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Abstract

The present paper aims to contribute to the parametric analysis of semirigid steel base plate connections. The

method is based on the theoretical results of nonsmooth mechanics, which is a relatively new branch of mechanics
initiated three decades ago and deals with problems from mechanics and/or structural analysis that involve
generalizations of the gradient. The numerical modelling of the structural response of a steel column base plate
under static loading where unilateral contact with friction and yielding phenomena are taken into account, could be

considered as a typical problem that can be very e�ectively treated within such a theoretical framework. In
particular, the respective stress states of the steel connection under static loading are calculated by taking into
account the development of plasti®cation zones and the unilateral contact and friction e�ects on the interfaces

between connection members. An e�ective two-dimensional ®nite element model, capable of describing the
previously mentioned phenomena is constructed. The aforementioned model is a simpli®cation of the respective
three-dimensional one and aims to reduce in a reliable way the huge computational e�ort required for the analysis

of three-dimensional ®ne meshes of discretized steel connections. A numerical application demonstrates the
e�ectiveness and the applicability of the method altering two parameters, the base plate thickness and the axial load
of the model. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classic methods for the calculation of steel connec-

tions have assumed complete contact between the

interfaces. For the last few years, this assumption has

been widely used for the study of steel column base

plate connections because it generally leads to conser-

vative results. In the case that a load leading to the

development of moment, shear and tension is applied,

this assumption fails to describe the actual response of

the base±steel plate interface. Laboratory tests and

construction practice prove that separation is often

caused on the contact surface, between the deformable

column base plate and the rigid concrete foundation.

This phenomenon has already in recent years attracted

the interest of numerous researchers who have applied

analytical, experimental and numerical approaches to

investigate it. The analytical approaches which have

been considered, on the column base plate e�ective

contact surface, where various normal reaction distri-

butions appear in the presence of concentric and/

or light loading [1±3] are signi®cant. Extensive

experimental investigations, aiming at accurate descrip-

tion and evaluation of the response of column±base

connections, have been conducted for concentric and
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eccentric loads [4±7]. Finally, the numerical approaches

based on the ®nite element method and the boundary
element method have been applied for the analysis of
column base plate connections [8]. In recent years, nu-

merical simulations of steel connections have been
described by one- to three-dimensional models. The
one-dimensional (Bernoulli beam) models of such con-

nections (bolts modelled as springs), taking into
account only primary bending action, are naturally the

most simple. On the other hand, a three-dimensional
model can incorporate all the essential features of the
steel connections, leading in general to the most accu-

rate results. This is due to the fact that three-dimen-
sional models, having been appropriately formulated
and computed, contain the correct stress distribution

patterns, but in a form that requires great compu-
tational e�ort.

Between the two above-mentioned models, two-
dimensional models have been proposed, o�ering the
following advantages: (i) accurate numerical results in

the cases where the geometry connections and the
loading conditions lead to two-dimensional deformed

con®guration; (ii) minimum computational cost and
evaluation save e�ort; (iii) applications for quick
benchmark tests in validating commercial three-dimen-

sional ®nite element codes, for the analysis of steel
connections.
The ®rst attempts for two- and three-dimensional

modelling of steel connections, based on several simpli-
®ed assumptions, date back to the seventies; these

e�orts have been continued to date by deducting one
by one the simplifying hypotheses of the initially pro-
posed models, thus producing more and more interest-

ing and realistic results [9±17].
In the present paper, a two-dimensional ®nite el-

ement plane stress model is constructed for the para-
metric analysis of the structural behaviour of a
column±base plate connection. The model contains all

the essential features that characterize the separation
problem. Material yielding, contact interface slip and
interface interaction are taken into account. Secondary

bending e�ects are not present due to the static load-
ing. The third dimension of the connection is also con-

sidered by assigning di�erent thickness values to the
various regions of the FEM mesh.
The numerical method proposed herein does not use

any a priori assumption on the ¯exibility of the several
parts of the steel connection to obtain ®rst its
deformed shape where contact (i.e. compressive reac-

tion) and separation (i.e. tensile reaction) zones have
been developed, and then the actual stress distribution

on the connection members by taking into account
friction e�ects on the interfaces (cf the PANA-method,
for example [18,19]). By means of this numerical

method, friction forces are also taken into account on
all the interfaces of the steel connection applying a

double-step iterative numerical procedure. In particu-

lar, solving iteratively ®rst a unilateral contact problem
for the steel connection in the presence of friction
forces and next a friction problem in the presence of

normal reaction forces computed in the previous sol-
ution step, the deformed shape of the connection (that
includes all the contact, non-contact and plasti®ed

zones) and the actual stress distribution are accurately
de®ned. Then, using the existing standards and norms,

the design of the connection at hand can be easily
completed. The proposed ®nite element model is con-
structed in a way that the interaction at any interface

of the connection can be taken into account by means
of unilateral contact boundary conditions [20±23].

