fig. 6. Observed SPI-3 and its decomposed components up to level 2, i.e., a2, d2 and d1

development period for models. Such decomposed series for SSMI-3 and SSFI-3 are also
II as compared to validation scheme I. This observation suggests
that streamflow perhaps has time varying correspondence or
dynamic relationship with other drought indices i.e., its relation-
ship with other variable has changed with time, so validation
scheme II, which is more competent in modeling these dynamic
relationships, produces better results. For example, with the vali-
dation scheme I and for predicting SSFI-3, the model 6 performance
measures (r, Dr, NSE and uRMSE) are 0.792, 0.693, 0.610 and 0.698
respectively, whereas the same with validation scheme II are
0.801, 0.712, 0.638 and 0.682 respectively. Thus, the validation
scheme II may be considered as more suitable where the corre-
spondence between predictor and predictand may get modified
over time due the various reasons, including changing basin char-
acteristics, climate regime, etc. Interestingly, during testing period,
models using MLR version are found to perform comparable to
ANN version in most of cases. For example for SSFI-3 and validation
scheme I, MLR based model 6 performance measures (r, Dr, NSE
and uRMSE) are 0.792, 0.693, 0.610 and 0.698 respectively and cor-
responding value for ANN based model are 0.698, 0.617, 0.450 and
0.822 respectively. This observation suggests that decomposed
wavelet coefficient has linear relationship, so ANN version could
not add much to the performance achieved by MLR version. The
NSE value higher than 0.80 is observed in model 2 (in case of
indices with 3 month time scale), so this model can be utilized in
in practical studies. Moreover, as stated earlier the performance
of model predicting SSFI is inferior to model predicting SSMI in
testing period too. The scatter plots for SSMI-3 and SSFI-3 modeled
by MLR version of model 1 to 7 for validation scheme II is shown in
Fig. 7.

Two types of sensitivity analysis, namely mother wavelet sensi-
tivity and development data length sensitivity are carried out to
understand the effect of mother wavelet and the length of develop-
ment period on the model performance. Mother wavelet sensitivity
, using Haar MRSWT. Figure shows first 160 data points of decomposed series, i.e.
obtained (not shown).



Table 4a
Performance of model no. 1 to 7 during development period using MLR.

Averaging period (in months) Performance measures Model No.

1 2 3 4 5 6 7

1 r 0.657 0.831 0.766 0.581 0.589 0.607 0.590
Dr 0.612 0.733 0.645 0.620 0.620 0.626 0.610
NSE 0.431 0.690 0.519 0.338 0.347 0.369 0.336
uRMSE 0.730 0.538 0.671 0.660 0.655 0.644 0.661

3 r 0.748 0.941 0.873 0.736 0.743 0.792 0.723
Dr 0.666 0.837 0.723 0.687 0.690 0.719 0.661
NSE 0.559 0.886 0.709 0.541 0.552 0.628 0.489
uRMSE 0.632 0.322 0.513 0.559 0.552 0.503 0.590

Table 4b
Performance of model no. 1 to 7 during development period using ANN.

Averaging period (in months) Performance measures Model No.

1 2 3 4 5 6 7

1 r 0.681 0.873 0.798 0.563 0.428 0.567 0.590
Dr 0.629 0.758 0.662 0.599 0.570 0.420 0.610
NSE 0.456 0.753 0.567 0.277 0.178 �0.432 0.314
uRMSE 0.710 0.472 0.637 0.675 0.735 0.869 0.655

3 r 0.579 0.962 0.874 0.619 0.818 0.888 0.689
Dr 0.550 0.867 0.724 0.612 0.725 0.783 0.624
NSE 0.152 0.925 0.711 0.336 0.647 0.777 0.384
uRMSE 0.779 0.261 0.511 0.669 0.476 0.383 0.648

Table 5a
Performance for model no. 1 to 7 during model testing period using MLR (with both validation schemes I and II).

Averaging period (in months) Validation scheme Performance measures Model No.

1 2 3 4 5 6 7

1 I r 0.671 0.871 0.753 0.446 0.427 0.550 0.286
Dr 0.628 0.761 0.647 0.544 0.538 0.580 0.507
NSE 0.423 0.756 0.502 0.155 0.134 0.278 0.031
uRMSE 0.766 0.507 0.724 1.018 1.031 0.949 1.098

II r 0.652 0.862 0.733 0.496 0.571 0.642 0.480
Dr 0.621 0.754 0.648 0.566 0.594 0.627 0.571
NSE 0.405 0.742 0.492 0.202 0.309 0.409 0.225
uRMSE 0.782 0.522 0.733 0.990 0.934 0.873 0.998

3 I r 0.720 0.954 0.864 0.636 0.625 0.792 0.587
Dr 0.634 0.850 0.725 0.611 0.607 0.693 0.581
NSE 0.470 0.908 0.689 0.360 0.343 0.610 0.307
uRMSE 0.709 0.304 0.562 0.879 0.889 0.698 0.931

II r 0.709 0.947 0.845 0.646 0.711 0.801 0.670
Dr 0.633 0.843 0.721 0.630 0.659 0.712 0.614
NSE 0.467 0.896 0.675 0.371 0.488 0.638 0.411
uRMSE 0.716 0.324 0.575 0.869 0.801 0.682 0.871

Table 5b
Performance for model no. 1 to 7 during model testing period using ANN (only for validation scheme I).