Following this method, local separation zones
between the interfaces of the steel connection are com-
puted, whereas the deformed shape of the steel connec-

tion is evaluated with accuracy. Introducing the
unilateral contact law with friction to simulate the
boundary conditions on the steel connection interface,

the separation process can be mathematically described
giving rise either to a primal quadratic programming

problem with respect to the displacements, or equiva-
lently to its dual formulation with respect to the stres-
ses. As has been proved [18,23] the primary problem

expresses from the standpoint of mechanics, the prin-
ciple of the minimum of the potential energy of the

connection under consideration at the state of equili-
brium, whereas the dual one uses the principle of the
minimum complementary energy. Solving iteratively

these two problems and using the output of the former
as input for the latter, the method converges after a
few steps to the actual solution of the problem (as

proved by means of a ®xed point algorithm [24]). The
transformation of the initial structural steel connection

problem into a sequence of constrained quadratic pro-
gramming problems makes things from a compu-
tational point of view much simpler and allows for the

application of a wealth of theoretical work and soft-
ware. Note that the numerical results calculated by
applying the proposed two-dimensional model qualitat-

ively conform well to those obtained by experiments
[25,26]. Within such a theoretical framework, the sep-

aration and the active contact, as well as the plasti®ca-
tion zones are calculated with accuracy, leading thus
to the computation of the exact stress state conditions

holding on the steel connection under investigation.
The proposed numerical method, seems to be a re-

liable tool for the numerical simulation of the struc-
tural behaviour of most types of steel connections,
because for one side the response of the di�erent parts

(column, plate, bolts) of the modelled steel connections
are taken into account in an interactive way, whereas
on the other side, the correct thicknesses of the various

parts of the two-dimensional model are de®ned by
applying an e�cient and easy technique [27].
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The numerical treatment of such problems, pre-
sented in a form of quadratic programming, also per-

mits the investigation of the appearance of prying
action. In the case of the column±base plate connec-
tion, the prying action phenomenon is directly con-

nected to the ¯exibility of the connections. In ¯exible
connections, e.g. in splice plates, such forces do not
appear. The reaction is the exact opposite in the case

of steel column±base plates with underlying concrete
foundation. The di�erence is due to the fact that one
part of the connection (concrete foundation) is not de-

formable and this causes the deformable base plate to
be locally separated from the concrete surface. As is
obvious, the thickness of the base plate, is one of the
most signi®cant parameters that a�ects the response of

such steel connections. Therefore, considering the
thickness as a critical parameter for the analysis of the
connection interface, under various axial external

forces and moment rotation, such a parametric analy-
sis should be considered as a contribution to the
research of steel column±base plate connections. The

parametric study of a numerical application is pre-
sented in the last part of the paper, taking into account
the base plate thickness as a parameter for analysis of

the connections described above. The obtained results
are of great interest, showing the di�erent response of
each connection of di�erent base plate thickness under
di�erent loading conditions.

2. Mathematical description of the method

A steel connection composed by several structural el-
ements such as plates, bolts, etc. is ®rst considered
(Fig. 1). Moreover, we assume that the material of the

parts of the connection (which may be di�erent for the
various parts, e.g. high strength steel for the bolts,
mild steel for the plates, etc.) exhibits an elastoplastic

behaviour, with or without hardening. Between the
various parts of the connection, certain interfaces are
formed which in the following are denoted by GS. The

forces applied on the connection are transmitted by
the interfacial forces developed on the parts of the con-
nection which come into contact. These forces are the
contact forces which develop normal to the interface

direction, and the frictional forces which develop tan-
gential to the interface direction, and only between
those parts that come into contact.

The unilateral contact conditions on the interfaces
are mathematically expressed by the following form:

if �uN� > 0 then SN � 0 and if �uN� � 0 then

SNr0
�1�

where SN denotes the contact pressure and [uN] are the

relative displacements normal to the interface. This re-
lation holds for every one of the k nodes of the discre-

tized structure which belongs to the interfaces GS.
Furthermore, the friction boundary conditions holding
on the active contact regions (de®ned by the right-

hand part of Eq. (1)) are expressed in the following
form:

if �uT� � 0 then jSTj<mjSNj and

if j�uT�j > 0 then jSTj � mjSNj �2�

where m is the Coulomb's friction coe�cient and [uT]
are the relative displacements tangential to the inter-
face.
The static behaviour of the discrete model at hand is

now described by:

1. The constitutive equations [28,29]

e � F0s �3�

e � e0 � eE � eP �4�

eP � Nl �5�

fff � NTsÿHlÿ k �6�

lr0, fR0, fTl � 0 �7�
where F0 is the natural ¯exibility matrix of the

Fig. 1. The column base±plate connection.
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structure, e the strain vector consisting of three
parts, the initial strain e0, the elastic strain eE and

the plastic strain eP, l is the plastic multiplier vec-
tor, f the yield functions, H the work-hardening
matrix, N is the matrix of the gradients of the yield

functions with respect to the stresses and k is a vec-
tor of positive constants.

2. The equilibrium equations

Gs � P �8�
where G is the equilibrium matrix and P the load
vector.

3. The compatibility relation

e � GTu �9�
where u is the displacement vector.

4. The unilateral contact conditions and the friction
boundary conditions holding on the unilateral con-
tact interfaces, as described by Eqs. (1) and (2).

A direct solution of the above problem is not
possible due to the following reasons:
* It is not a priori known which parts of the con-

nection come into contact under the application

of the static loading and which are the exact
values of the contact forces.

* For those parts that come into contact, it is not

known which of them are in sticking contact or
in slipping contact, i.e. for which of them the
®rst or the second part of Eq. (2) holds, respect-

ively.
* Moreover, there exists an interaction between the

contact and the frictional forces, i.e. the frictional

forces depend on the value of the contact force,
and the values of the frictional forces may alter
the active contact area or the values of the con-
tact forces.

For the above reasons the problem at hand is split

into two subproblems. This procedure was ®rst intro-
duced in [18] for the solution of the unilateral contact
problem with friction and it was mathematically inves-

tigated concerning convergence by means of a ®xed
point theorem [24]. The ®rst subproblem corresponds
to the problem formulated with respect to the
unknowns at the direction normal to the interface,

whereas the second one corresponds to the problem
formulated with respect to the unknowns at the direc-
tion tangential to the interface. Consequently, the sol-

ution of the problem is achieved by applying the
following iterative scheme:

1. Contact subproblem: ®rst the unilateral contact pro-
blem is treated by considering that the friction
forces are constant. The solution of this problem

can be obtained by minimizing the potential energy
of the discretized structure with the subsidiary con-

straint of the non-penetration condition holding on
the contact interface (Eq. (1)):

P�u� � min

f 12uTKu� 1
2l

THlÿ uTGK0Nl� 1
2l

TNTK0Nl

� eT
0K0�NlÿGTu� ÿ PT

1u

� kljlr0,ukr0g

�10�

where P1 includes both the external loading and the

friction forces, assumed known, K is the sti�ness
matrix of the discrete model and K0 is the inverse of
F0. The solution of the above minimization problem

gives the contact and non-contact areas, the values
of the contact forces SN and the respective stress
and strain states of the connection.

2. Friction subproblem: assuming now that the contact
forces are constant and equal to the ones obtained
in the previous step, the Coulomb's friction bound-

ary conditions have also to be satis®ed. The analysis
problem is now formulated as a quadratic program-
ming problem with respect to the stresses, having
Eq. (2) as subsidiary conditions, i.e.

PC�s� � min f 12sTF0s� 1
2l

THl� sTej

NTsÿHlRk, Gs � P2, jSTjRmjSNjg �11�

where P2 includes both the external loading and the

contact forces assumed as known. Problem (11)
expresses the complementary energy for the problem
considered, taking into account the frictional con-
ditions on the contact interface. It is worth noting

that, for the friction conditions, the formulation of
the problem at hand can be done with respect to
stresses and not with respect to displacements

because otherwise nondi�erentiable terms (due to
the absolute values) appear.