Averaging period (in months) Performance measures Model No.

1 2 3 4 5 6 7

1 r 0.619 0.817 0.739 0.504 0.423 0.523 0.372
Dr 0.592 0.712 0.643 0.533 0.544 0.517 0.507
NSE 0.292 0.659 0.495 0.149 0.159 0.030 0.051
uRMSE 0.827 0.596 0.730 0.990 1.038 1.100 1.070

3 r 0.638 0.884 0.815 0.596 0.566 0.698 0.536
Dr 0.538 0.778 0.687 0.592 0.515 0.617 0.561
NSE 0.138 0.779 0.623 0.293 �0.028 0.450 0.228
uRMSE 0.789 0.473 0.618 0.939 1.059 0.822 1.001
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analysis on MLR version of the model was carried out using 160
development period data and with three mother wavelets namely
Haar, Biorthogonal 1.1 and Reverse Biorthogonal 1.1. The model
performances are found to be mostly insensitive to mother wave-
let. Development period data length sensitivity is carried out on
the MLR version of the models for development period data length



Fig. 7. Scatter plot between observed and predicted SSMI-3 and SSFI-3 by MLR version of models 1 to 7 during the testing period with validation scheme II.
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ranging from 16 to 192. Model performance is found to depend on
the development data length, but its variation is very less beyond
the length of 140 data points.

Overall methodological framework of the proposed models is
general in nature. These models can easily be applied to other
basins. However, the methodology heavily depends on the avail-
ability of historical data and the models need to be calibrated each
time the region/catchment and associated variable change.
Although very few contributions (Das and Ghosh, 2014; Das and
Maity, 2015) are noted so far on spatial transferability of the
knowledge from one basin to another, the research on this aspect
remains a challenging task and kept as the future scope of this
study.
5. Summary and concluding remarks

Originating from precipitation deficit, different types of
droughts propagate from one type to another – meteorological to
agricultural to hydrological. This study focuses on the modeling
of a successor drought using the input from its predecessor, using
the potential of wavelet transforms. Following major conclusions
are drawn from this study –
1. Given the complexity of the drought prediction, proposed
wavelet based approach is established to be highly effective
for foreseeing the agricultural or hydrological droughts know-
ing the meteorological drought status.

2. Drought series are better predicted at its constituent wave
levels and MRSWT is an effective tool for decomposing the
drought series. While considering three different mother wave-
lets namely Haar, Biorthogonal 1.1 and Reverse Biorthogonal
1.1, the model performances are found to be mostly insensitive
to the choice of mother wavelet.

3. Model performance depends on the development data length,
but its variation dies down beyond the data length of 140. How-
ever, moving window approach of validation scheme is found to
be more competent in modeling the dynamic/time-varying
association between different drought indices as compared to
the scheme with fixed development and testing period.

The findings of this study help to assess the drought propagation
in future with promising accuracy knowing the current and the pre-
vious SPI status. However, richer the information pool (say SSMI is
also available along with SPI) the higher the accuracy in future
assessment of SSFI is warranted. The results are expected to be
useful for water resources managers for drought preparedness.
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Appendix A. Wavelet Transform (WT)

Wavelet transformation, transforms any arbitrary signal into its
constituent waves based on shifting and dilation of mother wavelet
w(t). The scale and shifted version of wavelet wa,b(t) can be repre-
sented by

wa;bðtÞ ¼
1ffiffiffi
a

p w
t � b
a

� �
ðA-1Þ

where a, b, t 2 R, a > 0. w(t) is a mother wavelet prototype, and a, b
are scaling and shifting parameters respectively. Integration of w(t)
over real field is zero and usually its energy is kept to be unity.

Wavelet transform for a signal f(t) is given by

Wf ða; bÞ ¼ 1ffiffiffiffiffiffi
Cw

p Z
f ðtÞw�

a;bðtÞdt ðA-2Þ

where w�ðtÞ denote complex conjugate, Cw ¼ 2
R

FðwðxÞÞj j2=x dx,
where F denote the Fourier transform given by
FðwðxÞÞ ¼ R

e�ixtwðtÞdt=
ffiffiffiffiffiffiffi
2p

p
.