The two previously described steps constitute the ®rst
iteration of the method which is repeated later. In the
second double step, the unilateral static problem is
solved by taking into account as nonactive contact and

sliding regions those obtained in the ®rst double step
by also assuming as known the tangential loading, cal-
culated from the previous step. In this sense, a new

external loading is applied to the connection, which in
turn is solved again, i.e. by ®rst minimizing the poten-
tial energy of the structure and then minimizing its

complementary energy. Obviously, the equilibrium
con®guration of the connection may be di�erent
between two successive solution steps. This means,
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that the activated contact and the sliding regions com-

puted in the second step are probably di�erent from

those calculated in the ®rst step. The iterative solution

procedure continues by solving quadratic programming

problems which keep the same basic mathematical

characteristics, but take as input data the output of the

previous step. This iterative procedure continues until

the di�erence of two successive stress states of the

connection is less than a desirable accuracy

6s(n+1)ÿs(n )6<E.
Concerning the numerical treatment of the formu-

lated quadratic programming problems, e�ective algor-

ithms from the theory of optimization can be applied

[30]. As for the ®rst step of the solution procedure (i.e.

computation of the active contact and separation

regions between the various interfaces (Eq. (10)), the

optimization algorithm explicitly determines the nodes

coming into contact with the respective contact forces.

Then, the optimization algorithm is applied in a simi-

lar way within the second step of the method. The

post-processing part of the algorithm concerning the

computation of the new stress distribution is done as

in the usual ®nite element analysis. It is therefore

obvious that the only real di�erence of the necessary

software from classical ®nite element codes will be

the substitution of the programming routine to solve

quadratic equations and the treatment of the ad-

ditional data concerning the inequality constraints.

3. Numerical applications

The developed algorithm described above is applied

in order to simulate the behaviour of the base plate

connection shown in Fig. 2. The connection consists of

an RHS 120/200/10 steel column which is connected to

a concrete block through a steel plate. The thickness

of the base plate is considered as a critical parameter

which varies, taking the following values: 20, 25 and

30 mm. Six M20-5.6 bolts are also used. The connec-

tion is idealized through a two-dimensional ®nite el-

ement mesh (Fig. 3), consisting of 4044 nodes and

2829 plane stress quadrilateral elements. The presented

®nite element mesh (FEM) is the ®nal one of a series

of FE meshes with di�erent densities that were studied

by the authors. Attempts to further re®ne the mesh

gave results very close to the ones presented here.

Fig. 2. Geometrical data of the considered plate connection.

Table 1

Equivalent thickness for the various parts of the connection

Connection element Equivalent thickness (mm)

Concrete block 400.0

Base plate 220.0

Steel pro®le (weak area) 20.0

Steel pro®le (strong area) 120.0

Bolt 47.1
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Therefore, the results are considered satisfactory for

the analysis and on the other hand the computational

loading is reasonable. The thickness of the plane stress

elements are properly adjusted in order to take into
account the three-dimensional properties of the struc-

ture (Table 1). In the region of the holes of the plate,

the plate and the bolt overlap. The interaction between

the two bodies is taken into account by considering

unilateral contact conditions between them. Unilateral

contact conditions are also assumed to hold between

the plate and the concrete block. The elastoplastic
stress±strain law of the steel pro®le and the plate are

given in Fig. 4. A similar diagram is used to describe

the material of the bolt (Fig. 5). Finally, the material

Fig. 3. Finite element mesh of the 2-D model.
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Fig. 4. Adopted stress±strain relations for the steel column and base plate connection.

Fig. 5. Adopted stress±strain relations for the bolts.

Fig. 6. Maximum node detachmentÐrotation diagrams for base plate thickness t=20 mm.
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Fig. 7. Deformed shapes of the 20 mm base plate connection, for axial loading 0, 100 and 200 kN.
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Fig. 8. Deformed shapes of the 20 mm base plate connection, for axial loading 300, 400 and 500 kN.
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of the concrete block is considered as linear with elas-
ticity modulus Ec=29 GPa. The friction coe�cient
between the base plate and the concrete is taken as

equal to m=0.3. The structure is loaded by applied
displacements introduced as a sequence of 50 incre-
ments on the top of the edge of the column. At each
increment a displacement of 2 mm is applied into the

structure. We distinguish three sets of solutions, each
one corresponding to the three above-mentioned
selected plate thicknesses. In each set, the axial com-

pressive loading of the connection consists of the fol-
lowing six cases: 0, 100, 200, 300, 400 and 500 kN.

4. Results for the base plate connections

From the ®rst set of results for base plate thickness
t=20 mm, we notice that a contact zone is established

under the right end of the base plate. The resting part

of the plate starts to separate from the concrete foun-

dation, tensioning the left bolt. The maximum detach-

ment of a selected base plate node near the left bolt is

obtained for each increment and shown in Fig. 6, for

the six cases of axial load. The deformation of the

base plate as well as the plastic strains decrease as

axial load increases. The opposite situation occurs for

the columns, which develops greater plastic strains

with the increase in the axial force. This fact is veri®ed

from the plastic strains of the base plate for the cases

of axial force, 0, 100 and 200 kN, where the plastic

strains in the base plate are signi®cantly larger than in

the column. In these cases the structure collapses due

to the plasti®cation of the base plate as well as the fail-

ure of the left bolt. The left bolt develops tension

forces near 400 N/mm2 at the 50th increment due to

the fact that as the plate rises it causes tension at the

Fig. 9. Moment±rotation diagrams for the six cases of axial loading, plate thickness t=20 mm.

Fig. 10. Maximum node detachmentÐrotation diagrams for base plate thickness t=25 mm.
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left bolt, creating an additional critical member failure.

For the applied axial force 300 kN, the plastic strains

are similar in the column and base plate and ®nally for

the load cases of 400 and 500 kN the plastic strains of

the column are larger, leading the RHS column to fail

®rst, developing plastic hinges at the lower parts of the

edges of the steel column. Figs. 7 and 8 give the

deformed shapes of the connection for the six cases of

axial loading at increments 10, 20, 30, 40 and 50.

From the deformed shapes it is observed that the lar-

ger part of the base plate for the ®rst 20 increments is

always in contact with the concrete. For the following

increments, as the base plate uplifts, only the left edge

node and the base plate nodes near the right bolt

remain in contact with the concrete foundation. This

contact area increases along with the axial loading

from 0 to 500 kN.

Concerning the stress condition of the connection,

although the right region of the column and the base

plate are naturally the ®rst expected failure areas, simi-

Fig. 11. Deformed shapes of the 25 mm base plate connection, for axial loading 0, 100 and 200 kN.
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lar stresses are developed in the left region after the
14th±18th increments. This phenomenon occurs
because of prying forces which are developed in this

area, when the left edge of the base plate comes into
contact with the concrete base. From the moment±ro-

tation curves (Fig. 9) it becomes obvious that the
moment capacity of the connection increases along
with the increase in the axial force. For axial force 0

kN the moment capacity is near 90 kNm. In the case
of 500 kN the moment capacity reaches 116 kNm.

The stress condition as well as the plastic strains for
the second set of results, with base plate thickness
t=25 mm change because prying forces are not present

in this case. Comparing this result with the model
with base plate thickness t=20 mm, the highest uplift

is slightly smaller, as well as the separation length.
These results are natural, since the sti�ness of the base
plate increases for thickness t=25 mm, permitting

smaller deformability and reducing its ®nal plastic
strain. This fact is also observed from the maximum

Fig. 12. Deformed shapes of the 25 mm base plate connection, for axial loading 300, 400 and 500 kN.
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node detachment of the base plate (Fig. 10), at the left

edge of the base plate. The steel column for each case

of axial force fails around the area of its right foot

near the 40th increment, with stresses that exceed its

ultimate strength. The stresses appearing in the left

region of the base plate are beneath its ultimate

strength. This occurs because the prying forces which

were developed in the previous analysis for plate thick-

ness t=20 mm do not appear. Through the deformed

shapes of the base plate for the six cases of axial

loading at increments 10, 20, 30, 40 and 50 (Figs. 11

and 12), we notice that the bending of the base plate is

reduced in comparison with the connection of plate

thickness t=20 mm. This proves that the increase of

the sti�ness of the base plate signi®cantly a�ects its re-

sponse under the applied axial loading and bending

moment combination.
For axial forces 0 and 100 kN the base plate and

the left bolt exceed their yield strength and reach their
ultimate plastic strains in a similar way to the case for

the t=20 mm base plate. For the remaining loads

from 200 to 500 kN the column begins to plastify,
creating plasti®ed areas which, in comparison with the

plate with thickness 20 mm, are slightly smaller. The
other parts of the connection are not critical and still

preserve strength capacity. From the moment±rotation
curves (Fig. 13), for axial force 0 kN the moment ca-

pacity is near 100 kNm and in the case of 500 kN the
moment capacity reaches 120 kNm.