If the basis wavelet or mother wavelet w(t) is orthogonal then
the inverse of wavelet transformation is given by

f ðtÞ ¼ 1ffiffiffiffiffiffi
Cw

p ZZ Wf ða; bÞwða;bÞðtÞ
a2 da db ðA-3Þ

As a, b 2 R, they can be continuously varied leading to Continu-
ous Wavelet Transform but sometimes these variables are sampled
over discrete space time grid. The wavelet family so generated is
termed discrete wavelet (Labat et al., 2000). If discrete wavelet is
sampled over dyadic space time grid then they are called dyadic
discrete wavelets (Cao et al., 1995). These wavelets are denoted by

wj;kðtÞ ¼
1ffiffiffiffiffi
2 j

p w
t

2 j
� k

� �
ðA-4Þ

where j, k 2 Z, So its wavelet transform is given by

Wf ðj; kÞ ¼ 1ffiffiffiffiffiffi
Cw

p X
f ðtÞw�

j;kðtÞdt ðA-5Þ

In a traditional DWT as per Nyquist–Shannon theorem
(Shannon, 1949) subband coding or dyadic down sampling is done,
but if subband coding is avoided the resulting procedure is called
Stationary Wavelet Transform (SWT).

Dyadic discrete wavelet basis function has been proved orthogonal
(Daubechies, 1988). The inverse of the wavelet transform is given by

f ðtÞ ¼ 1ffiffiffiffiffiffi
Cw

p X
j;k2Z

Wf ðj; kÞwj;kðtÞ ðA-6Þ

One of the popular mother wavelet functions is Haar, which is
also known as daubechies1 or db1 (Burrus et al., 1998). Haar wave-
let is defined as

HðtÞ ¼
1 0 < t < 0:5
�1 0:5 < t < 1
0 otherwise

8><
>: ðA-7Þ

Computationally, WT can be done using a pair of low pass and
high pass filters. In DWT, signal convolution with low pass filter
followed by dyadic down sampling give an approximate coefficient
and one obtained by using high pass filter and dyadic down sam-
pling is called detailed coefficients (Burrus et al., 1998). For trans-
forming a ‘one dimensional’ signal of ‘n’ (an even number) length,
the high pass and low pass SWT filter have a dimension of (n � n).
A Haar SWT high pass filter G and low pass filter H and can be con-
structed by following rule:

hi;j ¼ 1=
ffiffiffi
2

p
j 2 i; ðiþ 1Þ mod nf g

0 Otherwise

(
ðA-8Þ

gi;j ¼
ð�1Þi�j

=
ffiffiffi
2

p
j 2 i; ðiþ 1Þ mod nf g

0 Otherwise

(
ðA-9Þ

where hi;j 2 H and gi;j 2 G. i is the number of row and j is the number
of column. So, matrixes H and G are multiplied with nX1 dimension
signal to calculate approximate and detailed coefficient respectively
in SWT. In DWT as stated above subband coding is done by neglect-
ing every second or component values falling on even positions to
get the components. It should be noted that components in DWT
have half the length than parent signal due to subband coding.

Appendix B. Multi Resolution Analysis (MRA)

Multi-Resolution Wavelet Transform (MRWT), also known as
Multi-Resolution Analysis (MRA), can be performed by using low
pass filter component as input to wavelet transform at each subse-
quent level (Labat et al., 2000). So, MRA helps in analysis of func-
tion at smaller frequency ranges, and hence it helps in increasing
the accuracy of prediction. Multi Resolution analysis of signal can
be done with both type of WT i.e. SWT or DWT. By using MRA a
function in L2ðRÞ can be represented as

f ðtÞ ¼
X
k

a0;ku0;kðtÞ þ
X1
j¼0

X
k

dj;kwj;kðtÞ ðB-1Þ

where a0,k and dj,k is called coarse or approximating coefficient and
detailed or wavelet coefficient respectively. u0,k(t) is called a scaling
function with shift k. The scaling function is associated with w(t)
wavelet function (Burrus et al., 1998). The scaling function for Haar
wavelet is given by

uðtÞ ¼ 1 0 < t < 1
0 Otherwise

�
ðB-2Þ

u0;kðtÞ ¼ uðt � kÞ ðB-3Þ
The coefficients involved in above Eq. (B-1) are calculated as

follows:

a0;k ¼
X

f ðtÞuðt � kÞ ðB-4Þ

dj;k ¼
X

f ðtÞ2�jwð2�jt � kÞ ðB-5Þ
As MRA is repeated application of selected WT on signal in first

go and on approximate component on subsequent go, it can also be
using pair of low pass (associated with scaling function) and high
pass (associated with mother wavelet function) filters like the WT.
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