From the third set of results for base plate thickness

t=30 mm, the stress condition of the plate is similar

Fig. 13. Moment±rotation diagrams for the six cases of axial loading, plate thickness t=25 mm.

Fig. 14. Maximum node detachmentÐrotation diagrams for base plate thickness t=30 mm.
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to the case of plate thickness t=25 mm, because the

prying forces are not present. Increasing the base plate
thickness, the sti�ness it possesses permits limited de-

formation which is slightly visible only for the last

increments. As a result, the base plate does not fail for

any case of axial load. Signi®cant stresses are devel-

oped mainly at the area of the right foot of the col-

umn, which fails ®rst, exceeding its ultimate plastic

strain. Fig. 14 provides us with a full picture of the

maximum detachment of the node at the left edge of
the base plate. In comparison with the previous plate

thickness, 20 and 25 mm, the maximum height the

plate rises is smaller, especially in the case of axial

force 500 kN. Figs. 15 and 16 present the deformation

of the connection for six cases of axial loading at

increments 10, 20, 30, 40 and 50. For all the cases of

Fig. 15. Deformed shapes of the 30 mm base plate connection, for axial loading 0, 100 and 200 kN.
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loading, the column fails after the 40th increment. The

developed plastic areas create a plastic hinge at the

lower right part of the steel column. Thus the collapse

of the structure occurs due to the plasti®cation of the

steel column and the other parts of the connection are

not critical. The obtained moment±rotation curves

(Fig. 17) are similar to the previous cases. For axial

force 0 kN, the moment capacity is near 100 kNm. In

the case of 500 kN, the moment capacity reaches 125
kNm.

5. Concluding remarks

This study investigates the structural response of
column±base plate connections by means of a two-

Fig. 16. Deformed shapes of the 30 mm base plate connection, for axial loading 300, 400 and 500 kN.
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dimensional model within a nonsmooth mechanics

theoretical framework. The parametric analysis of the
model shows that the sti�ness of the base plate is a sig-
ni®cant parameter, a�ecting the development of prying

action at the active contact areas of the plate. The
appearance of prying forces creates plasti®cation zones
at the interfaces of the connections, in areas that could
not be considered using classical design and calculation

methods. The reader should have in mind that a two-
dimensional model is analysed instead of a more accu-
rate three-dimensional model (obviously more subtle

processes, e.g. a cone mechanism cannot be predicted).
We should notice here that a two-dimensional analysis
encompasses all the essential characteristics and

dominant plasti®cation mechanisms of the problem
considered with the given geometry. Indeed, the equiv-
alent T-stub model (which is also used for the struc-

tural veri®cation of the base plate connection
according to Eurocode 3) collapses in mode I (com-
plete ¯ange yielding), which means that two plastic
hinges are developed. As a consequence, the whole

structure is in a more or less two-dimensional
deformed con®guration, something that justi®es the
validity of the assumptions that led to the present

model.

Acknowledgements

The third author acknowledges with thanks the
®nancial support by the Greek Secretariat for
Research and Technology (PENED-95:1748 Structures

with semi-rigid connections: development of software

for static and dynamic computation).

References

[1] Fling RS. Design of steel bearing plates. Engng J AISC

1970;7:37±40.

[2] Stockwell Jr FW. Preliminary base plate selection. Engng

J AISC 1975;12:92±9.

[3] Murray TM. Design of lightly loaded steel column base

plates. Engng J. AISC 1983;20:92±99 143±152.

[4] Dewolfe JT. Axially loaded column base plates. J Struct

Div ASCE 1978;104:781±94.

[5] Dewolfe JT, Sansley EF. Column base plates with axial

loads and moments. J Struct Div ASCE 1983;106:2167±

84.

[6] Thambiratnam DP, Paramasivam P. Base plates under

axial loads and moments. J Struct Div ASCE

1986;112:1166±81.

[7] Cook RA, Klinger RE. Ductile multiple-anchor steel-to-

concrete connections, J. Struct. Div. ASCE 118:1645±

1665.

[8] Krishnnamurthy N. A fresh look at bolted steel end-

plate behavior and design. Engng J AISC 1978;15:39±49.

[9] Krishnnamurthy N, Graddy DD. Correlation between 2-

and 3-dimensional ®nite element analysis of steel bolted

end-plate connections. Compu Struct 1976;6:381±9.

[10] Kato B, McGuire W. Analysis of T stub ¯ange to col-

umn connection. J Struct Div ASCE 1973;99:865±88.

[11] Paker SA, Morris LJ. A limit state design method for

tension of bolted column connections. Struct Engnr

1977;55:876±89.

[12] Kukreti AR, Murray TM, Abolmaali A. Endplate con-

nection moment-rotation relationship. J Construct Steel

Res 1987;8:137±57.

Fig. 17. Moment±rotation diagrams for the six cases of axial loading, plate thickness t=30 mm.

M.J. Kontoleon et al. / Computers and Structures 71 (1999) 87±103102



[13] Chen WF, Patel KV. Static behaviour of beam-to-col-

umn moment. J Struct Div ASCE 1981;197:1815±38.

[14] Chen WF, Lui EM. Steel beam-to-column moment con-

nections. Part I: ¯ange moment connections. S M Arch

1986;11:257±316.

[15] Bortman J, SzaboÂ BA. Nonlinear models for fastened

structural connections. Comput Struct 1992;43:909±1023.

[16] Thambiratnam DP, Krishnnamurthy N. Computer

analysis of column base plates. Comput Struct

1989;33:839±50.

[17] Baniotopoulos CC, Karoumbas G, Panagiotopoulos PD.

A contribution to the analysis of steel connections by

means of quadratic programming techniques. In:

Proceedings of 1st European Conference on Numerical

Methods in Engineering. Amsterdam: Elsevier, 1992. p.

519±525.

[18] Panagiotopoulos PD. A nonlinear programming

approach to the unilateral contact and friction boundary

value problem in the theory of elasticity. Ing Archiv

1975;44:421±32.

[19] Panagiotopoulos PD. Inequality problems in mechanics

and applications: Convex and nonconvex energy func-

tions. Basel: BirkhaÈ user, 1985.

[20] Thomopoulos K. Improvement of the design method for

steel column baseplates via an inequality approach. Civil

Engrg Pract Des Engns 1985;4:923±33.

[21] Baniotopoulos CC. On the numerical assessment of the

separation zones in semirigid column base plate connec-

tions. Struct Engng Mech 1994;2:1±15.

[22] Baniotopoulos CC. On the separation process in bolted

steel splice plates. J Construct Steel Res 1995;32:15±35.

[23] Baniotopoulos CC, Abdalla KM. Steel column-to-col-

umn connections under combined load: a quadratic pro-

gramming approach. Comput Struct 1993;46:13±20.

[24] NecÏ as J, Jarusek J, Haslinger J. On the solution of the

variational inequality to the signorini problem with small

friction. Bull UMI 1980;17B:796±811.

[25] Mistakidis ES, Baniotopoulos CC, Bisbos CD,

Panagiotopoulos PD. A 2-D numerical method for the

analysis of steel T-stub connections. In: Proceedings of

2nd National (Greek) Conference on Computational

Mechanics, Chania, 1996. p. 777±84.

[26] Jaspart JP. 1994 Numerical simulation of a T-stubÐ

Experimental Data. COST C1Ðnumerical simulation

working group. C1WD6/94/091±9.

[27] Mistakidis ES, Baniotopoulos CC, Panagiotopoulos PD.

A numerical method for the analysis of semirigid base-

plate connections. In: Proceedings ECCOMAS 96. New

York: Wiley, 1996. p. 842±8.

[28] Maier G. A quadratic programming approach for certain

classes of nonlinear structural problems. Meccanica

1968;2:121±30.

[29] Panagiotopoulos PD, Baniotopoulos CC, Avdelas A.

Certain propositions on the activation of yield modes in

elastoplasticity and their applications to deterministic

and stochastic problems. ZAMM 1984;64:491±501.

[30] Fletcher R. Practical optimization methods. New York:

Wiley, 1987.

M.J. Kontoleon et al. / Computers and Structures 71 (1999) 87±103 103




